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S.1. Algorithms, Assumptions and Lemmas

Let Vy(r1,72) and V5(71, 72) be the submatrices of Vj and V7, respectively, formed by rows in { (71 —1)(d+
2)+1,(r1—1)(d+2)+2,...,71(d+2)} and columns in {(72—1)(d+2)+1, (12 —1)(d+2)+2,...,72(d+2)}.
We first introduce some auxiliary lemmas.

LEMMA S.1. Under TCMIA and Assumptions[3 - [4, as n,m — oo, h — 0, and mh — oo, we have
sup,, -, |Vo(71, 72) — Vi(11, 72)| = 0p(1).

LEMMA S.2. Under STCMIA, Assumptions[3 and[6, as n,m,r — oo, h,hg — 0 and mh,rhe — o0,
then sup.., . 7., |Vo,st(T1, 01,72, 02) = Vg (71,01, 72, 2) = 0p(1).

We describe our inference procedure for DE under the spatio-temporal case here. A pseudocode sum-
marizing our algorithm is given in Algorithm We denote for c =1,...,7r,

Y; - diag{yi,l,la o 7Y;,m,17 cee 7Y;,1,7"7 C) Y;,m,r}a
Zy=diag{Z\ 1, ... Zpp1s 2y 2 (S.1)

i,m,1? 2,1,7 i,m,rJ:
Denote the longitude and latitude (scaled to be [0, 1]) of region ¢ by (u,,v,),

kon, (1) = K{(u, = ug)[ha} K { (v, — ve) [h}
st Z§:1 K{(u, —uj)/hst }K{(v, — vj)/hst}

Let K = K1/Cy, where Ky is a block matrix whose (¢, £)th block is ¢, (t)Jpm for 1 < ¢, < 7 and
Ko = diag{€,...,Q}. The estimation and inference procedure of DE in the spatio-temporal case is given
as follows.

(S.2)

Algorithm S.1 Inference of DE under the spatio-temporal design

-1 — ~
1: Compute 6%(7,1) = (Z?Zl Zz'Tr,LZi,m) (Z?Zl Zi—?rin,m) and 0%(7,1) = > win(T)0(j, ) for
each 7,0. _
2: Compute 04 (7,0) =Y _p_q k., (1)0(T, ).
3: Estimate the covariance X, by the following steps:

(i). estimate the combined noise by €; », = Y; r, — Zz‘Tr,Lest<T7 L);
(ii). estimate the subject effects and measurement errors by

oy B m > ~IT _ T ~ ~T
Mivr = D=1 Kth, () D5 Wik (T)€iges Mz, = D gy Keh, (V€00 — T 745
~SITT m - ~I = _ = ~I ~IT ~ITT
ni,T,L - Zj:l wj,h(,r)ei,jvf - ni,T,L’ Cire = i — ni,T,L - ni,T,L - ni,T,L‘ (SS)
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(iii). the covariances of 1 and ¢ are estimated by

~

S ST SIT
Zn1(7_175177_2752) n— 1 Zz 1772 Tl,LlnzTg,Lz Z:771”(7_1’[’1’7—2) n— 1 Z’L 17717’17L177@T2,L1

Sy (i, ,02) = A5 S it ol G2 (n,n) = 2 Y B (S.4)

(iv). the covariance of outcome is estimated by

Yy, 01,2, 02) = (11,01, 72, 02) + Xprr (71, 01, 72) (01 = 12)

462 (11,01, 12) (11 = ) + 020 (11, 01) I (11 = T2, 0 = 12).

n -1 n n -1
:{ZZJZZ} {Zz}ﬁlzz} {ZZJZZ}
=1 =1 =1

where 3 = {E (T1, 1,72, 02) }ry 0170, @D Vgst = ICV@ K.
5: Calculate DEst and the standard error se(DEst) based on ‘/9 -
6: Reject Ho if DEst / se(DEst) exceeds the upper ath quantile of a standard normal distribution.

4: Compute

Algorithm S.2 Inference of IE under the spatio-temporal design
1: Compute the OLS estimator

1 n
{ZZ< A m>} {Zzu—m)S{,r(—l)}-
=1

Compute (:)St = KO.

Plug-in the parameter estimates G)St and 95,5 to obtain IESt
Compute the residuals EW?L =S — Z G)(T L).
forb=1,...,B do

generate i.i. d standard normal random variables {£2}7

by Si7T+1,L Zl,T,L@(T? )+£Z 1,7t and Yz-b'r ¢ Zl T LGSt(Ta L)+

sy

generate pseudo outcomes Sf -, and Ysz .

fgzn, Where Zzb‘rb_{l ( ZTL) A’LTM ZTM,}T;
substitute Y; -, and Sz 7, With Y2 and S?_ . and repeat the procedures in Steps 1-3 to obtain the

2, T, 1,T, L)

plug-in estimator IEst~
6: end for )
7: Reject H({E if IEg; exceeds the upper ath empirical quantile of {IE,, — IEg }.

S.2. Proof of Lemmali]

We first prove . It follows from the law of total expectation that
E(Y;|A:,S,) = VA5 {R(Y, |4, 8, Y1)},

where A;, S, and Y,_; denote the history of actions, states and outcomes, respectively. The first
expectation on the right-hand-side (RHS) is taken with respect to the conditional distribution of Y;_;
given that (4., S;).

Without loss of generality, assume both the outcome and the state are discrete. Let p*~—1
denotes the conditional probability mass function of Y;_; given A,, S;, we have

AT7ST

E(YT‘AT - a’7'7‘§’7' = 37’ Zp T I‘A =a-,3 (gT—l){E<YT‘AT = amgr = 57'7177—1 = yT—l)}'

According to CA, the second term on the RHS is equal to

E[Y; (@:)|Ar = a7, §2(@r-1) = 5. Y7y (@r-1) = o1,
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where S¥(a;—1) and Y*_;(@,_1) denote the sets of potential states and outcomes up to time 7 and 7 — 1,
respectively. It follows that

E(Y-|A; = a,, S5, = Zp A= 5= = (G- ){EY; (@r)|Ar = ar, S7(ar—1) = 57, Y1 (@r-1) = §r-1]}-
Yr—1

Under SRA and PA, the conditional expectation on the right-hand-side is independent of the actions.
In addition, it is equal to R;(a-,5;), independent of y,_1. This yields ({).
We next show (B]). Using similar arguments, we can show that

E{R:(ar, S3(ar—1), -+ S1)} = EE{ R, (ar, S3(@r—1), - . 1) A1 = a1, 83y (@r—2), Yy (@r—1)})-

Under CA, we can replace Y{*(a;) and S5 (a;) with Y7 and Ss, respectively. Under SRA and PA, the
event As = ay can be included in the conditioning set. This yields that

E{R-(ar,S7(Gr-1),---, S1)}
= E[E{R:(ar,S7(@r-1), -+, A1, 51)[A2 = a2, Ay = a1, S7_1(ar—2), Y7_1(ar-1), 51, Y1 }].

Iteratively applying this argument allows us to repeatedly replace the counterfactual variables with the
observed ones. At the end, all the potential outcomes/states will be replaced with the observed versions
conditional on the actions. The proof is hence completed.

S.3. Proof of Proposition (]
Recall that

DE = ZE{RT(L S:(OTfl)v 0, S:—I(OT*2)7 SRR Sl) - RT(Oa S:(OTfl)’O) S:—1(07*2)7 ERR) Sl)}7

=1

IE =3 E{R,(1,55(1,-1), 1,87 (Lr—2),...,51) — Rr(L,52(0,-1),0,57_1(0_2),...,51)}.

=1

Under Model |1} each summand in DE equals (7). It follows that

DE =Y ~(r)
T=1

Similarly, for IE, we have
E{R;(1,5:(1;-1),1,57_1(1-—2),...,51) — R-(1,87(0,-1),0,S5F_,(0;_2),...,51)}
=E{Bo(7) + 55 (1r-1) " B(r) + (1)} = E{Bo(7) + 57(0--1)) " B(7) + 7(7)}
=E{S7(1r-1) = S5(0,-1)}  B(7)
=E[®(7 — 1){S7_1(1r-2) = S;_1(0r—2)} + (v = 1)] " 5(7)
=E[®(1 — 1)®(r — 2){S7_5(1;-3) — S7_5(0,—3)} + ®(7 — YI(7 = 2) + (7 — 1)] " ()

o (L))

which completes the proof.

S.4. Proofs of Lemmas[S.1and[S.2]

The proof of Lemma is similar to that of Lemma Hence, we focus on proving Lemma for
space economy.

Proof: We first prove that sup,, ., ]Z 71, T2)— 2y (11, 72)| = 0p(1). It suffices to show that n =1 S°1 i 7.7 r,
and n=1 >0 | &2 - are consistent estimators of X, (71, 72) and ‘752,7- According to Section ﬂ we have

€ir=Yir— ZZ-TTG( ). Notice that

m
M = Y win(r)e())
j=1
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We follow notations in [Zhu et al.| (2014) and write
Eir = 2o win(T)Eig,  Axmir =270 win(m) {nij — nirt
AgO(t) =3 win(T) {O(j) - 5@)} o A (T) = Eir + Agnis + 2 AKO(T).
Then we have
;7\7,’,7' —Nir = Am' (T)7
which gives

n

n n
nil Z ﬁi,ﬁ ﬁi,Tz = nil Z 771‘,71 ni,Tz + nil Z Am (Tl)Am (TQ)
=1 =1 =1

n

n
n_l Z ni,ﬁ A’V]i (7_2) + n_l Z A”h‘ (7_1)7]’5,7'2'
=1

i=1

The first term n~! > iy iy i, converges to ®p(71,72) according to the Law of Large Number. We
next show

(a) I1 =n~ 130 | Ay (11)Ay, (12) converges to zero for any (11, 72) € T2
®) L=n"t3" nin Ay (r) +nt Yoy Ay (T1)ni,7, converges to zero for any (11,72) € T2

By mutually multiplying the three terms in the summation form of A,, (), we have

2517’1517'2 +n 1ZAKnZTAKnZTQ +n 12 AKQ 7’1 AKQ(TQ) Zi,Tg

n! Z Eim Axi(r2) + 07! Z AKNir,Eiry + 17! Z Eim Ax(r2) Zi,
i=1 =1 i=1

_IZ Zi Akb(T1)Eir, + 0~ IEAKW nAx0(r2) Zi s, +n_1z Z{ A1) Ak,
=1 =1

By the independence between ¢; -, and ¢; 5,, the first term n—1 Z?:l & Ei7, converges to zero. As for
the second term, using standard arguments in establishing theoretical properties of kernel estimatorgj]
the bias term satisfies E> 7" wjn(7) {mij — mir} = O(h? + m™!), whereas the variance term satisfies

Var( 70 win(7) {ni — i} = O(m~th=1). Tt follows that

n
1
n § A i AKNim
i=1

n m m
=n > D win(m) iy — i} D win(m) {0 — nim}

i=1 | j=1 j=1
=O0y(h* +m~h7h).

