Supplementary Material to “Optimal linear
discriminant analysis for high- dlmensmnal
functional data

1 Notations

First we recall the basic notations used throughout the paper. For every j < p,,, consider

the diagonal matrices or structures

A; = diag{w;1,wjo, . .. }, Agl) = diag{wj1, ..., wjs, A;Q) = diag{w; s, +1, Wj 425 - - - }»
/A\j = diag{d;jl, (,:)jg, ce }7 [\51) = diag{d)jl, c. 7(’0an}7 /A\§2) = diag{@j75n+1, @j75n+2, . },

we then denote several block matrices or structures as

A =diag{A;:j <p.}, AW = diag{A§-1) i <pa), AP = diag{Agz) 27 < pnt

Ap =diag{A;:j € T}, AP =diag{AV :jeT}, AP =diag{A? :j e T},

A= diag{A;:j <po}, AV =diag{A":j <p.}, A® =diag{A{? : j <p.},
Ap = diag{A, : j € T}, Agp = dlag{A( jeT}, /A\ég) = diag{/&?) 1jeT}.

Similar to the constructions of £ and {Tl , we let ) (5(2) (2) )’ with sub-vectors

5(2) = (&snt1,Ejsnt2, -+ ), and 5;2) as stacking {éj@) : 7 € T} in a column. Given index

J

sets T" and N, we define several covariance matrices and structures as

Sy = var(€y)), Gy =var(€d), 9k = cov(el), €Y), 25 = cov(El, &),
2 2 2 2 2 2 2 2

S5 =var(6), Sy =var(€y), Zeh =cov(EL €Y, Dy = cov(el 7)),
1,2 2 1,2 1 2 1,2 2

S = cov(eW) &), BGx = cov(ed,€Y), BUR) = cov(el, €9,

1,2 1 2 21 1 21 1

EEVT) = COV(&B](V), ”EF))’ Eg“T = COV@T ) ( ))7 Eg\fN - COV(&N ) ( ))
2,1 2 1 2,1 2 1

SO = cov(&l? 60), =N = cov(el &),



M @)

Similar to the constructions of the vectors §(T1 s Mgy Hop, and I/T)

, we define sz? ,ug%,

~ (1)

fts 7, and VT)

as restricting the vectors f( ), ;1§ ), ;}S) , and »M) to the discriminant set 7.

Given index sets T and NN, we define several sample covariance matrices as

SO = {(n1 —1)8" + (ny — 1)SMY/(n — 2),
St = {(n1 — 1)S" + (ng — 1SS0}/ (n — 2),

S\r = {1 = 1)8Ner + (na — )8}/ (n — 2),

where

i€ Hy
1 1 ~(1 1 1
S =" — s e — @8y /(na — 1),
1€Ho
1 1 ~(1 1 1
St =Y (€7 — iER — i) /(1 — 1),
i€Hy
1 1 ~(1 1 ~(1
Sy =Y (&7 — ) (ER — sy /(na — 1),
i€EHo
1 1 ~(1 1 ~(1
St = D (€N — it )(ER — At/ (n — 1),
1€Hy
1 1 ~(1 1 ~(1
S = 3 (&N — iSA(ER — i)/ (na — 1)
i€EHo

Similar to the definitions of ,ugl), ,uél), v, '“52“7 ,uggr, and l/:swl), we denote for any ¢ =1, 2,

2 _(2)’
pé ) = ( ’Y =/()= (Wl) y e 7uépl)/’
~(2 (2 0 .
lj“éj) = E(gj( )|Y = E) = (,Uﬁj,sn—&—l,ﬂéj,sn—f—% cee ), €R y  J= 17 <oy Pn,
py o formed by stacking {ﬂg) :7 €T} in a column,

2) (2) (2) (2) (2) (2)

vl =Mo" — M1 YVt = Heor — M1



Similar to the constructions of 3" and ﬂr}l), we denote 5*(1), 6;(1), 2 and B;(Q) as

5*(1) — (51‘(1) . 7ﬁ;i1)/)’ with each 5 (531, e 7/8;sn)/a

ﬁ;(l) : formed by stacking {B;(l) :j €T} in a column,

5@ — (5f(2) - ,ﬁ;ff)/)' with each 5 = (B i1 Bisninr - ),

B:*F(z) : formed by stacking {B;(z) :j €T} in a column.

In the next section, we present the proofs of the main results, Theorems 1-2 and Corollary 1.

2 Proofs of Theorems 1-2 and Corollary 1

Proof of Theorem 1: Under conditions (Al) and (A2), property (i) holds directly from

Lemma 1. To show property (ii), first note that

(BT*ET T*BT*)1/2 _ {( 1/2 )’(A“*/QET*T*A?*/Z)(A1/2 )}1/2

SN = A D)
JET* k=1
Together with condition (A3), it can be seen that

A — 00, as n— oo. (1)

Hence, property (ii) holds from (6) in the main paper and (1). To show property (iii), first

note that
={1+o(r;Y) +o(r; Y2/ }A — oo, (2)
by Lemma 1 and (1). Moreover, by definition, it is not hard to verify that

R(B%)/R(BW) = (m1 + may) (w1 + m20) s, (3)



where

O = ©(=A/2 +log(m /m)/A) [P(=A/2 + log(me/m)/A),
Qy = B(—AW /2 4 log(m /m2) /AV) /&(= AW /2 + log(my /m1) /AW,

Qs = B(—A/2 + log(my/m)/A) /B(—=AW /2 + log(my/m1) | AW).
For the term €2¢, it can be rewritten as
0 = B(—0)/*(1 4 9))/®(—0)/?), (4)

where 0, = {A/2 — log(my/m)/A}? and 9,, = 4log(me/m)/{A? — 2log(m/m)}. Since

on, — 00 and g, 9, — log(my/m ) under (1), we immediately conclude that
Qy — o/, (5)
by applying Lemma 1 of Shao et al. (2011) to (4). Similar argument leads to
Qo — mo /1. (6)
For the term (13, it can be expressed as
Q = (=0,/(1+ 7))/ 2(=0,/), (7)

where g, = {AW /2—log(my/m ) /A2 and 0, = [{AAD42]og(my /7)) HA—AD)] /{AAD2 -

2log(me/m)A}. Based on (2) and (A3), one can show that
On — 00,  OnUy — 0.
Together with (7) and Lemma 1 of Shao et al. (2011), it can be concluded that
Q3 — 1.

Together with (3), (5) and (6), we have R(5*)/R°(81)) — 1, which completes the proof. [
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Remark: Although not part of the proof, it is important to justify that the ideal classifier

in (3) of the main article is really the optimal rule. By definition, we have
(Y =1~ N(u, %), Y =2~ N(p2, %),
which implies
SI2Y =1~ NS, 1), B2y =2~ NSV 2p,, 1),
Therefore, the conditional density functions of z = X1/2¢ take the form:
f(2]Y =) o exp{—27(z — 21V20,) (2 = 21V21)},  for i=1,2.
By change of variables, the conditional density functions of & = /2% take the form:

Fe(€lY = i) oc exp{—27(6 — w)'SHE — o)}, for i=1,2.

Since the optimal rule is such that we assign ¢ to the group labeled by Y = 2 provided that

Jley =1) _m
Feley =2 =m0

it can be deduced that the ideal classifier in (3) preserves the optimality of the rule. [
Proof of Theorem 2: First of all, it follows from Lemma 11 and the definition of © in (16)

of the main paper that there exists a universal constant c¢3 > 0 such that
P{sgn() = sgn(8")}
>1 — e3[(qnsn) " + {log(n)} ! + exp(—nmi /12) + exp(—nmy/12)], (8)

which justifies property (ii). In addition, Lemma 11 also implies that there exists a universal

constant ¢4 > 0 such that

P(ig = or)

>1 — ca[(gnsn) " + {log(n)} " + exp(—nmi /12) 4 exp(—nm2/12)], 9)



where 0r is defined in (16) of the main paper and

~

o = {nynan " (n — 2) 7 H1 + A, 080 ST z\“%@mﬁnp+

~

{ningn~t(n — 2)” 1} T%_lﬁi(r’l)} Si(Fl% B2 STT A 1/2sgn(55([,1)).

To prove property (i), based on (8), (9) and the Karush-Kuhn-Tucker conditions, it is

sufficient to show that there exist positive constants cs, cg > 0 such that

P[{nlngn_l(n — 2)_1}199 — {S;l% + nlngn_l(n — 2)_119;1)19;1)/}1% =

A A 2son(50)] > 1= es[{(pn — @n)sn} ™ + (gusn) " + {log(n)} '+

exp(—nmy/12) + exp(—nme/12)], (10)
and
P(H/A\g\l,)_l/2 [{ninan™"(n —2)~ 1}A(l) {S](\PT +ningn t(n —2)7t l/N VT) }
)|l € An) = 1= col{(pn — @a)su} Tt + (Gusa) Tt + {log(n)} '+
exp(—nmy/12) + exp(—nme/12)]. (11)
Note that the random quantity SNT can be expressed as S\ vr = {(m — 1)S§ J)VT + (ng —

1 1 (1 N 1
1)Synr}/(n = 2), where 81 = Vi (6% — Mn)(Ep — A7)/ (m — 1) and S5 =
2 ieH, (5(1) M§1])V)(£Z(1T) - ﬂél%)’/(ng —1). Since o7 is the solution to the convex optimization
problem specified in Lemma 2, the first order condition together with Lemma 11 yields (10)

immediately. To show (11), we first note that

[AY 2 [{ninan " (n — 2) 7308 — {SG) + ninan™" (n — 2) 7' (12)
~(1 2 (1)—=1/2 1)1/2
oo Vo] || < (1 IASTPARYZ = I —gyon hmax) 190,

where ¥ = A2 [{S](\% + mnon~(n — 2)" 0P8 Yor — {ninan~ (n — 2)_1}19](\})]. By



definition, conditional on any nonempty set {Y; = y; }.; N M,
(n — Q)A(l)—1/2g(1)A(1)—1/2|{y; =y}, N M,

~Wishart(n — 2|AM /25 M AD=1/2), (13)

where the set M,, = {m/2 < ny/n < 3m/2} N {m/2 < ny/n < 3my/2} is defined in

Lemma 3. Moreover, conditional on any nonempty {Y; = y;}I; N M,
(n —2)AW-12gWAM=1/2 | p0),

where the symbol L means independent of. Together with (13), it can be concluded that
there exists a collection {Z;}!'"? of n — 2 random vectors in RP*» satisfying (14) to (16) as

follows.
(n —2)AD-Y2gMWAD-1/2 Z VA (14)
Conditional on any nonempty set {Y; = y; }-; N M,,
(zyp=r L oW, (15)
Conditional on any nonempty set {Y; = y; }.; N M,
ZY; =y}, N M, RN, ADT2RWADYY = -2, (16)

For each | = 1,...,n — 2, we write the vector Z; = (Zl’l,...,Zl’pn)’ € RP»*» with sub-
vectors le = (Zij1, ..., Zijs,) € R°*. Similarly, for each [ = 1,...,n — 2, we let Z, 7 =

(Z),,. .., leqn)/ € R%* and Z; y = (Zl’,qnﬂ, ce Zl/pn)/ € RPn=an)sn - Accordingly, we denote

5 :[ZI,T, ce Zn—2,T] c RQnSnX(n—Q)’
N :[Z1,N, ceey Zn_27N] c R(pn—Qn)SnX(n—Q)’ (17)

Z =[Zp, ZN) =21, ..., Zns) € RPnsn X (n=2)



It follows from (15) and (17) that conditional on nonempty set {Y; = y;}7_, N M,,,

z L W, (18)
Based on (14) and (17), it can be observed that

(n = 2)AY 2SN AY T = 2y 2 = A TR R A P 2 2

2y =AY A P20 2y (19)

The terms Zy — A%)fl/QE%)TZ(Tl%AA(TI)IﬂZT and Zp can be expressed as
Zy — AQ TP e IAIY Rz =W 2y, W Z, ),
Zp =[W*Zy, ...\ W*Z,_o), (20)

where

1)—=1/25(1) «(1)—=1 4 (1)1/2
W = (AR PSR A

Pn—Aqn )Sn XPnS
pn—l]n)sn] c R( n—Gqn)Sn XPn n7

* gnSn XPn s
W - [IlInsn7OQnSnX(pn_Qn)Sn] € R e .

Based on (16) and (20), it can be deduced that

Wz

(¥ =y M, (21)
W*Z,
1)—1/2 1 1 1)—1 1 1)—1/2
AR THENN — SRS ER)AY T Opr—am)suxausn
N<0pnsn><1) >7
1)—1/2 1 1)—1/2
OQnSnX(pn_(In)Sn A’g—') / Z;%A;) /

for I = 1,...,n — 2. Hence, by combining (16), (20) with (21), it can be concluded that

conditional on any nonempty set {Y; = y;}".; N M,,,

Zr L Zy— AP0 s 27 (22)



Note that (18) entails that conditional on any nonempty set {Y; = y;}7_, N M,,,

AL (T 2 - AD S 2y,
oW L Zy — AT R AN 2, (23)
oL 7y

Piecing (22) and (23) together yields that conditional on any nonempty set {Y; = y;}7, N

M,
(M, 20y L Zy = APV S0 A 7 (24)
In a similar fashion, the quantity Ag\l,)_l/ Qﬁj(\}) can be decomposed into
Aﬁv) 1/2 A(l) 1/2( ~(1) 2%2(” 151 ) A(l —1/25 ( ) E(Tl%‘lz#). (25)

It is not difficult to verify that conditional on any nonempty set {Y; = v;}7-; N M,,,

H-1/2, (1 1 1 (1
Aoy =SS )

1)—1/2 (1 1 1.(1
Aoy — S S oy)
{Yi=vy},NnM, NN(

AD=1/250 AD=1/2, 0

T
- - - (26)
AP - SUSERIA O
nnl_ln; ! > ’
Oz x(pr-ao)on AP
which furt_her entails that conditional on any nonempty set {Y; = y; }1, ﬁ_ M.,
(27)

A R




Based on (18), it is seen that conditional on any nonempty set {Y; = y;}7, N M,,

~(1) ~(1 1 1)—1A(1
Zeo L ) S )

Zr L oy - SRy, (28)
Zr L 0.

Together with (27) yields that conditional on any nonempty set {Y; = y;}7_, N M,,,
(1 (1 1) «(1)—1A(1
{op),Zry L oy —SGrSey op). (29)

Moreover, using (19) and (25), elementary algebra yields that

\IJZH1—H2—H3—H4, (30)

with

I = (n— 2)7"(Zy — AY PS8 A2 20) Zp A P,

ax (1)=1/2, (1 1 =1 (1

I, = JAY "2 (0 — S o),

Iy = A AR 28RS AP Y2 (AR TRV — 1, sen(BY),

My = M AR 2808 AP Psen(85)),
where

9 :{nlngn_l(n — 2)_1}{1 + /\nﬁg)/Sél%_lf\g,})lﬂsgn( (Tl))}

[1+ {nanan (n — 2) 1308 SO o] 7

Similar arguments as in the proof of Lemma 11 indicates that there exist universal constants
cr > 0 and cg > cg > 0 such that with probability at least 1 — c7[(gns,) " + {log(n)} ' +

exp(—nm/12) + exp(—nme/12)],
cs{vy Sy vy} <0 < oy Sy (31)
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For the term II;, it can be decomposed into
Hl Tl TQ) (32)
where

T, = 1§(n— 2)71(ZN _A§\17)—1/22%ﬂ2%)ﬂ— A(T 1/2Z )ZTA I/QS;% lﬁé}),

~

Ty = Mu(n —2)"H(Zy — AYTVPEG 2T A2 20y 20 A2 ST AR P sgn (B0,

At this point, we denote {ej}g»’:fq")s” as the standard basis in RPr=)sn  Moreover, ac-
cording to (20), (21) and (24), it can be deduced that conditional on any nonempty set

{Y yl =1 ﬂ./\/l N {V;)>ZT} and for any ] < (pn - Qn)sna

(Zy = ATy A 2y e |{Y: =y 0 Mo 0 {07, Zr}
~ N (Opu-pr, {5 AN (SN = SWrEny SEAY T e ),
which implies that conditional on any nonempty set {Y; = y;}1, "M, N {ﬁg), Zr} and for

any .7 S (pn - Qn)8n7

eTIHY; =y, N M, n{\, Zp} ~ N(0,T;),
with each
A _ 1)—-1/2 1 1)—1 —1/2 1) 1
= (n— 2) /AR TN - SSh T SR)AY T Pe ol S
< 92(n —2) o sET .

Together with the maximal inequality, we have that for any ¢t > 0,

P[IT1lloe > £H{Yi = wi}isy N Mo 0 {0, Z1}]

<2pp — qn)snexp [ — 470 2o ST 00 ).