As for the third term, notice that {5(7) —6(7) : T} converges uniformly to zero, {Ax6(7) : 7} converges

uniformly to zero as well. Under the given conditions, n=* 3" | Z;rT1 i 15 Op(1). It follows that the
third term is 0,(1). The remaining six cross products converges to zero according to the Law of Large
Number and the mutual independence of Z;, €;, and 7; imposed in Assumption [4] . This completes the
proof of (a).

To prove (b), we only need to prove n=t > n; - Agn; -, = 0p(1) since that 7; is independent of Z;

and g;. This follows from the fact that

n m
Y i | D win(m){ni = min)
i=1 j=1

iSee e.g., http://www.stat.cmu.edu/~larry/=sml/NonparRegression.pdf.
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Wj,h 7—2 {Z”Z,]UZT an T 7'2}

Wi h(T2) {2 (5, 71) = B (L, 72)} + 0p(1), (S.5)

Ms i Ms

7=1

where the first two term on the right hand of (S.5)) is O(h?) according to the assumption on the distri-
bution of 7; -; see the equation (26) in the supplementary materials of [Zhu et al.| (2014).
We next prove the consistency of n=!>_" Notice that

2117'

~ ~ ~ T3 ~
Eir = Cir — Niyr = Yir — ZZ'J—O(T) — Ni,r-

Similarly to the proof of (a), we denote Ag(7) = 6(7) — 0(7), and A, (1) = —ZZTTAQ(T) — Ay (7). Tt

follows that
_12 125”4—71 IZAQ )+ 2n" 126“—A2 7).
=1

The first term n=!>°% | & - converges to 07 2(7) according to the Law of Large Number, and the other
two terms both converge to zero based on the same arguments used before. We omit the details to save
space.

Finally, recall that Vg is the sandwich estimator of Vj defined in . It is straightforward to show

that sup,, ., |Ve(71,7'2) Vi(71,72)| = 0p(1) based on sup,, ,, \Ey(ﬁﬁz) Ey(71,72)| = 0p(1). Similarly,

we can derive that sup,, , \V (11, 72) — V(11,72)| = 0p(1). We omit the details to save space. O

S.5. Proof of Theorem[i]

Proof : Argument (i) in Theorem [1| can be directly proven based on the properties of the ordinary least
square estimator. We focus on proving Argument (ii). Notice that 6(7) can essentially rewritten as a
linear combination of {0(k)}, i.e.,

= > wen(M)B(k) = > win(r){0(k) — 0(k) + 6(k) — 0(r) + 6(7)}
k=1 k=1

)+ Y wen(D{Ok) — 0(k)} + > win(r){0(k) —0(r)}.
k=1 k=1

It follows that

=S i (M){AE) — ()}
k=1
:Zwk,h(T){e(k) —6(7)}
k=1
1
1 T—k 1 T—k
:{;MK( — )} - LthK( — ){9(@—9(7)}]

Denote

_II
—
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By decomposing g1 (7) = g2(7) + {g1(7) — g2(7)}, we first show ga(7) = O (h?), and then prove g;(7) —
g2(1) =0 (m_l). The time domain of interest is fixed, and the increment of m equals the encryption of
grids. Define a function 6y such that 6y(-) such that 6(r) = 6y (=) for any 7. It follows that

0(s) — O(t) = by (%) R <;> =0, (;) <8n_1t> +%eg (;) <8;t>2+0(m—3).

Then we have
g2(7) = /01 %K (“hT/m> {Bo(w) — 0 (%) b du
- [ (G )+ () (o ) e
2
[y (Y g () ()

=0 (h?).

o~

Note that for any second-order continuous function fjy,

b
| @rde = 50 =i + 1) - b=

0= 5 (272 o - ()

Then where exists some §, € (k — 1, k) such that

for some & € (a,b). Let

m k/m
g2(T) = kzl/(k_l)/ms(u)du
=3 s (k) + s(k ~ 1)} - ﬁzs" (&)
k=1
1 1 "
:gl(T)—i-%{s(O)—s %Zs
=1
Hence "
92(r) — (1) = 5—{5(0) — s(m)} — o D" ()
k=1

We can represent (12m)~1 Y7 | s”(&k) as the summation of the follow three quantities:
1 - w€k—T fj _ T - 1 /11 p(u—T1/m . T _ -2
12m3h3 ,;K ( mh ) {90 <m> o (m)} N mene J, B h {90(“) o (m)} =0(m™),
1 - (Ee—TN ~ 1 /11 s(u—T/m\ _ —27 -1
12m3h2 ,;K < mh > bo&u/m) > 5oay | K ) folwydu=0(m==h ™),

) ohem) =~ s [ () g = o6n )

It follows that go(7) — g1(7) = O(m~1) and the bias term satisfies
g1(1) = O(m~ 1 + h?). (S.6)

12m3h (
k=1

As for the covariance matrix, we have that

COV{é(T), é(s)}
= Cov {Z wi (T — k)O(k), S wp (s — l)A(l)}
k=1
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=E | > > wn(r = k)wa(s — ){0(k) — 0(k)}{0(1) — 0(1)}

)

where Vs(k,1) = Cov{f(k),8(1)} € R?*? and that

Let
Vo=V V5
~1
- (EZZ-T Zi) B (ZZT Al ) : (EZZT Zi>

1
:&%{ﬁ(E&ﬂ@) } ,

Jj=1,...m

-1

and V. (k) = J,% (EZZ-kZ;)fl. Then we can represent

/g\(Ta 5) = /gl (Ta 5) + /9\2(7-3 3)7

) (s
) ()

1
q1(7,s) = —V~(7’ s) + O(n_lm_1 + n_1h2),
g2(7,8) = 0O(n~ L~ 1).

where

gi(r;s) = nmzh2 LZZK<

11=1

@\2(7_75) = nm2h2 [ZK<

k=1

Using the same arguments in (S.6]), we have

The abol/e arguments implies that for any vector Qn2 with unit o norm, the asymptotic bias of
vna, ,(6 — 6) is upper bounded by n"2|an 2|2 EO — 0]z = O(v/nh? + /nm™'), using Cauchy-
Schwarz inequality, and that its asymptotic variance is given by aZjQV(;an,g. Under the assumption that
)\min(azg%amg) is bounded away from zero, the bias of \/ﬁa;b(g -0)/, /aTTlQV;ang is bounded by
O(y/nh? + y/nm™1) as well.

It remains to prove the asymptotic normality of \/ﬁalz(é—@). Let ap2 = (aTTL’QJ, alm, . ,alwn)T

where each a, 2 corresponds to a (d + 2)-dimensional vector. The key observation is that, 6—0isa
linear transformation of @ — @, which is equivalent to a sum of independent random vectors, given by

n
_1/QZZZWM n27’ Esz:sz) " Zi ki + 0p(1).

i=1 7=1k=1

We aim to apply Lindeberg central limit theorem to show the asymptotic normality. It remains to verify
the Lindeberg condition:

(a n2V~an2 1E’ZZ(M}€}L n27‘EZlkZ ) 1Z',
T7=1k=1
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| Z Zwk h n 2 T EZZ k‘Zz k) IZi,kTh"k’ > €4/ naTszVgamg) — 0,
=1 k=1

for any € > 0. The left-hand-side is uniformly bounded by 1. As such, it suffices to show

(| ZZ“M MT Eszsz) YZi ki > 6\/"‘12,2‘/5‘%2) — 0.

T=1 k=1

However, this follows directly by the Chebyshev s inequality.
Finally, it is proven in Lemma 1 that Vj is a consistent estimate of V5. As such, se(DE) is a consistent

estimate of se(DE). Argument (iii) thus follows. O

S.6. Proof of Theorem 2
We focus on provide an upper error bound for
1~ 1 1=b 1=
pH(2) = ‘]P’ <1E _CIE< z) P <1E B z‘Data) ’
m m m m
We begin with some notations. Note that 5(7‘) can be expressed as

0(r) = 0,( Z (Z By (7 el,k> :

=1

where .
B k(1) = wi,n(T ( Z ksz> Zik

are independent of the random part e;, and 0s(7) = D pwin(T)0(k). Let eGT = > Bip(r)eir =

{e (efﬂT T 3T and ef = n=1/2%°0 l . Similarly, we can represent ©(7) as

O(r) = O4(7) Z(ZBM )

ZT’ ’ 'LT

=1

where (1) = Y, win(r)O(k). Let ES = S0 Bip(r)Ei = {E, (E2)T,EL}T and EO =
n=l/23n EST. It follows that

B(r) = —ef, B(r) = T L ® T(r) =Ts(r i r
B(T)_/BS()+\/>7'7 () (I)S<)+\/T>ZET7F() FS()"—\/EET

The OLS estimation corresponds to the special case h = 0. We remark that E? is asymptotically normal
when h = 0 and degenerates to a point distribution when mh — oo. To make the following analysis hold
for the OLS-based test statistic, we view E® as a random variable in the discussion below.

For simplicity, let vec(:) be the operator that reshapes a matrix into a vector by stacking its columns
on top of one another. Denote

.
()T fvec(BE)Y T, (BE)T| - € R+,

J:in = 1,T
T
x; = (x22,$23, . ,xzm) eERPr p,=2(m—1)dp, d=p—2. (S.7)
Let {y;}; be independent mean zero Gaussian vectors with IEyiyZ Exz . We similarly represent y; as

_ i]j T
Yir = {(efT) , {vec(E ”)}T (E ”)T] e R2d(d+2)

vi= (o Ui Ulm) | ERP". (S.8)
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Let {e”,Eb } be the empirical Gaussian analogs of {e;;, F;;}. In other words, for i = 1,...,n,
7=1,...,m,let

b
€ij = eljglv 2]517
where &1,...,&, are i.i.d standard normal random Varlables. We next define

T
Wi+ = [( b ) {VGC( )}T ( Fb) ] c RQd(d+2)7
Wi = (wiTwasa--wam) € RP-. (S.9)

Let
1™
X = (Xg—va;rvaX;r@) = %sza

Y =, Y., v \Fzyz,

Define the following function

o= 5 (o ) S e ) (0 )

j=1  k=j+1

We next represent the proposed test statistic and the bootstrap samples based on Fig. Recall that
O4(1) = > L wrn(T)O(k) and O4(7) = >, win(7)0(k) are the smoothed parameters, and 6,© corre-
spond/fo the estimates. The difference between the proposed test statistic and the oracle indirect effect
m~Y(IE — IE) can be represented as T = Fig(X;0s,0;) — Fig(0;60,0). Similarly, we can represent

m_l(fﬁb - fE) by Wi = Fig(W; 5, é) — Fig/(0; 5, é) By definition, we have
p*(z) = |P{Iy <z} — P{Wj < z}|. (S.10)

We also define the oracle statistics: Ty = Fig(X;0,0)—Fg(0;0,0) = Fig(X)—Fxr(0), Zo = Fig(Y; 6, G))~—
Fip(0; 0,9) = Fr(Y) — Fig(0), Wy = Fig(W;60,0) — Fig(0;0,0) = Fig(Z) — F1g(0) by replacing 65, 0,
O, and © with the oracle values. This yields an upper bound for

p(z) = |P{Ty <z} — P{Wp < z}|. (S.11)

The proof is divided into two parts. We first provide an upper error bound for sup, p(z), showing
that Ty can be well-approximated by Wy. See Lemma below. Then, we provide upper error bounds
for the difference between Wy and W, and the difference between Ty and 7. This yields the error
bound for sup, p*(z).