11



Plugging ¢t = [81921/T S(lT) 11/T log{(pn — @n)sn}/n]'/? into the above inequality yields
(Il < 80047 S04 og{ (0 — )} /]
{5 = b M 54, Z0}) > 1= 200 — ga)sn} (33)

Accordingly, we have

P71l < 180208 S8 08 log{ (pn — au)su} /] V?) (34)
{yz};n 1EMp,

80205 S 08 Yog{ (pn — an)su} /]2 {Y: = i}, N {0, Z2})
dﬁg)dZT} - PHY; = yiti] = (1= 2{(pn — @n)sn} '] - P(M,)
>1 — c1o[{(pn — @n)sn} " + exp(—nm /12) + exp(—nmy/12)],
for some universal constant c¢19 > 0, where f (ﬁ(Tl), Zr|{Y; = y;}1-,) denotes the conditional
joint density function, the second inequality follows from (33), and the last inequality holds
from Lemma 3. Based on (31), (34) and Lemma 4, it is seen that there exist universal

constants ¢y, cp > 0 that with probability at least 1 — c11[{(Pn — @n)Sn} ™ + (gnsn) ™ +

{log(n)} " + exp(—nm /12) 4 exp(—nm2/12)],
Tl < eial(3) D )™ g {(p — @) b/n]/? < 200k 2

JET k=1

where the last inequality is by condition (C5). By choosing K; > 1600c%,y 2 in condi-
tion (C5), it follows from (C5) and the above inequality that with probability at least
L —ciil{(pn — @n)sn} ' + (qusn) ™t + {log(n)} ! + exp(—nm; /12) + exp(—nmy/12)],

For the term Y5, similar argument leads to the fact that conditional on any nonempty set

(Y =y}, O M, 0 {8 Zp} and for any § < (py — ¢n)sn,

& To (Y = Yy N M 0 {40, 21} ~ N(0,E)),

12



with each

25 =22 (n — 2) " He AY T2 (SN — SHrEe S AY T e Hsen (81

f\ 1/25’ f\ 1/2sgn( (1))}

<X(n —2)"{sgu(B AR 255 T AR Psan(67))

Together with maximal inequality, we have that for any ¢ > 0

[HTQHOO>15‘{Y—yl L NM, ﬂ{uT ,ZT}}

<2(Pn — qn)Sn €XP [ — 4_1)\;2{sgn( ) A 1/25 A 1/25gn(5é1))}_1nt2}.

Setting ¢ = [8A2{sgn(BW AW 2GEI= AL 2g0m (31

T1 Y} og{(pn — qn)sn}/n]"/? in the above
inequality yields

~

P Tall < (832 fsem(B Y AL 25 A 2squ(5))] 7
log{(pn — au)suk/n]"2[{¥; = yibiey 0 My 0 {4, Zr} )

>1- 2{<pn - Qn)sn}_l'

Together with similar reasoning as in (34), one has

P Talloo < [8X2 {sgn(80) ADV25M-1RID1/2g

T

gn(sy )}
[log{(pn — QH)Sn}/n]l/Q)

>1 — c13[{(pn — @n)sn} ' + exp(—nm1/12) + exp(—nmy/12)],

for some universal constant c;3 > 0. Then, it follows from the above inequality and

Lemma 9 that there exist universal constants cy4,c;5 > 0 such that with probability at
least 1 — cia[{(pn — @n)sn} " + (qusn) ' + {log(n)} = + exp(—nm1 /12) + exp(—nmy/12)],
||T2||oo S C15 [Qnsn 1Og{(pn - Qn)sn}/n]1/2/\n-
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Together with (35) and (32), it can be seen that there exist universal constants ¢;6 > 0 and
c17 > 0 such that with probability at least 1 — ci6[{(Pn — @n)sn} "+ + (¢nsn) "t + {log(n)} 1 +

exp(—nmi/12) + exp(—nme/12)],
||H1Hoo S Cl?[QnSn log{(pn - Qn)sn}/n]1/2)\n + 20717)\11 (36>

For the term Iy, (26) together with (29) indicates that

L[{Y; = g}y N M 0 {y), Zr} ~

1 —132 A (D)=1/2 (1 1) w(1)—1x(1 1)—1/2

N (0(p—qusnxts nny 'ng AV TA(ERY - BUEHTER)AY ).

Together with the maximal inequality, it can be deduced that for any ¢t > 0,
P(|Uallso 2 H{Yi = g}y N Ma 0 {257, Z1})
<2pn — ) $n exp{— (9T m0?) "' nt?}.

Plugging ¢ = [18mm20% log{(pn — qn)sn}/n]'/? into the above inequality yields

P(||Tz o < [18m1m20° log{ (P — dn)sn}/n]"/?

Y = wid i DM 0 {547, Z0}) 2 1= 2{(n — gu)sn} ™
Together with similar reasoning as in (34), one can show that

P(|[ o < [18mms0* log{(pn — ga)sn}/n]"?)
>1 — cig[{(pn — qn)sn} ' + exp(—nmy /12) + exp(—nmy/12)],
for some constant ¢;3 > 0. Together with (31), there exist constants g, 90 > 0 that

with probability at least 1 — ci9[{(pn — @n)sn} ' + (¢nsn) ™' + {log(n)} ! + exp(—nm /12) +

exp(—nmy/12)],

Mol < cao( DY winf2) ™A (37)

JET k=1
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For the term I3, it follows from condition (C2) and Lemma 5 that there exist universal
constants ¢, cap > 0 such that with probability at least 1 — coi{(g,5,) ! +exp(—nm /12) +
exp(—nmy/12)}, we have ||II3]loc < C22{@n5n10g(qnsn)/n}?X,. Together with (37), (36)
and (30), there exists a universal constant ce3 > 0 such that with probability at least
1 —co3[{(pn — @n)sn} "+ (qnsn) ' + {log(n)} ' + exp(—nm; /12) + exp(—nmy/12)], we have
V] < (1 —~/2)A\,. Together with (12) and Lemma 6, the assertion (11) holds trivially,
which completes the proof of property (i). To show property (iii), we recall that o =
(0%,0") € RPrsn where o7 is defined in Lemma 2. Together with (9), we have that there

exists a universal constants cyy > 0 such that with probability at least 1 — cos{(gnsn) ™" +

{log(n)}~! + exp(—nm; /12) + exp(—nm/12)},

RQ('IA}) = RQ(@> = WlQl -+ WQQQ, (38)

O = ([ = (i} — i) — 27504 + (TS o4} log(na/mi)}]

O = ([ = T (s — i) — 27054 — {5 S ar Hapol )~ {log(na/m)})

{ TT T} 1/2)

Also recalling from (11) of the main paper that
R(BY) = m; + s, (39)
with

0; = 0 — 27 A S DY lo(ma ) () S )2,

0 = @ - 27 g Sy Y2 — log(my/m) o Sy lu;”}—l/?).
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We denote a,, b,, X, and U, as
=47 ST by = log(m/m) (Y SR DY,
X = {20 (A'y — i) + T WSy or} 2 (o) Sy} - 1,
Uy = log(na/m) {04}~ {#p S or Hop X or} /2,
Elementary algebra shows that
O =0(—aPA+ X,)+U,),  Q=d(—a?+b,). (40)
Moreover, under conditions (C2) and (C5), we have
a, — 00, b, — 0. (41)
Simple algebra indicates that the term v can be expressed as

o =088 o0 — X, 88T AR Psgn (80, (42)

~

where 9 = {nnon~(n — 2)71H{1 + A4 ST AN 25en (500} - 1+ {ninon~'(n —
2)_1}@1)/5(;%7119;1)} ~!. We further define 9 as
J ={ninan (n — 2) " H1 + A SETAR  Psgn(51)))
1+ {nangn~ (n = 2)" B ST
It then follows from Lemma 3, Lemma 4, Lemma 10, (93) and (41) that there exist universal

constants cas, cag > 0 such that with probability at least 1 — co5[(gns,) ™" + {log(n)}~ +

exp(—nmi/12) + exp(—nmy/12)],

[0 — 9| < cas{ih” DR A} [gusa/n + {loglog(n) /n}/?] + casha{ry

S Y Y2 (40)% 2 0+ {Gnsn 108(Gnsn) /n} % + {gusa loglog(n) /n} Y%, (43)
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For the term ﬁ’TSF}I%TJT, using (42), we have

. Sor = 0P S0 VY + T+ T + T, (44)
where Z; = 020, (1) STT 192VT Z(l) ! (1), Ty = Nsgn( (Tl)) A UQST% !
A )l/zsgn( (1)) Iy = —219)\,1&;1)/S(Tl%flf\(Tl)lﬂsgn( ()). For the term Zj, since |Z;| <

92(p8 St S s L 15— ) (2004 [0 —9)) -1 S8 it follows from Lem-
ma 4, (31), (41), and (43) that there exist constants ca7, cog > 0 such that with probability

at least 1 — cor[(gnsn) ™ + {log(n)}~! + exp(—nm /12) + exp(—nmy/12)],

IZ1| <eas (i) S0 DY gnsa/n + {loglog(n) /n} /2] + cagh {1 S Y -1/,

[(gn50)*" /10 + {qu5n 108(qusn) /n}'? + {gusa loglog(n) /n}'/?].

To bound the term Ty, since |Z| < A2qns, [1 + |{sgn( ;1))’/1 1/25 A /2

sgn(Ay)} - {sgn(6Y) Y AR A 2sgn (8011 — 1

], it follows from Lemma 9 that

there exist universal constants cag, c39 > 0 such that with probability at least 1—029[(qnsn)_1+

{log(n)} ! 4 exp(—nm /12) + exp(—nm2 /12)],
|I2| < CgoAiQnSn.

For the term Zs, since |Zs| < 2\, |0 - | S(l) 1A(1)1/28gn( (1)) — 1/§) E(l) 1A(1)1/2
sgn(BN] + 20| - A SWTADY 250n(80)}, it follows from Lemma 10, (93) and (31)
that there exist constants cs1, c32 > 0 such that with probability at least 1 — c31[(gnsn) ' +

{log(n)}~! + exp(—nm/12) + exp(—nmy/12)],
|Z3| < 032()\2%371)1/2{% %1%71%1)}_1/2_

By combining the above three inequalities with (44), we have that there exist universal

constants cz3, c3y > 0 such that with probability at least 1 — c33[(gns,) ™" + {log(n)}~ +
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exp(—nm /12) + exp(—nms/12)],
[07Spaor = Py Spg V0| < eaa(Nogusn) A op Sy 0y, (45)
Since 45437754511 < A A S AP A SN
it follows from Lemma 7 and Lemma 8 that there exist constants css, c3g > 0 such that
with probability at least 1 — c35{(qn8n) " + exp(—nm/12) + exp(—nm/12)},
0753207 — Ty Spybr| < cas{ansy 10g(nsn) /n} 20 Sppiir. (46)

For the term {J’Tﬁr}l), using (42) again, it has the form

oo = 0 WY Ly 4y, (47)
where V, = 1%7(})/5(;%7119;1) — éng),Z(Tl%*luj(}) and V, = —)\nﬁj(})/S(Tl%f Al )1/2sgn(5(1)). S-
ince [Vi| < |9 - |08 871 — s g — 9] oD s it follows from
Lemma 4, (31), (43) and (41) that there exist universal constants cs7,c3s > 0 such that
with probability at least 1 — c37[(gnsn) ' + {log(n)}~* + exp(—nm /12) + exp(—nm2/12)],

Vil esslgnsn/n+ {loglog(n) /n}!/?] + essh{vp S g }2
1(4n50)*? /14 {0050 108(qu50) /132 + {gusn log log(n) /m} /7).

Since V| < Aalif ) S5p T A 2sgn(87) —vp S AR Psgn (B0 ) [+ Ak ST AL Psen(85)),
it holds from Lemma 10, (93), and (41) that there exist constants csg, cso > 0 such that

with probability at least 1 — c39[(¢n5,) ™! + {log(n)} = + exp(—nm,/12) + exp(—nmy/12)],
Val < can(Nognsa) {04 207 g Y2

By combining the above two inequalities with (47), we conclude that there exist universal
constants c1, cs2 > 0 such that with probability at least 1 — cq1[(gns,) ™ + {log(n)}~ +

exp(—nm/12) + exp(—nme /12)],

(508 — I ST D | < ean (N2 gusn) V2 S Y2, (48)
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Moreover, using (31), (45), (46), (48), and the fact that )\QQnSnU;l) E(T% ! (1) = 0(1), ele-
mentary calculation indicates that
2aL/%(U, — by,) = 0,(1). (49)

For the term @’T(,&gl)T - ,ugl)T), it follows from (42) and Holder’s inequality that

~ ~(1 1 1)—-1/2, (1 1 1)1/2 1)—1 1)1/2 1/2

wHA}—uﬁwsuﬂﬂ/<A}—A}wwmwmmxﬂﬂ/$%z%”>}-
2 (1)1/2 1)—1 1)1/2 1

(9] - {o D2 4\ fsgn (B0 Y AR 2SO T A Bsgn (50)1 12

Together with Lemma 4, Lemma 8, Lemma 9 and (31), it can be deduced that there
exist universal constants cy3, c44 > 0 such that with probability at least 1 — 043[(qnsn)_1 +
{log(n)}~" + exp(—nm /12) + exp(—nm2/12)],

< (1 1 1) «(1)=1_ (1)y— 1)-1/2, (1 1

[ (7 — )] < caalansn) o Spp v YA T (A0 — pip)llee (50)

To bound the term ||A§})_1/2(,[L§% - ,ugl%)Hoo, note that

—1/2, (1 1 14 (1)—1/2 1)—1/2
A2 — ] (Y, = s 1 Mo e N0, A ESLAD 1)
Union bound inequality and the concentration inequality imply that for any ¢t > 0,
_ N 1 n
P{IAY T2 (Al = i) llee > t1{Ys = widioy N Mo} < 2gus, exp{—(m1 /4)nt*}.

Plugging t = cy5{log(gns,)/n}'/? with cs5 = (8/71)"/? into the above yields P [||A§F1)‘1/2(;1f}—
Mgl)T)Hoo < cus{log(gnsn) /PP H{Y; = witiny N M,] > 1 — 2(ges,)™'. Together with
Lemma 3, it can be deduced that P[||A} - 1/2(u(11% ugl%)Hoo < css{log(gnsa)/n}/?] >
1—2{(qns,) " +exp(—nm /12) + exp(—nmy/12) }. Together with (50), there exist universal
constants ¢y, c47 > 0 such that with probability at least 1 — cas[(gns,) ™ + {log(n)}~ +

exp(—nmi/12) + exp(—nm2/12)],
[ (8 — 1)) < car{) ST DY 2 g0 Log (gnsn) .
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Together with (31), (45), (46), (48), and conditions (C2)—(C5), it is seen that 4a, X, =

0p(1). Together with (49), (41), (40), and Lemma 12, it can be concluded that
Q /051, o (51)

Similar argument leads to Qy/Q% 5 1, Q5 — 0. Together with (38), (39), and (51), it holds
that R°(0)/R°(SM) & 1, R°(BM) — 0, which completes the proof. O
Proof of Corollary 1: It follows directly from Theorems 1 and 2. m

In the next section, we present all the auxiliary lemmas with their proofs.

3 Auxiliary lemmas with their proofs

Lemma 1. Assume the following conditions (a)-(b):

(CL) C1 S )\min<AT1/2ZAT1/2) S AIna,x(A/\.“/2Z]/XT1/2) S Co,
o < )\min(A(l)—1/22(1)/\(1)—1/2) < )\max(A(l)—1/22(1)A(1)—1/2) < ¢,

for some universal constants 0 < ¢y < cs.
(b) D jer dopesn i1 WikBii = o(minjer D30 ) wikBi7).
Then we have the following properties:
1) NCN*andT*CT.
2) AV = {1+ or, ") + olra )} A2,

where the parameter o, = (B3 L2 SRINED Wy /(g5 (1) gDy < 1
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Proof of Lemma 1: First of all, we note that the equation ¥3* = v is equivalent to

_Egpl% Z%)V E(lev?) Z%’\?)— —5;(1)_ —Vrfpl)-
s 50 s sea| (s
ISALS VD VC D VIS I N e
s s og o | a0 |4

which entails that

1) H*(1 1 *(1 1,2) H%(2 1,2) H%(2 1
E”EF:)FBT( - Zg“])VBN( e Z’EFT)BT( e Z’EFN)BN( )= Vé’%

1) (1 1) A*(1 1,2) H%(2 1,2) H%(2 1
S+ LAY + 542 5 + 5428 = )

Multiplying both sides of (52) by 25\1,%2,}1%_1, we obtain

NTTT TN

1 *(1 1 1)-1(1 *(1 1 1)—1¢(1,2) o*(2 1 1)—1(1,2) (2 1
S0 + SO SAY + SO SR + S SS — sty

By subtracting (53) from the above equation, it can be seen that

1 1 1)-1¢(1 *(1 1,2 1 1)-1 (1,2 *(2
(S0~ S SRS + (s — S S5

(S0~ S5 = ) - S

(52)

(53)

(1)

By combining (10) in the main paper with the above equation, it can be deduced that

1)—1/2 1 1 1)-1(1 *(1
AN TSR — S Ser )y

1)—1/2 /(1 1—1w(1,2 1,2)\ o%(2 1)—1/2 /(1) w(1)—1w(1,2 1,2)\ o%(2
A - S + A VEH S - S

TN
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Together with the triangle inequality, we have