LEMMA S.3. Under the conditions of Theorem@ sup, p(z) < Cn~Y8 for some constant C > 0.

We first outline the main idea of the proof. We then present the details. The proof is based on the
high-dimensional Gaussian approximation theory developed by |Chernozhukov et al| (2013). In their
paper, they developed a coupling inequality for maxima of sums of high-dimensional random vectors.
They began by approximating the maximum function using a smooth surrogate and then developed a
coupling inequality for the smooth function of the high-dimensional random vector.

In our setup, the statistic Ty can be represented as a smooth function of sums of random vectors
whose dimension is allowed to diverge with the sample size. Such an observation allows us to employ the
coupling inequality to establish the size and power property of the proposed test. The proof of Lemma
contains two main parts. In the first part, we assume the covariance of the time-varying covariates
is known and employ Slepian interpolation, Stein’s leave-one-out method as well as a truncation method
to bound the Kolmogorov distance between the distributions of Ty and its Gaussian analog Zp. In the
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second part, we establish the validity of the multiplier bootstrap for estimating quantiles of Zy when the
covariance matrix is unknown, i.e., Wy. The detailed proof is given as follows.

Proof of Lemma Define function g(s) = go (w(s - t)) for some constant ¢ > 0 and some thrice
differentiable function gg that satisfies go(s) = 1 when s < 0, go(s) = 0 when s > 1 and go(s) > 0

otherwise. Let m = g o Fig. We also introduce the following notations: E,(:) = n~1>" (-); E(-) =
E,E(-); C* denotes the class of k times continuously differentiable functions; C’l]f denotes the class of
functions f € C* and S 109 f(2)/027] for j =0,...,k; a < bif a is smaller than or equal to b up to a
universal positive constant; a ~ b if a < b and b < a. We define the Slepian interpolation Z(t) between
Y and X, Stein’s leave-one-out version Z9(t) of Z(t), and other useful terms as follows:

Z(t) = \/ZX +vV1—-tY = izi(t), Zz(t) = n_l/Q(\/Zl"i +v1-—t i),
=1

Z0(t) = Z(t) = Zi(t),  Z(t) = 2\1/5 (\2% - ﬁll_ t%) :

We first prove

sup |P(Ty < t) — P(Zy < t)| < C'n~ /3, (S.12)
teR

where O’ > 0 is a constant. From the construction of g(-), we have Gp<t* k = 0,1,2,3 where G} =
Sup,er \8kg(z)|, k > 07 and

P(Ty < t) = P(Fie(X) < t) < Eg(Fr(X)),
Eg(Fp(Y)) < P(Fr(Y) <t+¢71),
P(Zo <t+vy7") = P(Fp(Y) <t+¢7") > Eg(Fe(Y)),
which give the decompose
P(Ty < t) = P(Zy < t) < {Eg(Fr(X)) —Eg(Fp(Y))} +{P(Zo <t +¢7") = P(Zy < 1)} .
(a) (b)

In the following, we calculate (a) in Steps 1-2 and derive the bound for (b) in Step 3.
Step 1. We first calculate the upper bounds of (a). We have by Taylor’s expansion,

Pz n 1
E{m(X) —m()} =) /0 E{0;m(Z(t))Zi;(t)}dt = T + 11 + II1,

j=1 i=1

where

n

Pz 1
=Yy /0 E{0;m(29 (1)) 2y (1),

j=1i=1

Pz n 1
=3y /0 E{0;0km(Z0)(8)) Zu (1) Zu (1) Y,

Gk=11i=1
Px n 1 1 ' .
nr= Y Y / / (1 — 8)E{0;0,0m(Z D (t) + 5Z; 1) Zij(t) Zi () Zy (t) }dsdlL.
jki=1i=1"0 70

By independence of Z(®)(t) and Z;;(t) together with the fact that E{Z;;(t)} = 0, we have I = 0. Note
that Z(z) (t) is independent of Z(t)ZZk(t), and ]E{ZZJ (t)ZZk(t)} = n_lE{xijxik - yijyik:}v

Pz n 1
1= 303 [ E0,0m(ZO OBy (0 Zit0)}at =

Gk=1i=1

We now prove (a) < |[ITI| < 3n=2 4+ 4?n=2 +1n~2 in Step 2.
Step 2. Note that

Pax n 1 1
nmr=>% Y /O [IE{ /0 8j8k81m(Z(i)(t)—i—sZZ-(t))ds} Zii () Za(t) Zu () | dt

3k l=1i=1
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S / B, 602 (8)) Zis (1) Za () Za (1),
k=1 i=1
where
0;0k0m(Z) ~ wgajFIE(Z)akFIE(Z)alFIE(Z) + 1/)23jF1E(Z)8k81F1E(Z) + ¥0;0,0, Fig(Z).
Note that

11| < Z Z/ VEI;0x0m(Z ()Pl 245 () Za (1) Za (1) Pt

7,k l=11=1

1 « o
S/O (aykz,z:l \/Eajakalm(z(t))2> <1s§3§z’§px ”E’Zia‘(t)zik(t)ziz(t)\) dt.  (S.13)

We first compute Z?ﬁc,l:l VE|9;0,0m(Z(t))|2. Define function

o=1{ o <015}

1<j<p./2

where

u= ()7 (vee(B)Y T (ED) .- ()T fvee(B2)) T (EL)T)
= (u1,ug, - - 7upz/2)T.

Then we have

VE{0;0:00m(2)}2 =\ /E{0,0000m(2)}2G + E{0;000m(Z)}2{1 — G}
~p B (0; FipOk FirO FieG) + *E{0; Fipdy Fird Fie(1 — G)}

+ *E(0; 0k FirO FieG) + *E{0;0x Fird Fip(1 — G)}
+ wE(ajakalFlEg) -+ wE{aﬁkalFIE(l — g)}

In the following, we focus on establishing the upper error bounds for > ke E(0; Fig0x Fir 0 FirG) and
> ikl E{0; Fir0x Fir0iFir(1 — G)}. The other bounds can be derived similarly.

2.1 The bound of ZMJE(ajFIEakF,EalFIEg).
Let ¢ = (1 + ¢)/2. Notice that

> E(0; Fiedi Fied FieG) S m°E|0; Fied|®.
g,k

We next compute E|0; FirG|, which belongs to either one of the following three categories:

OFiE ‘ el T ( Eff) ( : EJF)
G| =mn w(k)+ L) (1()+ % ) 1 g
‘ e’ ; k:1:[.+1 vn Vn
t—1
Smn V2 g+ (1- g)/2)
=1
:m71n71/2;
m T ¢
0Fg ‘ 1, -1/2 ( ef) < E,‘f)
G| =mn 8(r)+ < o)+ 2L ) g
9T 2\ ) I e

<m VM + (L-q)/2h Y 7
t=j+1
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~ m_ln_l/Q;

m g T
_1 —1/2 Z (ﬁ f)
t=2

t—1 t—1 T
| BN (pn+ B
; 11 (@(k)+\/ﬁ> (r(;)+\/ﬁ> G

k£l

g|=

0Fg
OEP

k=j+1
m -1 ‘
SmTtnTVE YN T M+ (1 9)/2)
t=I+1 j=1
~m~tn 12,

It follows that Y-, E(9; Fipdx Fipd FieG) < n3/2.

2.2 The bound of Zj,k,l E{0; FirOx F1e0, F1e(1 — G)}.
Similarly, we have

ZE{ajFIE(?kFIEalFIE(l — Q)} 5 m3E|8jF1E(1 — Q)\?’
7.k,

We consider the derivative with respect to 7776- as an example. Notice that

OFis B B t—1 t—1 Ef;p . EiJF B
IE{ ol (1 g)} =F ; kg[ﬂ (<I>(k)+ ﬁ) (r(])+ \/ﬁ) (1-0)
/ i1 i1 i o 2+ 1/2

<m n72|E d(k) + =& (r(')+J)

2 A < ﬁ) SRV

=j+1

- PS max |uj/v/n| > 1—q/2}

1<j<p./2

By Lemma 2.2.10 in [Van and Wellner| (1996)), we have E|max; u;| < logm. It follows that

_ L L 2 1/2
t— t— T
E? E:
E 11 <<I>(k)+’“> <F(j)+]>
| |i=1 k=j+1 vn Vi
[t—1 ¢—1 1/2
max; U, max,; U4
2> E‘@(kz) IAX; 1t E‘ro) WAX; 1t
| =1 k=j+1 vn vn
_t 1 1/2
— J
< 1+10gm

m
:<1+ v > <1+logm>
logm N
~n'/?(logm) " exp(n~*mlogm).
Let tg = n'/?(1 — ¢)/2 and t; = to — Emax; u;. Notice that
P{max|u;| > to} =P ({maxu; > to} N {max |u;| = maxu;})
J J J J
+ P({minu; < —to} N {max |u;| = —minu;})
J J J

<2P{maxu; > to}
j
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SP{|maxu; — Emaxuj| > t;}.
J J

By Borell TIS inequality and Lemma 2.2.10 in [Van and Wellner| (1996)), we have

P{max |u;| > to} < exp(—t?) ~ exp{—n + 2n'/*logm — (logm)?}.
J

Hence
ZE{ajFlEakFIEalFIEu -9} < n—3/2537
Jikl

where
5 = n'2(logm) ' exp{—n + 2n'/%logm — (logm)? + n~*?mlogm}.

Combine the above arguments, we obtain

> E(0, FipdhFied FieG) + > E{0; FiedcFied Fie(l — G)} S n~3/2(1 + 6%,
Jik,l gkl

Using similar arguments, we can show that

ZE(ajakFIEalFlEg) + ZE{ajakFIEalFIE(l —G)} <nT2(1+6%),

7.kl 7.kl
> E(0;000FEG) + Y _E{9;0:0,Fie(1 - G)} S n 2 (1+0).
gkl Jik,l

It follows that

Pz
> \/E|0j0k8lm(2(t))|2 < P332+ 8%) + P32 (1 4 62) + Yn 32 (1 4 0),
gk, l=1

where 0 depends on m,n through (S.15).
Let w(t) = 1/ min{v/t,+/T — t}. We observe that

1
m]?anZz‘j(t)Zi (t)Zu(t)|dt
[ L)

1
_ /0 w(t) max nE|{ Zi; /w(t)}(£) Zix () Za (1) dt

gkl

1
<on / w(t) max (Erz@/w@)|3<t>ErZik<t>\3EIZﬂ<t>"”’)1/3 dt

t
<o n 7V max (o + yl)* [ it
0

< n~1/2 max@xmg,
J

13

(S.14)

(S.15)

(S.16)

(S.17)

where (I) is by Holder inequality and (2) follows from the fact that |Z;;/w(t)| < n=Y2(Jzy] + |yij]),

|\ Zir ()] < 0~ Y2 (|| + |yin)-

The condition m = O(n®) for some ¢ < 3/2 implies that 6 = o(1). This together with (S.13)), (S.16)

and (S.17) yields that
(a) = [ITI] S 9°n~2 + 4~ + ¢n 2.

(S.18)

Step 3. We now derive the upper bound of (b) = P(Zy <t -+~ ') — P(Zy <t). Let t' =t + Fig(0).
Recall that & is defined in (S.§). Denote 1= (1,...,1)" € R% Using similar arguments in Step 2.2, we

have

vn

m _B T
Z (,8(7’) + ) 1<t | +exp{—n—+2n'"2logm — (logm)?}
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m . T
~ P ;Z(B(T)Jr\e/é) i<t|, (S.19)

t=2

where the second inequality is due to the conclusion (S.14) and the third inequality follows from the
condition m = O(n®) for some ¢ < 3/2. Notice that e, is a Gaussian random vector, we have

sup |P(Zo <t -+~ 1) — P(Zy < t)| = n'/%p~L.
To summarize, we have shown that
P(Ty <t)— P(Zo <t) SvPn 2 +¢?n 2 +¢n =2+ n!/2y~

Take ¢ ~ n5/®, we have
P(Ty <t)—P(Zy <t) <n Y5

By Lemma 3.2 of Chernozhukov et al. (2013, we have shown that for o € (0,1) and ¥ > 0,
P(ew, (@) < cz (@ +9'?)) > 1 - P(A > 9),
Ples(@) < ewy(a+012) > 1— P(A > 9),

where ey, (o) and ¢, (o) denote the critical values of Wy and Zy under the significance level «, respec-
tively. Define

pe = sup P({ez,(0) < Ty < awy(@)} U{am (@) < To < ez,(a)}).
a€e(0,1)

Note that
P(czo(a) <T) < cWO(a)>
:P(czo(oz) <Tp < ezt 191/2)) n P({czo(a FY2) < Ty < ew (@)} N {ew, (@) > ez, (o + 191/2)})
~ P({ew (@) < To < ez, + 99} 0 {ow, (@) < ez, (a+9"/)})
§P(czn(a) <Ty <cz(a+ 191/2)> + P(CWO () > ez, (a+ 191/2))
<P(ez,(0) < Zo < ez (a+9'%) + p+ P(A > )
<2 4 p+ P(A > 0).
Similarly, we can show
P(cwo(a) <Tp < czo(oz)> <924 p+ P(A>0).
By the definition of pg, we have
pe < 2012 4+ 2P(A > 9) + 2p.
On the other hand,

|P(Ty < ew, () — @
<|P(Tp < ew, (@) — P(Ty < cz,(a))| +p

<P({ez(@) < To < ewy (@)} U{ews (@) < Ty < ez (a)}) +p
<pe +p-
Notice that A = O(n~%?) when ¥ = O(n~/*). The proof of Lemma, is thus completed. O

With Lemma we next present the proof of Theorem

Proof of Theorem Define T, = Fip(X;6s,©5) — Fig(0; 05, O5) and Ao = Fig(0;6,,05) — F1(0; 0, ©).
It follows that 77 = T, + Aro. Notice that

p(2) = [P{Ty < 2} = P{WG < 2}
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< ‘P{Tg <2 - P{Ty <2} ] v ‘P{To <2 - P{W, < z}‘

+ ‘P{Wg‘ <2} - P{Wy <2}

< |Pirg <2} - PTH <2}

+ \P{T;1 <2} - P{Ty <z}

+ ‘P{To <2} - P{Wp < z}‘—i— ‘P{W(f <z} - P{W, Sz}‘.
Similar to the proof of Lemma we have
P{Ty, <z} —P{Ty <=z}

<{Eg(Fe(X;0s,0,) — Fig(0;0,,0,)) — Eg(Fe(X;0,0) — Fip(0;0,0))}
+{P(Ty<t+47") - P(Th < 1)}

={Eg(Fr(X;0s, 05) — Fe(X;0,0)) — Eg(Fie(0; 05, ©5) — Fip(0;6,0))}
+{P(Ty <t+¢~") = P(Th <t)},

and
P{W; <z} —P{Wy <z}
<{Eg(Fip(W;0,0) — Fip(0;0,0)) — Eg(Fr(W;0,0) — Fig(0;0,0))}
+{PWo<t+y™') - P(Wy <t)}
={Eg(Fie(W;0,0) — Fie(W;0,0)) — Eg(Fip(0;0,0) — Fir(0;0,0))}
+{PWy <t+v ') —PWy<t)}.

Denote dgs = 05 — 0, dgs = O5 — O, o5 = 0 — 0, and o5 = 0 — 6. To bound these differences, the biases
d9s, des, 07, 07 can be treated in the same position as X or W. Take Fig(W; 0, (:)) as an instance, we have

Fiu(W;6,0)
1 m ) i T -1 -1 ) Efff ( | y EJF)
_ml; [(5@)—1—55@)—1- \/ﬁ> ;{k];[ﬂ <Q>(k:)+5®(k)+ ﬁ) )+ 0p) )

According to Theorem (1, 67 and d; are asymptotic normal with variance of order n~! (mean is negligible

compared to the variance), i.e., that same order as e? /+/n. Hence by the same techniques as in proof of
Lemma one can obtain

(P{WO* <2 - P{Wo<z) ‘ < On~V8,

The biases dgs, dos are of order O(h? + m~1) = o(n~'/2). They are not random given m and h. Then
maxy, ||0es (k)| eo < maxy, [|0gs(k)||oo = o(n~'/?). Using similar arguments in proving Lemma we can
show that

‘P{Tg‘l <2 - P{Ty<2) ’ < COnV8,

We omit the details to save space.
Finally, it remains to bound Arg. Notice that

Aro = Fir(0;0s,0,) — Fig(0; 6, 0)

m -1 -1
— %Z {(ﬁ(l) +555(z))TZ{ H (D(k) + das(k)) (T(5) +5ps(j))}]
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m S
+%Z 05507 Y T (@(k) + das(k)) () + 0rs(5)
=2 j=1 k=j+1

Let § = max{maxy, |0gs(k)|loo, maxy [|des(k)|loot = O(h? +m™1). It follows that
-1

- -1
Y9 II @) +bas(k) (T() + ors(i H D(k
Jj+1
-1

j=1 | k=j k=j+1
-1 — -1 -1 —
<MY LI @) +0)— T @)+ H (®(K) + 6) Srs())]
j=1 |k=j+1 k=j+1 j=1k=j+1
-1 [I-1-j5 -1 1—
X (T Ny T a
=1| k=1 =1 k=j5+1

—1
Z‘5+ql1] ll]‘—f—a_Z{é—l-qll] l—1—j}+5
7j=1

< 1—¢ _1—(q—|—5)

§<5<h? -1
1—¢ 1—q—35 +oS0S5h +m

Then, we have Arg = O(h%? + m™!). Hence, ¥y <z} — P{T§ <z} ‘ = ’P{Tg‘l +Apg <z} —
P{Ty <z} ‘ < P{z — |Apo| < T3y < 2z + |Azo|} = O(n'/?h? + n'/2m=") holds with probability 1 as
n — 00. The proof is hence completed. O

S.7. Proof of Theorems[3, 4, Corollary 1 and More on the Switchback Design

Proof of Theorem [3; From Model 1, we can derive that fori=1,...,n,t=1,...,m,
t—1
St = A:fkfl + IB()tSl =+ Z ]BjtFjAj + 82;15, (820)
j=1

where Bj; = Hk i ®(k), Ay = 22:1 Bjipo(j) and ;¢ = Z IBjtst. Define

1 A Su
. 1 Ay Su
Mt = . . . I
1 Ant Snt
]EAtSt - EAtESt COV(At, St) 1

-1
vr = 1 -EA, - Var(A;) /EA; and - Sor = [Var <St - EA%AO} .