1)—1/2 1 1 1)—1 1 *(1
AR A2y — zﬁv%Zé% IORTERSI

2 1 2 —1/2 1,2
<[AY PR s 2R 8P, + (A T2l

, *(2
J\/:F)BT()H?jL
||AS&*I”ES&)TE‘;%‘IE%?W’|| + [AYT22GR 852 o,

NN

which further implies that

1)—1/2 1 1 1)—1 1 *(1
AR A2y — zﬁJTZé% OB TENSI

2 1 *(2 ~1/2
SIAY TSRSy S B + 1A TSR B 13+
1)=1/2¢ (1) 52 (1)—15~(1,2) o*(2 ~1/2 «(2)
IART* S S z&m& 5+ IAR TSR 75 (54)
Based on condition (a) and Lemma 14, it is trivial to show that
1)—1/2 (1 1) \(1)-15(1 1)-1/2
N (A (58— S SR
1)1/2 (1 1) (1) —=1x(1) \—1 4 (1)1/2
=X (AN (SN = ZNpSpy S0 TIAYY) 2 6 (55)

for the universal constant ¢; > 0 defined in condition (a). Hence, for the term ||A

S

el
*(1) (2 h
T TN)ﬁN H27 we nhave

1)—1/2 1 1 1)—1 1 *(1
IAY =Gy — s s R0

> Amax (AN (SN — 2028 2

TSN TG (B - St s Ay

1)—1/2 4 (1)—1/2 1 1 1)-1(1 *(1
AP, — s SSR)

1)1/2 5%(1 1)-1/2 1 1 1 1)-1/2 1)1/2 H%(1
>en (AR {AN T (S - S S Ay T HAR )

1)1/2 H,%(1
>2|IAR 50|13, (56)

where the first inequality is by (55

55), and the last inequality is also based on (55). According

22



to condition (a) and Lemma 14 again, we have

)\mm(A(l)l/Z ( )1/2) _ Amix(A(l) 1/2 SvgvAS\lf)—l/Z) > 02—1’ (57)
Avmin (Ag”—”?z%}/\g})‘m) > e, (58)

max

AP O S AP < (AP <o (50

(
Ama

APVESEDSOEIPAP) < p (APEEAP) < s (00

for the universal constants ¢; and ¢y defined in condition (a). Thus, for the term

-1/2 1)—1w(1,2) o*(2
A28 002 522 we have

[Nl Y08 ¥ yhgt =l
§C2)\min (A%)1/22§\1[3\71A§\})1/2) (E%%Eg}% 1 (1, 2)5*(2)) ( 71/2/\5\1,)71/2)(25\1%231% 1 (1, 2)6*(2))
<o (S oy B ol (WSt B 8)
Seohmax (A T PSR BN SN AR T AP 8
<SS 577 (AP AR ) (S S 81
<ot Amin (AP TPERAD T (BTG 810 Y (AP AD ) (20 5 81
<Aer Amax (AP E DT SED AP AP 8713

_ 2)1/2 H*(2
<cher AT 8,

where the first inequality is by (57), the fourth inequality follows from (59), the fifth
inequality is based on (58), and the last inequality is according to (60). Likewise, for the

term ||A 1/22(1 2 6T ||2, we have

—1/2 12 *(2 2)1/2 ~%(2
IAY 22N 8|2 < EIAD V5|2,

1)-1/2 1)—1¢(1,2) o*(2
(D)=1/25(1) $(1=15:(12) gr(2) 5

In a similar fashion, for the term ||A}, NT we have

—1/2 1)—1 1,2 *(2 _ 2)1/2 ~%(2
AR PSS SRR 812 < S AL 8 |12,
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In addition, for the term ||[AY 2502 85312 one has

1A 2GR B3 = (SN B (AR T 2A ) (00 )
<o (A%)I/QES@QIAS)I/Z)( 1, 2)5*(2)) ( _1/2/\5\1/)_1/2)(25\1&\2/)57\7(2))
<e(ARV2BP) (AR BN SRV AR ) (AR50
< hmax (AT PSSO SR AP T AR 25212

2)t1/2 2 2)t1/2 2)1/2 (2
<o Amax (ADT2E AQT2) | AQ V25212

2)1/2 *2
<AV 2.

To this end, based on the above four inequalities, (56) and (54), we conclude that
IR0V 13 < 1A 285215 + AR B3I,

which is equivalent to

Sn 00
DD waBiS D D wabi

JEN k=1 JET* k=sp+1

Together with condition (b), it can be derived that

Sn Sn
2 2
SN wiBiE = o(min Y wiBi2),
JEN k=1 k=1

entailing N C N* and T* C T, which completes the proof of 1). To prove property 2), by

substituting % = 0 into (52), we obtain the equation
1 «(1 1)—15(1,2) o*(2
ﬁé) - T( )= Z(T% 2(TT)BT( . (61)
Moreover, we note that

2 __ T _ ¥ x ¥ * _ 1T
A — VT* ZT*T* VT* — 6T* ET*T*/BT* — BT ETTﬁT — VTETTVT

=6, S0 4 255 w02 g g ) ) (62)
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where the third equality follows from 7 C T'. For the term BT T% ;(2) , we have

(2 2)11/2w(2) 4 (2)11/2 2)1/2 H%(2
BT ()S)\maX(A(T)T/E(T%A( )T/)HA()/BT()H%
<cy Z Z wjkﬁjk < 90 mlnz%kﬁﬂC ) < cor,) Z ijkﬁ;}z)
JET* k=sp+1 JET* k=1
<C27" 0 Z Zw]k mln(ATl/zzT*T*A;}*/Z) (/BT 1/2 1/2/8T*> ( )
JET* k=1
(BT*ZT*T*BT*) (r 1) < AZO(Tgl)a (63)

where the last inequality is by (62). Regarding the term BT (1 2) BT one has

#(1) 2 (1,2) %(2 2)11/2~(2,1) (1 2)1/2 o*(2
167 T 817 < IS B AT
For the term HAg)“/QEg? 1) *(1 |2, we have

, * *(1)’ 2,1 *(1 *(1) «(1
(AGT/252D g2 < o) (U2 S@FED) g1 < gel) 51

TT ~ =nHMT TTBT

San|| A2 853 < an B Srer B S anA?,

where the last inequality is by (62). For the term ||A 2)1/2ﬁ*(2)H 2, one has
1A S IR 87015 S o mmzwjk DS D D wakiiolrt) S Alo(r),
JET* k=1

To this end, based on the above three inequalities, we have

185 202 82 < A2o(ry 2al/?). (64)

n

For the term ﬁ;(l)/E(Tl%ﬂ;(l), we have

*(1 1 *(1 1 1 *(1 1 *(1) «(1 *(1 1

1 #(2) «(2,1) «(1)—1
) g _ g’ s @)

1,2 2 *(1) «(1,2) o*(2
T TT —TT Eng BT ) 25T( ) E&“T)ﬁT( )

—5T TT
1) 5(1) #(1) «(1,2)
:BT E(T:)F C(Z“ ( )6T TT T 25 o E 6T

P DBy + Ao(r! 4 a)?),
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where the second equality follows from (61), and the last equality is based on (63) and
(64). Together with (64), (63) and (62), it can be concluded that AM2? = {1 + o(r; ') +

o(rn*?a/*)} A2, which completes the proof. O

Lemma 2. Assume the invertibility of Srfpl% and consider the following optimization prob-

lem:

~

1 /
min [gv'T{Sr}l%—i-—an o\, (1) }UT——n1n2 'A YV, (A 2, ) sgn( (1)) ,

vp €RInsn nin—2) 7 n(n—2)
where vp = (v},...,v, )" with sub-vectors v; = (vj1,...,vjs,) € R*™. Let Op be the
solution of this optimization problem where Op = (y,...,7, )" with sub-vectors ¥; =
(Dj1,...,04s,) € R, then we have:

o ={ninon ' (n — 2)7 H1 + A Uy S(l) 1A(1)1/25gn(BT )}
1+ {nanan ™ (n = 2)7 o ST 0] T ST Y — X SE AR 2 sgn(8Y).
Proof of Lemma 2: The proof is analogous to that of Lemma 16. m
Lemma 3. Define the events M,, and M, as
M, ={m/2 <ny/n <3m/2} N{m/2 < ny/n < 3my/2},
M = {mimy /4 < ning/n?® < 9mimy/4}.
Then we have the following properties:
1) P(M,,) > 1—2exp(—nm/12) — 2exp(—nm/12).
2) P(M:) > 1—2exp(—nm/12) — 2exp(—nmy/12).

Proof of Lemma 3: First of all, note that n; ~ Binomial(n, ). Invoking the chernoff tail

bounds for binomial random variables, we have that for any ¢ € [0, 1],
P{n, > (1+6)nm} < exp(—nm16/3),

P{n; < (1 —6&)nm} < exp(—nm?/3).
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Then, we substitute § = 1/2 into the above two inequalities to obtain

P(ny/n > 3m/2) < exp(—nm/12),

P(ni/n < m/2) < exp(—nm/12). (65)
Accordingly, we have

P(m /2 <ny/n <3m/2) =1— P(ny/n > 3m/2) — P(ny/n < m/2)

>1 — 2exp(—nm /12),
where the last inequality is by (65). By symmetry, one has
P(my/2 < ng/n < 3my/2) > 1 — 2exp(—nmy/12).

To this end, based on the above two inequalities, we can deduce that P(M,) > 1 —
2exp(—nm /12) — 2exp(—nmy/12), which completes the proof of 1). Property 2) follows

from the fact that M,, C M. O
Lemma 4. For any o € (/% 1/100), define the event Ms, (o) as

Man(0) ={ o4 3371040 = i S| S qusa/n + log(o7)/m

+ [qusa/m -+ {log(a™)/my 2 {uf SV} + {log(o™) /my ) SE VY2
Assume the condition (a):
(a) GnSn = o(n).
Then we have the following property:

P{Ms,(0)} > 1 —4p — dexp(—nm /12) — dexp(—nmy/12), Vo € (e 1/100).
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Proof of Lemma 4: First of all, note that

A(1) o(1)=1A(1 1) 1 (1
S — S

~ (1) 1A(1 1) «(1)=1_ (1 n-1, 1 1A

G4 — S AR S o S ) 1)
1) (1 D=1 (1) j~(1) (1) =1 A(1 (1) s (1)—1 (1 1) «(1)-1_ (1
L S0 () G150 ) =Ly gy 0 sy W s, )
which implies that

A(1) o(1)=1A(1 1) «(1)—-1_ (1
o S S )

(1) «(1)—1 A 1) -1 (1 1)
<[PV BWLpD AV s M-1, 1) 50Y g

1 1A
o NS VS |
1) 1)—1 (1) ~(1) 1—1A1A 1)—1 ~ 1 1A(1
AR s A AN z;% D 1)+ o) e o) —

1) «(1)-1_ (1
P - S
Together with Lemma 18 and Lemma 19, we conclude that with probability at least 1 —

4o — dexp(—nm /12) — dexp(—nme/12),

o) S 04— v S0 | Sausa/n + log(o!

)/n+ [Gnsn/n + {1og<@*1>/n}”2}
AR SR} 4 {log(o ) /my v Sy R Y,
which completes the proof. O]

Lemma 5. Assume the following condition (a):

(a) 1og(qnsn) = o(n).

Then there exist universal constants ¢c; > 0 and co > 0 such that

1) P[IAPAD ™ —

[qnanmax S 01{10g(%3n)/n}1/2} Z 1 - CQ{(QnS'rL)_l
+ exp(—nm1/12) + exp(—nmy /12)}.

2) P[IIAPAY —

[qnanmax < Cl{log(qﬂsn)/n}l/ﬂ >1- 02{(%371)_1
+ exp(—nmy/12) + exp(—nmy/12)}.
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3) PIIADYPAD T 1y e < €1{108(gnsn) /n}2] > 1 — ca{(gnsn) !

+ exp(—nmy1/12) 4+ exp(—nmy/12) }.

4) P[IASYPRAD T2 1 e < 1 {10(gnsn) /n}2] > 1 = eo{(gusn) ™

+ exp(—nm/12) + exp(—nmy/12)}.
Note that 1,,;, denotes the g,s, X q,S, identity matriz.

Proof of Lemma 5: Before showing the Lemma, we prepare some notations. For any
sub-exponential random variable X, its sub-exponential norm is denoted as || X|, =
SUP,>1 ¢ {E(]X|9)}?. Now, we are in a position to start the proof. First of all, no-

tice that

A1 1 1
JARAR ™ = Ty e = ma e [0 — 1. (66)

Moreover, by definition, we have that for every j € T and k < s,

@ik =(n —2)7" [nl{ > Gk — )y +na{ D (G — Mij)Q/W}}

i€ H, i'eHo
(n - 2 |:TL1 Z 521]]{)/”1 ,u’].]k + no Z 612]]6/”2 ,u2]k) ] )
11€H, i2€H>2

which implies that for every j € T and k < s,,,

Wipwyy — 1 =(n—2)" Z{%k (e = mgn)}* —1]
i€Hy
+ (n — 2 Z {ij 5@ ik — :u2jk)} - 1}
i’€Ho
_ - _ 2
= (=2t 3w (G — )]
11€H,
_ _ — 2 _
— (n—2)""ng[ny! Z ijl/z(gmk — pizj)]” +2(n—2)7"
i2€H>
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Together with (66), we obtain

A (1 1)—-1
AP AS T~ 1

dnSn

max < 271_1TL1T1 + Qn_lnng + 2n_1n1T§ + 2n_1n2T421 + 3n_17 (67)

where

T, = maxmax ’nl Z{w_l/ (&ijr — pajn) ¥ — 1|,

JET k<sp

i€ Hy
~1/ 2( 2
Ty = maxmax‘n2 E {w (Cirjie — p2ji) }° — 1),
JET k<sp
ZEHQ

Ty = 1r1[1axn[1ax]n1 g Wiy, fmk lubljk')|’
JET k<sp
i1€H,

” ~1/ 2
4 = mmax max ‘nz W (Einji — M2jk)|-
J€T k<spn
i2€H2

At this point, note that for every i € Hy,j < q,, k < s,, the sub-exponential norms of the

sub-exponential random variables {wj_kl/ 2(&jk — k) }? satisty
s (€n = age) Plly < ma{am, 262/}, (68)

For the term Y, conditional on any nonempty {Y; = y;}’; N M,,, one can show that for

any t > 0,

P[T; > t|{Y; = i}y N M,,]

<30 P[Jrt Y — ) — 1] 2 Y = b N Mo

JET k<sp i€H,

<2q,, 8, €Xp [ — ¢y min{t?, t}n], (69)

for some universal constant ¢; > 0, where the first inequality holds from the union bound
inequality, and the second inequality follows from (68) and the Bernstein inequality in

Lemma H.2 of Ning and Liu (2017). Similar reasoning gives the result that for any ¢ > 0,
P[Ty > t|{Y; = g}y N M, ] < 2g,s, exp [ — co min{t?, t}n], (70)
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for some universal constant c; > 0. Regarding the term T3, it is clear that for any ¢ > 0,

<> > P[‘”fl > Wi Gn = mge)| = s = widi, N M,

JET k<sn 11€H,

§2qn5n eXp(—antQ), (71)

for some universal constant c3 > 0, where the first inequality is based on the union bound
inequality, and the second inequality follows from Hoeffding inequality. Similar argument

leads to the result that for any ¢ > 0,

Py > t|{Yi = yi}ioy N M,] < 2gns, exp(—cant?), (72)
for some universal constant ¢, > 0. To this end, conditional on any nonempty {Y; =
Y}, N M,, it can be deduced that for any ¢t > 0,

PUIAPAY ™ = I, lhnax 2 1{Ys = 9}y 1 M)
§P[2n*1n1T1 +2n Ny Ty + 2n*1n1T§ + 2n*1n2TZ +3n7t >t
‘{Y;' =yt N M,
SP[T1 +To+T5+Ti+n""' > 0575‘{5/; = Yitiey N Mn}
SP[Tl > 5_10515‘{1/; =yt N Mn} + P[TQ > 5_10575‘{1/; =yt N /\/ln]
+ P[Y5 > 5_1/20;)/2751/2’{3/1‘ = Yitis N M,]
+ P[Ty > 5*1/26;)/2151/2‘{1/; = Yitis N M,]
+ P[n7' > 57 est|{Yi = ity N M,
<4q,,, exp [ — cgmin{t?, t}n] + 4qnsn exp(—cgnt) + P(n™t > 57 ¢est)
<8¢y, exp | — cmin{t’, t}n] + P(n™" > 5" cst),
for some carefully chosen universal constants c; > 0 and cg > 0, where the first inequality
is by (67), the second inequality comes from the definition of M,, in Lemma 3, the fourth
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inequality is based on (69), (70), (71) and (72). Accordingly, we set ¢; = (2¢5*)/? and

substitute ¢t = c;{log(¢,5,)/n}"/? into the above inequality to obtain

PlARAY ™ — Iy e < er{108(gnsn) /0y {Ys = 37 N M) > 1 — 8(gnsa)
(73)

It then follows that

A1 1)—-1
PIAY AT — 1

dnsSn

max < cr{log(qnsa)/n}'/?]