Under the two designs, A; depends on the observed data only through the past actions. It follows from

(S-20) that

t—1
Yt = 2 Z B]tFJCOV(A], At),
j=1
and hence
S()t = {Var(IBOtSﬂ + 8;157173)}71
Direct algebra gives
1 —1 1 EAt IESt !
{(Mf)TMtC} = | E4A, EA, EAS, + 0p(1). (S.21)
" ES, EA,S, ES?
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Consider the matrix on the right-hand-side. Notice that

1 1 1 EA, ES; 1 —-EA; —-ES;
1 —EAt 1 EAt EAt EAtSt 1
—th/EAt 1 —IESt 1 ESt EAtSt ES? 1
1 1
X 1 —g@t/EAt = Var(At)
1 Var[St - Varfl(At)Cov(At, St)At]

It follows that
-1

1 EA; ES; 1 —-EA, —-ES; 1
EAt ]EAt EAtSt = 1 1 —QOt/]EAt
ES; EA.S; ES? 1 1
1 1 1
1
X EA)(1-EAY) 1 —BEA4, 1
SO,t —gOt/EAt 1 —ESt 1

With some calculations, it follows from (S.21]) that

* * *
—1
1 S _ 2
eNT c o _ 1 _ P 0t(<,0t ESt) 1 7 Sot _SOtSOt
{n(Mt) M =| ~1Ex EA, EA,(I—EA,) T E°A, £, | T op(1).
s
Sot (¢r — ESy) it Sot

Consequently, the resulting OLS estimator satisfies

SOp 1 1 ©tSot(—ESt + o) ‘
30 =0+ 1 { -1 - 2 S e

%

1 1 Lo 28S0: 1 90155075 —1/2
t o {EAtu “E4) | E?A, }ZAte” Zst% ol

B 1 1 ©2Sot ' 1 piSoe ' , ~1/2
0+ H s e S~ B — 1 G S (S B e+ pln ™)

n

4 2 -
=(t) + - ;(Ait —EAy)e; — E@tSOt ;{BOt(Sﬂ —ES1) +eli1sten + op(n~4?)

n t—1 n
4 2
+ EQO?SOt E (Azt - IEAt)eit — E@tS()t E IBjtFj E (AZ] - EAj)eit.

i=1 j=1 i=1

It can be verified that under either the alternating-day or the switchback design, the last line equals 0.
Specifically, under the alternating-day design, we have A;; = A;;. Hence, ¢y = 27 1 Zt L 1 Bj;:I'; and the
last term becomes 4n =Sy, Yo (A — EAy)est, equal to the first term on the last line. Under the
switchback design, noting the relationship A;; —EA; = (—1)"7(A; — EA;), we can obtain that the last
line equals 0. Hence, we have

R 4 & 2 " . _
() =) + ;(Az‘t —EA)eq — ESO;FSOt ;{Bm(su —ESi1) +&fy_1 stei + op(n~ /).
1= 1=
This gives
DE = DE+4ii —EA))e Ei S i{B (Si1 —ESi1) + i1 gtei | +0p(n71/?)
n zt t it T n Ptoot : 0t\ Pl i1 i,t—1,5 S Cit D .
t=1 i=1 t=2 i=1
Then

n

2
m
2> " oiSor{Bor(Si — ESit) + 6:-‘7,5_175}6#] -
=2

m 2
_— 1 1
MSE(DE) =—E 45 Ay —EAe; -E
S( ) { ( t t)et} —I—n
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In the switchback design, A;1 =1 — Ap = = A;j ;-1 =1— Aj;. Denote Ejy = Sot{Bo:(Si1 — ESi1) +
6;}_175}62‘15. Then we have

nMSE(DEq) — nMSE(DE,)

m m/2 m 2 m 2
=4Var <Z ek> — 4Var Z(egk_l —egr) p T E |2 Z Vtadlit| —E [2 Z orspBit| +o(1)
k=1 k=1 =2 =2
=4 Z Ee (]7 Z |J k\z J k + 4 Z COV ity EZtQ)((Ptlyad Sptl,sb>(§0t2,ad + (pt278b) + 0(1>

t1,to=2

Under the given conditions, Ey, and Ej, are positively correlated. When {®(7)}, and {I'(7)}, are of
the same signs, respectively, we have

m
Z Cov(Eit,, Eit,)(¢t,.ad — Pty ,55) (Pts,ad + Pty sb)

tl,t2:2
m tlfl tzfl
= Y Cov(Eu . Ew)| >, [] @®TG) > I 2@ | >0

t1,t2=2 tlfili"il;l k=j1+1 tléj?i;z;l k=j>+1

Hence - -
nMSE(DEqq) — nMSE(DEg) >8 > To(j, k) +o(1).
li—k|=1,3,...

This completes the proof. O

Proof of Corollary 1: Without loss of generality, assume the constant ¢ equals one. With some calcula-
tions, we have that

MSE(DEg) = ZZ D=k, (4, k)

Jk Jik
m/2 m/2
=4n~' qm+2) (m—2k)p —22 — 2k 4 1)p?h!
k=1
m/2 m/2
:4n—1 m—22(m—2k’)(p2k_1 _p2k) _2Zp2k—1
k=1 k=1
m/2
= 4n~1 {m —2(1—p) Z(m — 2k)p?k1
k=1
-1 & 2k—1 1—p, 4
4n m — 2m(1 )kz::lp T p4n m,

—~ 4
MSE(DEq) = ~Xc(j. k)

1
=dp~! m—|—2m(1—|—p)z,021c Y ron™h = +p4 )
1—p
k=1
which yields that MSE(DE,) /MSE(DEqq) = (1 — p)2/(1 + p)2. O

Proof of Theorem [4: When m = 2, IE essentially equals 3(2)T'(1). It follows that

IE = IE + [3(2) - B(2)I0(1) + B2)[L(1) = T(1)] + 0, (n~"/?).
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Similar to the proof of Theorem |3| it can be shown that

n

~ So2 w 25,
B(2) - B(2) = % > (Siz — ESy)ein — %@2 > (Aip — EAg)en + op(n~1/?)
=1 i=1
S
= — [@(1)(5@1 — ESl) + F(l)(A@l — EAl) + 81'715]61‘2

n -
=1

28 - _
B (Zmz}mw —EAs)ein + op(n 1/2)-

- 4
() —-T(1) = = (4;1 —EA)e; —1/2y, 22
(1) -I@) n;( 1 1)eiis +op(n” %) (5.22)
Under both designs, we can show that

n

> [@(1)(Sin — ESy) +€i15]eia + op(n ). (S.23)

i=1

= _ So2

p(2) - 6(2)

n

Notice that the i.i.d. sums in both and are design independent. Consequently, the IE
estimators under the two designs achieve the same asymptotic MSE. The proof is hence completed. [
Comparison against the regular switchback design. We next compare our switchback design
against the regular switchback design (Bojinov et al.l 2020) which administers independent Bernoulli
treatments across time. Consider the case where there exists some 0 < p < 1 such that for any 1 < j, k <
m, Cov(nj,mk) = Syjx = pIF Var(e;) = {ajz}j. It follows that Cov(ej,ex) = pl~* + ajz-]l{j = k}.
We focus on the variance of DE under the settings of Corollary 1. We first calculate the covariance of
highest resolution covariance ¥, with p = 0.8, 0'J2- = 0.36 and m = 144, and then generate covariances of
m = 72,48,36,24,12,6 by computing the corresponding sub-matrices from ... As shown in Figure
below, the proposed switchback design is more efficient than the regular one for any m. It also implies
that the variances decrease with m in both designs.
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Fig. S.1. The solid line represents the variance of the DE under the proposed switchback design and whereas
the dash line represents the one under the regular switchback design.

S.8. Proof of Theorem 5l
We first establish the error bound for [DE — DE|. Recall that

n M m
BB -DE= 5" SN E ({51,500 ~ 50(r. 800} ~ B {ar(7,59) — qo(7, 59}

i=1 k=17=1
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It follows that

IDE — DE|
1 m
SZ Z { (T’S'm'k) Ega(T’SE)}‘
a=0 [rt=1 i=1 k=1

1

_E= -
INGERINNE
fﬁi[ﬁi

{5a(r. 50) = 9a(r. 8000} + - iii{ ”kmmﬁﬂ (3.24)
Y

a=0T1=1

Il
-
£
Il
—

A

SZZ Z { (7, 501) gaTv‘S’rrk}

a=071=1 i=1
+ O, (v/m(nM)~1/?)
where the expectation E* is taken with respect to the simulated random errors.
We next calculate the bound ‘n_l Sy {E*ga(v', §?Tk) —Eg.(, S(T))H for1 <7 <m,a=0,1. Notice
that for 7 > 2, the density of S? conditional on S2_; can be expressed as fz . (s — Go( — 1,52_,)), and
the density of §?Tk is ngS (5 — Go(r —1, §27—1,k>)' We next derive the bound of

SWMs

Z Ta Srrk: Ega(T’ S‘zq)

=1

S|

% ZE* {ga(Tv §7,0Tk) - Ega(Tv S,(r))} )
i=1

forl1 <7t <m.

e When 7 = 1, we have §1?1k = Si. Thenn™ !> E*g,(r 59 ) —Egqa(r,80) = n~! > 9a(T, Sin) —

'y Mitk

Egq(7,S1), where S;; and S; are identically distributed. According to Hoeffding’s inequality, the

difference is
Op(n_l/Z\/log m + logn).

e When 7 = 2, by definition, we have

E%@ﬁ$:E/%@@ﬁm@—%uﬁmm,
and that
Ewazégﬁy:/desﬁggs—@dLS@»d&

With some calculations, we have

n_l iE* {ga(Tv §107'k) - Ega(T, S’(r))}‘

i=1

ZE/sga(Z s)

SE/%@#W@@—Gdb%m—km@—@ﬂﬁmﬁﬁ

+E/ga(2> 8)] feas (8 — Go(1,811)) — feus (s — Go(1, Si1))lds + O(n~ "2 /log(mn)).

fera(s — Go(1,51)) = fora(s — Go(1, 51))| ds + O(n~Y2\/log(mn))

Under the given condition, the second last line is upper bounded by L ¢E|Go(1, ;1) — Go(1, Sin)| <
LyAq(n,m), using Cauchy-Schwarz inequality. Additionally, the first term on the last line is upper
bounded by O,(As(n,m)).

e More generally, when 7 > 3, we have

]Ega(Tv SS) = IE\/ ga(Ta ST)fETs (S'r - GO(T - 1; 87-,1)) e szs (82 - Go(l, Sl))ds'r et d827
and that
Emmﬁﬁw=/ 9a(,80) fers (50— Go(T = 1,8,21)) -+ feps (52 — Go(1, Si1))ds, -+ - ds.

—1,70 5,82
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Similarly, we can show that the difference |n=1 Y " | E* {ga(T, §?Tk) — Egq (T, SQ)H =2 ia Gyt
Caj + Op(n~2\/log(mn)), where (1 ; is given by

E / 9a(T,8:) fers (57— Go(T — 1,8021)) -+ | feys (57 — Go(j — Lo8j-1)) — fey5 (55 — Go(j — 1,55-1))|

X fe;1s(8i—1 = Go(j = 2,8j-2)) -+ fers (52 — Go(L, Si1))dsr - - - dsz,

whose absolute value can be upper bounded by

OME [ |Feyslss = Goli = Lisyo) = fopolo = Gog = Lisy1)|

X fe;15(8j—1 = Go(j — 2,8j-2)) -+ feps (52 — Go(1, Si1))dsy - - - dsg = O(Az(n,m)),

and (3 ; is given by

E/ (T, 8:) fers (57— Go(T = 1,8021)) -+ | feya (55 — Go(j — 1,85-1)) — fe,5 (55 — Go(j — 1,585-1))|
X fe;as(8i-1 = Go(j = 2,8j-2)) -+ feps (52 = Go(L, Si1))dsr - - - dsz,

whose absolute value can be upper bounded by

O(W)L/E|Go(j — 1, 89,) — Golj — 1,52 )| < OW)Ls\/EIGo(j — 1, 5%_,) — Golj — 1.5%_)I2,

1051 1951 1951

where 5971 denotes the potential state assuming the system receives the control treatment at each

time. Using the change of measure theory, we obtain that (2 ; = Op(Ls/wA1(n,m)) where the
big-O,, term is uniform in j.