> Y PIIAPAY T = I e < er{log(gusa) /n} 2 {Y: = yidiny] - PI{Y: =y}
{yi}?:leMn

>{1- S(Qnsn)_l} Z P[{Y; =Y ?:1} ={1- 8(QnSN)_1}P<Mn)

{yi}?:l eEM,

>1 — 8{(qnsn) " + exp(—nm; /12) + exp(—nmy/12)},

where the second inequality is by (73), and the last inequality follows from Lemma 3.
Therefore, property 1) holds from the above inequality. Moreover, it can be verified that

under the event {H[A\g})/\g})f1 — I s |lmax < 07{10g(qnsn)/n}1/2},
14 (1)-1 ~ (1) (1)=1
HA;)A%) - ansn”max < QHA;)A;) - ananmaX~
Hence, based on the above two inequalities, we conclude that

PIAYAD ™ — Iy s hmax < 2¢7{10g(gnsn)/n}"?]

>1 — 8{(qnsn) " + exp(—nm /12) + exp(—nma/12)}, (74)

which completes the proof of property 2). Property 3) can be directly proved by using the
fact that ]\Agpl)l/QAgrl)_l/g — Lyso |lmax < ||A£p1)A(T1)_1 — Iy,s, Imax- Likewise, one can show

property 4), which finishes the proof. ]

Lemma 6. Assume the following conditions (a)—-(b):
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(a) supjc, > peq Wik < 00, )\min(Ag\l,)) > ¢ps,* for some constants ¢co > 0 and a > 1.

(b) 3721(1 log{(pn - Qn)sn} = 0(”)

Then there exist universal constants ¢; > 0 and ¢y > 0 such that:

1) POIAY A ™ = T e lhmax < c1[10g{(Dn = @n) s} /1]2) > 1= co[{(pn— qn)sn} ™" +

exp(—nm /12) 4+ exp(—nme/12)].

2) P(IAYAG ™ = I, gyen max < 1[108{(n — gu)sn}/0]2) > 1= co[{(pn — gu)sn} "+

exp(—nm/12) + exp(—nms/12)].

3) P(IAGAY ™2 = Iy gsnllmax < e1ll0g{(pn — @n)sa}/n]?) > 1 — co[{(pn —

Gn)Sn )t + exp(—nmy /12) + exp(—nmy/12)].

4) P(IAGPAY 2 — L gmysnllmas < callog{(pn = @n)sa}/n]"2) > 1 = eo[{(pa —

qn)sn} !+ exp(—nm /12) + exp(—nma/12)].

5) P{det(AV) # 0} > 1 — 2[{(pn — qu)sn} ™ + exp(—nm1/12) + exp(—nma/12)].
Note that 1, —q,)s, denotes the (Pn — qn)sn X (Pn — @n)Sn identity matriz.

Proof of Lemma 6: The proof of property 1) is analogous to that of property 1) in Lemma 5.
Then, it can be deduced that there exists c¢3 > 0 and ¢4 > 0 such that with probability at

least 1 — c3[{(pn — qn)Sn} " + exp(—nm; /12) + exp(—nmy/12)],
A (1 1 Dy (1) 4 (1)=1 —a
)‘mm(AEV)) > /\min(Agv)> - /\max(Agv))HAgv)Agv) - I(pn—qn)sn”maX > €48,
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where the last inequality is based on (a), (b) and property 1). As a result, property 5)
holds true from the above inequality. Finally, properties 2) to 4) can be derived in a similar

fashion as properties 2) to 4) in Lemma 5, which finishes the proof. O
Lemma 7. Assume the following condition (a):
(a) 1og(gnsn) = o(n).

Then there exist universal constants ¢; > 0 and cy > 0 such that:

PlIIAY 72552 AR T2 — AR TP AR T s < e {g]s7 Tog(gusa) /n} 7]

>1 — e{(qnsn) ™ + exp(—nm; /12) + exp(—nmy/12)}.

Proof of Lemma 7. First of all, we note that

|AL T2 A T = AT PR AY T e S Q0+ Qo+ Qu+ Qs, (7)

where

ity [{Wﬁiz(&jlkl ot

i€H,
—1/2
AW ks — Hgaks) } — COl"r({jlkl,fjm)} ‘,

nQ_l Z |:{wj_1}€{2(§ijlkl - N2j1k1)}

i€EHo
—-1/2
) {wjzké <£ij2k2 - /’L2j2k2>} - Corr(£j1k17€j2k2):| ‘7

{ni' > Wil (G — Lo1juky) }

11€H,

’ {nl_l Z Wj_z}f(ﬁhjgka - :uljzka)}‘?

i1€H,

Q1 =2n"'n1¢,s,maxmaxmaxmax
J2€T ka<sn j1€T k1<sn

Qs =2n"1ny¢, s,max max maxmax
J2€T ka<sn J1 €T k1<sn

Q3 =2n"'n1¢,s,max maxmaxmax
J2€T ka<sn j1€T k1<sn

(3" D7 wi € — Hojur)}

io€Ho

’ {712_1 Z wj_g}eé2(§i2j2k2 - qujzkz)}"

i2€H>

Qy =2n"'nyq, s,maxmaxmaxmax
J2€T ka<sn j1€T k1<sp

Qs =4n"1q,s,,.
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For the term 2, conditional on any nonempty {Y; = y;}*, N M, it can be shown that

for any t > 0,

Py > t|{Y; = yi}ioy N M)

nfl Z |:{ jl}{)/12(£l]1k1 M1k } { DZQ &ijQ —/LlekQ)}

1€H,

<P (max maxmaxmax
J2€T ka<sn j1€T k1<sn

— cort(&jky» Ejok) ” > (3mM1qnsSn)” t‘{Y =Yt NM >

S Z Z Z Z P( ny' Z [{wjz}ﬂ<2(£ijlkl H1j1ky } {wmkz €1J2k2 Mljzkz)}

J2€T ko=1j1€T k1=1 i€H,

- Corr<€j1k17€j2k2)] ‘ > (37T1qn8n)_1t‘{Y; =Yt N Mn)

Sn

ST Y 2o [ cmmind(g,5,) 2 (0,51

J2€T ko=1j1€T k1=1

=2(g¢n5,)% exp [ — cynmin{(gns,) 2t%, (qnsn)_lt}},

for some universal constant ¢; > 0, where the first inequality is by the definition of M,,
in Lemma 3, the second inequality holds from the union bound inequality, and the last
inequality is based on Bernstein inequality and the definition of M,,. To this end, we set
co = (c1/3)71/% and substitute ¢t = cy{q?s? log(g.s,)/n}"/? into the above inequality to

obtain

P > ea{qps;, 1og(gnsn) /n} 2 [{Y: = yidiy N Ma] < 2(gusa) ™ (76)
Similar reasoning yields that

P[Qy > cs{qisp1og(qnsn) /n} P {Y: = yitiey N My < 2(gusa) ™ (77)

for some universal constant c3 > 0. For the term (23, it is apparent to see that for any
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P[Qs > t{Y; = yi}iy N M,

—1/241/2

-1/ 2
wglkl 511J1k1 /’Lljlkl)

J2€T ko=1j1€T k1=1 i1€H,

2 (37TIQnSn)

{Yi =y}, NM, >+

1 -1/2
> Wi (Girgaks — Hjoks)

J2€T ko=1j1€T k1=1 i1€H,

> (3mgusa) A 1Y = ik, O M)

§4(Qnsn)2 eXp(_C4nQ7:1S7_th)a

for some universal constant ¢, > 0, where the last inequality follows from Hoeffding inequal-
ity and the definition of M,,. Therefore, we set c5 = 3c; ' and plug t = ¢5¢,5, 10g(¢nsn)/n

into the above inequality to obtain

P[Qg > C5GnSn log(qnsn)/n‘{Y Yt N M } < 4(gnsn) .
Similar reasoning leads to

P[Q4 > c6qn5n10g(gnsn) /n‘{Y =y}, N M, < 4(gesn) ™,

for some universal constant ¢g > 0. Accordingly, we set ¢; = ¢o + ¢35+ ¢5 + ¢+ 1. By

combining the above two inequalities with (76), (77), and (75), it can be deduced that

[||A 1/2ST%A§F -1/2 A(l) 1/22( )A 1)—1/2||2 < 67{(1 log(qnsn /n}l/QHY =y, N M }

>1 — 12(gnsn) " (78)
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Finally, we have

PIARY TS AP T2 — ADTERAD T < er{gls? 1og(gnsn) /n} 7]

1)—1/2 (1 1)—1/2 1)-1/2w(1 1)—1/2
> T PSR A A, <
{yz‘}?:1€Mn

crqnsn{log(gusn) /n} 2 [{Ys = yi}ina] - PI{Yi = widii]

Z{l — 12(qn3n)71} Z P[{Y; =Yi ?:1] = {1 - 12(Qn5n)71}P(Mn)

{yi}?:1€Mn

>1 = 12{(qnsn) "' + exp(—nm/12) + exp(—nm2/12)},

where the second inequality is by (78), and the last inequality follows from Lemma 3. This

completes the proof. O
Lemma 8. Assume the following conditions (a)—(b):
(a) ¢%s%1og(qns,) = o(n).