To summarize, we obtain that

1 <
- E E* {ga(T, SY ) — Ega(r, SQ)}| = 0,(n~Y2\/logm + logn + 7A3(n, m) + LywrAq(n,m)).
i=1

7

We next bound ‘n_l Yo EF {ﬁa(T, §?Tk) — ga(T, :S’\QTk)H. Notice that

I [~ & 5

EZE {ga(Tv Szoﬂ'k) _ga(T7 S’LOT]C)}‘
i=1

n

LS B (G — 0)(7, 82,) — E(@a — g0)(7, 89)|

<E }ga(Ta SB) - ga(Tv S,(r))’ + g
=1

Similarly, we can show that the second term is O,(n~'/2\/log(mn) + L;7y/wA1(n,m) + 7Az(n,m))
whereas the first term can be upper bounded by O(y/wAz(n, m)) using the change of measure theorem.
Consequently, we have shown that

]]5]\5 —DE| = Op(mn_l/2 log(nm) +m?As(n,m) + Lym*VwAi(n,m) + mywAs(n,m)).

As for the error bound for \fﬁ — IE|, it can be expressed by

n M m
B8] | 35 ({95} - ) - 501
m 1 n M R 1 n M N
< [nzzmﬂs}m)—mglmsi)} + WZZ@@S?M—E{91<T»59>}H -
=1 i=1 k=1 i=1 k=1

The error bound can be obtained using similar arguments in deriving the error bound of \]5]\5) — DE]|.
We omit the details to save space.



22 Shikai Luo®*, Ying Yang®*, Chengchun Shi**

Table S.1. Simulation results of DE test based on temporal model and
data from city A. We report the rejection probabilities of 400 replicates
for different temporal-alternating design of experiment (T = 1,3,6),
number of days (n = 8, 14, 20), and relative improvement in percentage
(6 =0.00,0.25,0.50,0.75, 1.00).

y hour | n | 0.00 | 0.25 | 0.50 | 0.75 | 1.00
8 6.8 | 24.2 | 47.2 | 64.2 | 76.0
1 14 6.5 | 34.2 | 65.0 | 82.0 | 91.0
20 5.5 | 38.2 | 74.8 | 90.2 | 96.2
8 6.5 | 15.8 | 33.0 | 47.2 | 62.2
DTI 3 14 3.8 1 19.0 | 42.5 | 64.2 | 78.5
20 | 5.2 |26.0 | 530 77.0 | 91.5
8 6.8 | 12.5 | 18.2 | 29.8 | 40.8
6 14 6.8 | 12.0 | 23.5 | 37.8 | 49.5
20| 6.8 | 13.0 | 28.8 | 46.0 | 61.8

S.9. Proofs of Theorems [6land

The proofs of Theorems [6] and [7] are very similar to those of Theorems 1] and [2, and we sketch an outline
only. To prove the consistency of the proposed test for DE in Theorem [6] it suffices to show the joint
asymptotic normality of the set of estimated varying coefficients {9315(7' t)}7.. We first notice that, the
initial estimator obtained in Step 1 of Algorithm [S.T]is obtained by applying Steps 1 and 2 of Algomthm
[1]to each individual region. The asymptotic normality of the initial estimator can be proven using similar
arguments in the proof of Theorem

Next, note that the refined estimator (8(1,¢)7,...,6(1,:)T)T is essentially a linear transformation of
the initial estimator. Using similar arguments in Section we can further calculate the asymptotic
bias and variance, as well as the asymptotic normality of 04(7,¢), based on the expression Og(7,t) =

K., (V0% (T,0).

The proof of Theorem [7]is similar to that of Theorem [2| The only difference lies in the dimension of
parameter vector. To be specific, let ef(T, 1), E2(7,1), EF (1,1) be the analogs of 62-5(7'), E2(7), EX (1) for
1 <7 <m,1<¢<r under the spatiotemporal case. Denote

.
w(r,0) = (e)(r.0) T {vee(BE(r, )} T, EL (r,0)T) € R2@H),

(2

230) = (22,0 T, 2:(3,0) 7, wi(m,)T) " €RPe, py = 2(m — 1)dp,

(2

= (W)@ )T) T e R pf = 2(m — dyr. (5.25)

(2 3

Define the function

T
1 T m [3
Fst — L
IE mr LZ;TX; (/BS T l’ \/ﬁ)
S (o0 52) (0
. q)s(k;7L)+ = Fs(ja [')+“>
i=1 (k=i+1 Vi vn

Similar to Theorem [2] the proof of Theorem [7] contains two steps. In the first step, we could employ
the high-dimensional Gaussian approximation theory to bound the difference between IEg — IEg and

fﬁzt — fﬁst, assuming that these statistics are constructed based on the oracle parameters. This allows
us to establish the validity of the bootstrap algorithm in the second step. As we have commented, the
only difference lies in the dimension of parameters, and the results can be derived similarly using the
arguments in the proof for Theorem



Supplementary Material for “Policy Evaluation for Temporal and/or Spatial Dependent Experiments”

Table S.2. Simulation results of DE test based on temporal model and
data from city B. We report the rejection probabilities of 400 replicates
for different temporal-alternating design of experiment (hour
number of days (n = 8,14, 20), and relative improvement in percentage

(5 = 0.00,0.25,0.50, 0.75, 1.00).

Y hour | n | 0.00 | 0.25 | 0.50 | 0.75 | 1.00
8 4.0 | 14.5 | 29.5 | 49.8 | 64.8

1 14 | 4.0 | 21.5 | 50.0 | 79.0 | 93.2

20| 3.5 | 228|622 86.0 | 97.0

8 42| 85 |17.0 | 26.8 | 35.8

DTI 3 14 | 42| 11.5 | 22.8 | 35.2 | 51.0
20| 7.2 | 153 | 310 | 46.8 | 60.5

8 7.8 | 11.2 | 17.5 | 23.2 | 28.8

6 14 | 6.8 | 10.5 | 18.8 | 28.0 | 37.2

20| 7.2 | 152|230 | 31.5 | 455

Table S.3. Simulation results of IE test based on

temporal model and data from city A.

TI n 0 ]025] 05 075 1
8 4.8 [ 12.0 | 465 | 74.8 | 87.0
14 [ 6.0 255 | 75.2 | 89.8 | 94.5
1 20 6.2 | 47.0 | 86.8 | 93.8 | 97.0
8 48 [ 10.0 | 21.5 | 46.8 | 64.5
14 |62 218|495 | 72.8 | 84.2
3 20 | 6.0 | 23.8 | 66.0 | 83.0 | 89.2
8 50| 9.2 ]17.0 | 325 | 52.0
14 |58 155 | 37.8 | 65.2 | 77.0
6 20 5.8 | 22.0 | 58.2 | 76.5 | 83.5

Table S.4. Simulation results of IE test based on
temporal model and data from city B.

TI n 0 ]025] 05 ]075 ] 1
3 52| 9.2 328 | 64.8 | 80.0
14 [ 55] 18.2]66.0 | 83.5 | 91.2
1 20 72335795912 | 9.5
8 50| 85| 155 | 30.2 | 52.8
14 [ 55175 335 | 625 | 75.0
3 20 | 5.8 | 195 | 52.0 | 75.0 | 85.5
8 5.0 | 7.8 | 135 | 21.8 | 34.8
14 |65 138|235 | 50.0 | 68.0
6 20 55 | 15.2 | 36.5 | 65.5 | 77.5

23
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Table S.5. Simulation results of DE test based on spa-
tiotemporal model and data from city A.

Temporal-alternating

DE| 0 0.5 1
deltal 0 0| 0.5 0] 0.5 1
delta2 0| 0.5 0 1] 05 0

n=8 | 5.0 | 41.3 | 50.8 | 60.5 | 65.3 | 82.8

n=14 | 5.3 | 55.5 | 70.3 | 74.0 | 87.3 | 94.0

TI=1 M =20 [ 3.8 | 70.8 | 82.3 | 85.8 | 94.0 | 96.3

n=8 | 4.8 | 33.0 | 36.8 | 56.8 | 59.0 | 65.5

n=14 | 5.0 | 40.8 | 488 | 75.5 | 77.0 | 85.5

TI=3 =20 [ 4.0 | 57.0 | 65.8 | 80.5 | 81.3 | 90.8

n=8 | 4.0 | 17.5 | 21.0 | 19.3 | 21.3 33.3

n=14 | 3.5 | 283 | 34.5 | 27.5 | 43.8 | 49.5

TI=6 =20 [ 6.0 | 31.8 | 39.0 | 485 | 50.3 | 54.8

Spatiotempotal-alternating

DE| 0 0.5 1
deltal 0 0] 05 0| 0.5 1
delta2 0] 0.5 0 1] 05 0

n=8 | 5.0 | 46.0 | 56.3 | 67.3 | 68.8 | 85.0

n=14 | 6.3 | 62.3 | 75.5 | 81.0 | 91.0 | 97.3

TI=1 Th=20 [ 53 [ 76.0 | 87.3 | 92.0 | 97.5 | 100.0

n=8 | 4.3 | 383 | 44.0 | 62.5 | 62.5 | 68.0

n=14 | 85 | 47.3 | 54.3 | 81.5 | 81.5 | 88.5

TI=3 7=20 [ 65 | 61.8 | 71.0 | 85.3 | 85.3 | 92.8

n=8 | 2.8 | 23.0 | 28.3 | 25.3 | 26.5 | 37.8

n=14 | 4.5 | 34.3 | 41.3 | 343 | 50.3 | 55.8

TI=6 =20 [ 5.8 | 37.3 | 448 | 535 | 57.5 | 62.3

Table S.6. Simulation results of |IE test based on spa-
tiotemporal model and data from city A.
Temporal-alternating
IE| 0 0.5 1
deltal | 0 0] 05 0] 05 1
delta2 | 0| 05 0 1| 05 0
n=8 | 6.0 | 57.3 | 63.8 | 83.8 | 92.8 | 94.0
n=14 | 5.3 | 76.0 | 78.0 | 92.0 | 94.3 | 97.0
TI=1 M1=20 [ 4.0 | 88.8 | 90.8 | 94.3 | 96.3 | 98.3
n=8 | 4.5 | 45.0 | 495 | 53.3 | 60.5 | 68.0
n=14 | 5.3 | 60.5 | 61.8 | 64.0 | 69.5 | 84.8
TI=3 1=20 | 35 | 75.8 | 77.0 | 72.3 | 84.5 | 92.3
n=8 | 6.0 | 20.8 | 32.0 | 50.8 | 61.3 | 63.8
n=14 | 4.8 | 50.5 | 51.0 | 59.0 | 68.0 | 82.5
TI=6 1,=20 | 4.8 | 59.5 | 61.5 | 77.5 | 83.5 | 88.3
Spatiotempotal-alternating
IE| 0 0.5 1
deltal | 0 0] 05 0] 05 1
delta2 | 0| 05 0 1| 05 0
n=8 | 4.3 59.3 | 66.0 | 85.8 | 94.3 | 96.0
n=14 | 6.3 | 78.5 | 80.3 | 93.0 | 96.0 | 98.0
TI=1 T3, =20 [ 6.5 90.0 | 92.0 | 95.8 | 97.5 | 99.8
n=8 | 5.0 | 47.0 | 51.5 | 55.0 | 62.0 | 70.0
n=14 | 5.5 | 62.0 | 63.8 | 65.8 | 71.5 | 85.8
TI=3 =20 [ 53 [ 77.0 | 78.8 | 73.3 | 86.3 | 93.5
n=8 | 6.0 | 31.3 | 34.0 | 51.8 | 62.3 | 64.8
n=14 | 4.8 | 52.0 | 53.3 | 61.3 | 70.5 | 84.3
TI=6 =20 [ 4.8 [ 62.0 | 63.0 | 79.8 | 86.0 | 90.3
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S.10. Tables and Figures

Number of Answered Requests Number of Finished Requests
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time time
Number of Answered Requests Number of Finished Requests
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time time

Fig. S.2. Scaled numbers of answered and finished requests from City A (the first row) and City B (the second
row) across 40 days .
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Fig. S.3. Empirical rejection rates of the proposed test for DE, with different combinations of n, §, TT and outcomes
based on the real dataset from city A (the number of answered requests in the first row and the number of finished
requests in the second row).
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TI=1 TI=3 TI=6
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Fig. S.4. Empirical rejection rates of the proposed test for DE, with different combinations of n, §, TT and outcomes
based on the real dataset from city B (the number of answered requests in the first row and the number of finished
requests in the second row).

Fig. S.5. Plots of the fitted drivers’ total income against the observed values as well as the corresponding
residuals. Data are collected from an A/A or A/B experiment under the temporal alternation design.
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Fig. S.6. Plots of the fitted number of orders (¢1) and drivers’ online time (e;) against their observed values,
as well as the corresponding residuals. Data are collected from an A/A or A/B experiment under the temporal
alternation design.

S.11.
S.11.1.

import
import
import
import
from it
import
import
import
warning
import
path=".
if path
sys

Codes

Code for cross validation

numpy as np
pandas as pd
statsmodels.api as sm
statsmodels.formula.api as smf
ertools import product
multiprocessing as mp

os

warnings
s.filterwarnings ("ignore")
sys

../temporal/src’

not in sys.path:
.path.append (path)

from sklearn.model_selection import KFold

from mo

del_new import VCM

### simulation settings ###

file
ycol
xcols
scols
acol
regcols

df pd

df [’const’]

xycols

df = df
NN = 40
idx = [

’V2_hangzhou_serial_order_dispatch_AA.csv’
)ngJ
[’cnt_call’,’sum_online_time’]
[’cnt_call_1’,’sum_online_time_1"7]
’is_exp’

Finished/

= [’const’] + xcols
.read_csv(’C:/Users/annie/0OneDrive - pku.edu.cn/projects/3.
stvcm/Code+Data20210825/temporal/data/’
+file)
=1
= [ycol]l + regcols +[’date’, ’time’]
[xycols]

i+1 for i in range (NN)]
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kf = KFold(n_splits=5, shuffle=True)

param_grid = [0.05*i for i in range(20)] * NN *x (-1/3)
K = 3; M =48

res = []

for train_index, test_index in kf.split(idx):

df _train = df.loc[df[’date’].isin(train_index)].set_index([’date’,’time’])

df _test = df.loc[df[’date’] .isin(test_index)].set_index([’date’,’time’])
for hc in param_grid:

Amat = df_train.groupby(’date’).apply(lambda dt: np.dot(dt[regcols].T.

values, dt[regcols].values)).
sum ()

bvec = df_train.groupby(’date’).apply(lambda dt: np.dot(dt[regcols].T,

dt [ycoll)) .sum()
eps_diag = np.eye(Amat.shape[0])*1e-3
theta = np.linalg.solve(Amat+eps_diag, bvec)
theta = pd.DataFrame(theta.reshape((M, K)), columns=regcols)
tmat = np.mat(np.reshape(np.repeat(np.arange(M)/(M-1), M), (M,M)))
theta = smooth(theta.T, ker_mat ((tmat.T-tmat) ,hc)).T
df _test[’fitted’] = df_test[regcols].dot(theta_DE.values.flatten())
df _test[’resid’] = df_test[ycol] - df_test[’fitted’]
res.append (sum((df_test[’resid’]) **2))

res = np.array(res).reshape(5,20)
res = res.sum(axis=0)

np.array (param_grid) [np.where (np.min(res))]

S.11.2. Main code

import numpy as np

import pandas as pd

import statsmodels.api as sm

import statsmodels.formula.api as smf

from itertools import product

import multiprocessing as mp

from numpy import kron

import os

import warnings

warnings.filterwarnings ("ignore")

import sys

path=’.../Spatio-temporal/src’

if path not in sys.path:
sys.path.append (path)

from model_st_new import VCM

### simulation settings ###

ycol = ’gmv’#,’cnt_grab’, ’cnt_finish’]

xcol = ’cnt_call’#,’sum_online_time’]

scol = ’cnt_call_1’#the lag term

acol = ’is_exp’

acol_n = ’is_exp_n’

regcols = [’const’] + [xcol]

adj_mat = np.array([[0,1,1,1,0,0,0,0,0,0],
(1,0,0,1,1,0,0,0,0,0],
(1,0,0,1,0,1,0,0,0,0],
(t,1,1,0,1,1,1,0,0,0],
(0,1,0,1,0,0,1,1,0,01,




(0,0,1,1,0,0,1,0,1,01],
(0,0,0,1,1,1,0,1,1,11,
(0,0,0,0,1,0,1,0,0,11,
(0,0,0,0,0,1,1,0,0,11],
(0,0,0,0,0,0,1,1,1,0]1)

G = 10

adj_mat = adj_mat/np.repeat(adj_mat.sum(axis=0),G).reshape(G,G)

nsim = 400

two_sided = False

wild_bootstrap = False

interaction = False

DDS = [0.00, 0.005, 0.01]

IIs = [0.00, 0.005, 0.01]

IIS_.n = [0.00, 0.005, 0.01]

NNs = [8,14,20]

TIs = [1,3,6]

designs = [’st’,’t’]

wbi = 1 if wild_bootstrap else O

tsi = 1 if two_sided else O

ini = 1 if interaction else O

hc = 0.01

hc_b = 0.01

IE = True

DD = O
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for (II, II_n, TI, design, NN) in product(IIS, IIS_n, TIs,

file = ’V1i_hangzhou_pool.csv’

df = pd.read_csv(’../data/’+file, index_col=[’grid_id’,’date’,’time’])
path = ’../res/IE_{}_{}_{}_{}_{}.npy’.format (design, file,

if os.path.exists(path):
continue

df [’const’] =1

M = len(df.index.get_level_values(2).unique())

N = len(df.index.get_level_values(1l).unique())

NM = Mx*N

if IE:
df [scol] = np.append(np.delete(df[xcol].values
*(df .index.get_level_values(2)>0),0),0)
df [scol] [df [scol]==0] = np.nan

xyscols = [ycol] + regcols + [scoll
df = df[xyscols]
else:
xycols = [ycol] + regcols
df = df [xycols]
df [acol] = -1

model0 = VCM(df, ycol, xcol, acol, scol,IE,
interaction=interaction,
two_sided=two_sided,
wild_bootstrap=wild_bootstrap,
center_x=True, scale_x=True,hc=hc)

modelO.estimate (null = True)

df [’fitted_DE’] = modelO.holder[’fitted_DE’].values

df [’eta_DE’] modelO.holder[’eta_DE’].values

df [’eps_DE”’] modelO.holder[’eps_DE’].values

df [’fitted_IE’] = modelO.holder[’fitted_IE’].values

df [’eta_IE’] = modelO.holder[’eta_IE’].value

29



30 Shikai Luo®*, Ying Yang®*, Chengchun Shi**

df [’eps_IE’] = modelO.holder[’eps_IE’].values

def generate(df, N, ycol, regcols, acol, ti=1, delta=0, delta_s=0,
delta_s_n=0):
grids = (df.index.get_level_values(0).unique())
G = len(grids)
dates = (df.index.get_level_values (1) .unique())
number_of_days = len(dates)
M = len(df)// G // number_of_days

dates_ = np.random.choice(dates, size=(N,), replace=True)

df_ = df.loc[[(x,y,2z) for x in grids for y in dates_ for z in range (M)
1,:]

df _ = df_.reset_index ()

df _[’date’] = np.tile(np.repeat(np.arange(N),M), G)
df _.set_index([’grid_id’,’date’,’time’], inplace=True)

mt = int(24/ti)
if ti < 24: # intra-day time interval
abv = np.tile(np.repeat([-1,1], M//mt), mt//2)

bav = np.tile(np.repeat([1,-1], M//mt), mt//2)
vec = np.hstack([abv, bav])

elif ti == 24: # inter-day time interval
av = -np.ones (M)

bv = np.ones (M)
vec = np.hstack([av, bv])
gvs = np.array([])
gv = np.tile(vec, N//2)
if design == ’st’:
for i in range(G):
gvs = np.append(gvs, np.random.choice([-1,1]1)*gv)
else:
for i in range(G):
gvs = np.append(gvs, gv)
df _[acol] = gvs
df [acol_n] = np.dot(adj_mat, ((dfl[acol].values+1)/2).reshape(G,M*N)).
ravel ()

if IE:
idxl = np.arange(df_.shape[0]) [df_.index.get_level_values(2)>0]
a=(df_[’fitted_IE’] + \
df _[’eps_IE’] * np.repeat(np.random.randn(N*G), M) + \
df _[’eta_IE’] * np.repeat(np.random.randn(N*G)
, M)
values
df _[xcol].iloc[idx1]=a["np.isnan(a)]
df_[xcol] *= (1+delta_s_n)
df _.loc[df_[acoll==1, xcol] *= (1+delta_s)
df _[scol]l = np.append(np.delete(df_[xcol].values
*(df_.index.get_level_values(2)>0),0),0)
df _[scol] [df_[scol]l==0] = np.nan
df _[ycol]l = (df_[’fitted_DE’] + \
df _[’eps_DE’] * np.repeat(np.random.randn(N*G), M) + \
df _[’eta_DE’] * np.repeat(np.random.randn(N*G), M)).
values
df _[ycol] #*= (1+delta_s_n)
df _.loc[df_[acol]==1, ycol] *= (l1+delta+delta_s)

return df_

def one_step(seed):
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np.random. seed (seed)
ret = []

df_ = generate(df, NN, ycol, regcols, acol, TI, DD, II, II_n)
model = VCM(df_, ycol, xcol, acol, acol_n, scol,IE,
interaction=interaction,
two_sided=two_sided,
wild_bootstrap=wild_bootstrap,
center_x=True, scale_x=True,hc=hc)
if IE==0:
model .inference ()
ret.append([model . .holder[’test_stats_wb’], model.holder[’test_stat
7]’
model .holder [’pvaluel’], model.holder[’pvalue2’]])
else:
model .estimate ()
ret.append (model.holder[’test_stat_IE’])

return ret

pool = mp.Pool(20)
rets = pool.map(one_step, range(nsim))
rets = np.array(rets)

pool.close()
path = ’../res/IE_{}_{}_{}_{}_{}.npy’.format (design, file, NN, TI, DDS)

np.save (path, rets)

S.12. Further Discussions and Extensions

S.12.1. Endogeneity bias
In this subsection, we discuss how to remove the endogeneity bias when the random effects appear in
the state regression model as well. Specifically, Model 1 becomes

Yir = Bo(r) + S;B(T) + Aipy(T) + eir = Z.0(7) + €57,
S’iﬂ'-‘rl = ¢0(7—) + (I)(T)Si,'r + Ai,TF(T) +eirs = e(T)Zi,T + €irs,

where e; r5 = 1irs + €75, Nirs characterizes the day-specific temporal variation across different days
and ¢; ;5 is the measurement error. We assume that 7; r5,€; rg are mutually independent; {e; rs}i - are
independent measurement errors with zero means and Cov(e; r5) = X¢ rs; and {n; r5}i - are identical
copies of a mean-zero stochastic process with covariance function and {X, (71, 72)}r 7.

Due to the potential dependencies between these random effects, past and future features are no longer
conditionally independent. Directly applying existing OPE methods or our proposal developed in Section
would yield biased policy value estimators. Note that the predictor S; , = ©(1 —1)Z; ;—1 +€; r—1,5 at
time 7 is dependent upon the e; » due to the existence of the random effects in these residuals, resulting
in endogeneity in the state regression model. As a result, the resulting OLS estimator is biased, leading
to inconsistent estimation of IE.

We next outline two approaches to remove the endogeneity bias. The first approach relies on the use
of historical data in which the actions were the set to baseline policy. According to the state regression
model, {S;}; in the historical data satisfies

Sir1 = ¢p(t) + @*(k)S1 + e,

where ¢(t) = >4 _; ¢o(k) [Ti_pq ®(0), @*(k) = [[},_, ®(k) and the error €}g is independent of Sy. As
such, the OLS estimator ®*(k) is consistent. When {®(k)}; are nonzero, it allows us to consistently
estimate these regression coefficients. On the other hand, when the actions are independent of the
states, the regression coefficients {I'(7)}, can be consistently estimated using data collected from online
experiments. This allows us to consistently estimate IE based on .
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The second approach requires the random effects to satisfy certain covariance structures. In particular,
we require the correlation between 7; -, s and n; -,5 to decay to zero as |T15 — T2g| approaches infinity.
For a given sufficiently large m;, the residual error e;s and the past state S;_,,, become asymptotically
uncorrelated. According to the state regression model, we obtain that

t—1
Sy =¢(0) + ®)Stom, + > Tu(k)Ap+ e,

k:t—m1

where T'y(k) = (®(t — 1)®(t — 2)...®(k + 1))['(k) and can be consistently estimated via OLS. As such,
IE can be consistently estimated as well by noting that

m t—1 k—1
IE=>) Bt)" {Z o(k) ( > rk(z)) } .
t=2 k=1 l=k—m

S.12.2. High-dimensional models

We extend the proposed method to settings with high-dimensional state information in this section. For
simplicity, we focus on the linear temporal varying coefficient model example. In the high-dimensional
setting, we assume most elements in the regression coefficients §(7) and ®(7) are equal to zero. Hypoth-
esis testing is challenging since many penalized estimators such as the Lasso (Tibshirani, [1996) or the
Dantzig selector (Candes and Taol, 2007) does not have a traceable limiting distribution.

One solution is to employ regularization methods with folded-concave penalty functions such as the
smoothly clipped absolute deviation (SCAD, Fan and Li, 2001)), adaptive Lasso (Zou, [2006) or minimal
concave penalty (MCP, Zhang, [2010) in Step 1 of Algorithms 1 and 2 to obtain sparse estimators. Under
certain minimal-signal-strength assumptions, the resulting estimators possess the “oracle” property in
that they are selection consistent and asymptotically equivalent to the oracle OLS estimators computed
as if the supports were known in advance (Fan and Lv, 2011). As such, the proposed Wald-type test
statistics for DE remain valid. The bootstrap procedure is equally applicable even when the number
of parameters is much larger than the sample size (Dezeure et al., [2017; |Zhang and Cheng} 2017). We
may also apply sample splitting (Dezeure et al., [2015) or the recursive online-score estimation (ROSE)
algorithm (Shi et all 2021)) to account for model selection uncertainty.

Another solution is to employ the debiasing method (Javanmard and Montanari, |2014; Van de Geer
et al.,|2014;[Zhang and Zhang;, 2014; Ning and Liu, |2017)) to allow for valid inference without the minimal-
signal-strength assumption. Specifically, we first apply penalized regression with LASSO, SCAD or MCP
to obtain the initial regression estimators. We next debias these initial estimators using decorrelated
estimation (see e.g. [Shi and Li, [2021, Equation 14). This strategy guarantees each entry of the final
estimator is asymptotically normal, regardless of whether the minimal-signal-strength assumption holds
or not. These final estimators can be subsequently used for testing DE and IE.

S.12.3. Test Procedures based on the Unsmoothed Estimator
As commented in the main text, we can also use the unsmoothed estimators to test DE and IE. The
resulting tests require weaker conditions on m compared to those built upon the smoothed estimators.
Specifically, m is allowed to be either fixed, or to diverge to infinity. To the contrary, tests based on
smoothed estimators require m to diverge with n at certain rate.

Test statistics based on the unsmoothed estimators are given by

m m T—1 T—1

0E- 350, =330 {52 (T 50 ru ).
T=1 T=2 k=1 \l=k+1

The standard error of DE is computed based on Vj which we denote by sAe(le) The residuals and

pseudo-outcomes for computing bootstrap samples are also constructed based on the OLS estimators
0(7) and ©(7). The following results follow immediately from Theorem 1(i).

PROPOSITION 3. Suppose the assumptions in Theorem 1 hold. Then under HPE | we have IP’(DVE/sAe(DVE) >
Za) = a+ o(1); under HPE | we have P(DE/35¢(DE) > z,) — 1.
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Similar to Theorem 2, we can show that the bootstrap procedure based on the unsmoothed estimators
is valid to infer IE as well.

PROPOSITION 4. Suppose that there exist some constants 0 < ¢; < 1,0 < ¢o < 3/2 such that ¢; <
Elers|?, Ee2 < C1_1 for all 1 <7 <m and that m = O(n®). Suppose the assumptions in Theorem as
well as Assumptions [3] holds. Then, with probability approaching 1,

— —~b
sup |P(IE — IE < z) — P(IE — IE < z|Data)| < Cn~ /%,
z

for some positive constant C' > 0.

S.12.4. Advantage of the decomposition of DE and IE

Recall that the DE represents the sum of the short-term treatment effects on the immediate outcome
over time assuming that the baseline policy is being employed in the past. In contrast, IE characterizes
the carryover effects of past policies through their impact on the state variables (e.g., the demand and
supply in the ridesharing platform).

Gaining insights into both DE and IE is instrumental in understanding the mechanisms through which
the new policy surpasses the existing one, thereby paving the way for the creation of even more effective
strategies. For instance, if the new policy’s DE exceeds that of the current policy, but its IE is smaller,
then adopting either policy in isolation would yield similar results on average. However, studying this
decomposition enables us to derive a hybrid strategy that employs the existing policy during the first
half of the day and switches to the new policy for the latter half. Given that DE characterizes short-term
effects and IE measures delayed effects, it is reasonable to expect this hybrid approach to outperform
both original policies. To see this, we use the temporal case as an instance and denote

DE, = E{R.(1,S*(0,_1),0, S_1(0+_2),...,51) — R-(0,85(0,_1),0,8%_(0;_5),...,51)},
IE, = E{R-(1,S*(1,-1), 1, S*_;(1r—2),...,81) — R (1, S5(0,_1),0,8%_1(0,_3),...,51)}.

We remark that DE; represents the direct effect on R, of applying the new policy only during time
interval 7 and IE. represents the indirect effect on R. of applying the new policy from time interval 1
to (7 —1). Denote IE; = 0, DE = (DE;,DEy,...,DE,,)" and IE = (IEq,IE,,...,IE;,)". Then we have

DE=1,DE and IE=1)TE

where 1 = (1,1,...,1)T € R™. Suppose that we are interested in the policy effects of a specific time
period 1 < mj; <7 < mo < m and denote the corresponding DE and IE by DE,,, ,,, and IE,,, ,,,. Let
1., m, be the m-dimensional vector whose (my, mi+1,...,mg)th elements are 1 and the other elements
are 0. Then

DE and IE,, m, = 1, ,,.TE.

my,Ma2

DEml,mz =

T
1m1,m2

Using the same technique of inferring DE and IE, we can test

Ho(DEp, m,) : DEpy, m, <0 versus Hi(DEp,, m,) : DEp, m, > 0;
Ho(IEm, m,) : IEm, m, <0 versus Hi(IEp, m,) : IEn, m, > 0;

which can guide the strategy design. For instance, if Hyo(DEy,, m,) is rejected and Ho(IE,,, ,,) is not,
we can apply the new policy from time mq and mo and keep the old policy from time 1 to mj — 1 to
save the cost.
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