(b) c; < Amin(A(T”‘l/22§3%A(T”‘1/2) < )\maX(A(Tl)_IHZ(TI%Ag)_I/Z) < ¢q, for some universal

constants 0 < c¢; < c3.
Then we have the following properties:

1) There exist universal constants cs > 0 and ¢y > 0 such that

P(IAPT2SEAN T2y < e3) > 1= ca{(gusn) ™ + exp(—nm /12) + exp(—nm/12)}.

2) There exist universal constants c5 > 0 and cg > 0 such that

P(AY2SEITTAI2)| ) < ) > 1 — c6{(qnsn) ™ + exp(—nmy /12) + exp(—nmy/12)}.
Proof of Lemma &: First of all, we note that
1)—1/2 1 1)—1/2 1)—1/2 1 1)—1/2 1)—1/2 1 1)—1/2
1A 2SAD T2y < AP TVESRAD T — AP TVEERAD T + o,

37



where ¢, is defined in condition (b). Together with condition (a) and Lemma 7, it can be
concluded that there exist universal constants c3 > 0 and ¢4 > 0 such that with probability

at least 1 — c3{(qnsn) ' + exp(—nm /12) + exp(—nmy/12)},
JAD TSN Tz < ea{}s7 108(gusa) /2 + ez < 2es,

which completes the proof of property 1). To show the second property, we first notice that

)1/2 112 1)—1/2 (1) A (1)—1/2
|AZ 25 A Pl = AL (AR TS AR ). (79)
Moreover, it is apparent to deduce that
)\min(Ag})_l/2S§/}%A§/})_l/2) ||A I/QST%A% ~1/2 A(l) 1/22() 1)—1/2H2

where ¢; is defined in condition (b). Together with condition (a) and Lemma 7, we conclude
that there exist universal constants c; > 0 and cg > 0 such that with probability at least

1 — c5{(qnsn) "t + exp(—nm /12) + exp(—nmy/12)},
Muin( A TSN ) 2 01 — co{a)s log(gusa) [}V 2 /2.

Together with (79), the proof is finished. O
Lemma 9. Assume the following conditions (a)—-(b):

(a) ¢;s2108(qnsn) = o(n).

(b) c; < /\min(AgFl)_l/zﬁg}%A(Tl)_l/Q) < )\maX(A(Tl)_IHZ(TI%Ag)_I/Q) < ¢q, for some universal

constants 0 < c; < c3.

Then there exist universal constants c3 > 0 and ¢y > 0 such that:

1) P([{sgn(87Y AR 2553 AR 2 sgn(B0)  {sgn(B) Y AP 2SS 2 sgn(8))}

~1] < es[{log(gusa)/n}'/? + {loglog(n) /n}/?] )

> 1 — ca[(gnsn) ™ + {log(n)} ! + exp(—nm1 /12) + exp(—nm/12)].
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P([{sgn(8)y AP S AD 2 sgn(80)}  {sgn(B Y AP S AR 2 sgn( 810}
— 1] < es[{log(gus,) /n}/? + {log log(n) /n}!/*] )

> 1~ c4[(gnsn) ™" 4 {log(n)} " + exp(—nmi /12) + exp(—nms/12)].

Proof of Lemma 9: First of all, we note that

sgn(ﬁ(Tl)) A(T)l/QS;T [\ 1/zsgn(ﬂ(Tl)) = sgn(ﬁg)) A(T)1/2S A(1)1/2sgn( (1)) + Q4 + 20,
(80)

where

Oy = sgn(B0)) (ADYPAD T2 1 (APESI TR AP TVERADYE 1 sen(By)),

Q= sgn(By ) (AP ZSp AP YR AR — 1, sen (7).
For the term €2, it can be deduced that

O < gusn|ADY2SH AL, ADY2ZAD-12

dnSn ||max

Together with condition (a), condition (b), Lemma 8, and Lemma 5, it can be concluded

that there exist universal constants ¢z > 0 and ¢4 > 0 such that
P{Qy < ¢3¢n50108(qnsn)/n} > 1= ca{(gnsn) ™" + exp(—nmi/12) + exp(—nmy/12)}. (81)
For the term €25, one has

Qo] <[|(APYZSE T A s (B 11 - [I(ARTEADY? — 1, Ysen(BY)] s

12 1)1/2 12 1/2
<@ | ARZSEITIAD Y2 ASYPADTYE L e

Together with condition (a), condition (b), Lemma 8, and Lemma 5, it can be deduced

that there exist universal constants ¢; > 0 and ¢g > 0 such that

P[] < cs{g s 10g(gnsn)/n}?] > 1 = cef(gnsn) ™" + exp(—nm /12) + exp(—nm2/12)}.
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Together with (80) and (81), it can be concluded that there exist universal constants

c7 > 0 and cg > 0 such that with probability at least 1 — c7{(¢.5,)"" + exp(—nm/12) +

exp(—nmy/12)},

sen(By))Y ARY2 ST AN 2sgn(B1)) — sgn (B0 Y AR 28T T AR sgn (5]

<cs{dns;, 10g(gnsn) /n}'2.

Moreover, we note that

[{sgn(B) Y AR 2S00 ADY 2sgn(B0)} {sgn (B Y AR 2R A sgn (V) — 1
<{sgn(By)) APPSR AR 2sgn (B)) 1

[sen (B Y AR 2SO AR 2sgn(51)) — sen (81 APV ESEIT A sgn (B0) |+
[{sgn(BY) Y AR 2 SEIT AL 2sgn(B10)} /{sgn(BY) Y AR PSR AR sgn (B) ) — 1
SCQ(qnsn)’l‘sgn(ﬁ(Tl))A(T)l/ZS;T A 1/28gn(5(Tl))—sgn(ﬁ )A(l)l/QS(I) 1A(1 1/28gn(ﬁ( ))|

+ [{sen (B8R ARSI AR sgn(BU)) /{sen (B8R Y AR AR A 2sgn (B1)))

where the last inequality is based on condition (b). Therefore, by combining Lemma 22
with the above two inequalities, we conclude that there exist universal constants ¢y > 0 and
c1o > 0 such that with probability at least 1 — g [(gn5,) " + {log(n)}~* + exp(—nm/12) +
exp(—nm/12)],
[ fsn(oy”) AR 250y A Psen (8 ))} Hsen (1) A28 AD sgn(837)) — 1]
<cio [{log(qnsn)/n}l/2 + ¢nsn/n + {log log(n)/n}l/ﬂ

<2¢10[{10g(gnsn) /n}"/? + {loglog(n) /n}'?],

which completes the proof of property 1). To show the second property, we notice the fact
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that
1/2 1)—1 1)1/2 1 1 2 (1)1/2 1)—-143(1)1/2 1
[{sen(B) AV PR AN san (80) )/ {sen (B2 Y AR ST A Psgn (80} — 1
=|{sgn(BY)) A2 50 AY ”/%gn(m )}/ {sgn(BY)) A PRE T A Psen(51)) ) — 1

A (1)1/2 1/2 1 1/2(1)—1 5 (1)1/2 Dy (=
-|{sgn )A /S ) / (@T )}/ {sgn( ())A()/E(} A(T)/ ()H
Together with property 1), property 2) follows directly, which finishes the proof. m

Lemma 10. Assume the following conditions (a)—(b):
(a) GnSn = o(n).
(b) 1 < Amin(A(Tl)_l/QZg}%Ag)_l/z) < )\maX(Agpl)_l/ZZ(Tl%A(Tl)_l/z) < ¢y, for some universal
constants 0 < ¢; < cy.
Then there exist universal constants cs > 0 and cq4 > 0 such that with probability at least
1 — ¢3[(qnsn) ™t + {log(n)} = + exp(—nmi/12) + exp(—nmy/12)], we have:

A ST A 2 sgn(85)) — v S0 AR P sgn(B0)]

<calgusn/n + {10g(gnsa) /n}'/? + {loglog(n) /n}!/?] - [ Sy A2 sgn(B4V)|
+ €a(gnsn)/*{loglog(n)/n} 21+ 18 S0 ) 4 (S0 v Toglog(n) /n} /2]
+ €4(gnsn)*{108(gn5n) 1} {qusn 10g(gnsn log n) /n} /2
1S+ () S Toglog(n) /n} 72,

Proof of Lemma 10: First of all, we note that

4 S A Psgn(B1) — v SR IAD 2 sgn(BY)] < Oy + Qo (82)
where
O = [ 20T AP 2sgn (81)) — v ST TAD 2sgn(51))],
O = |95 Sty AR sen(8y) — o S AR Psen (57
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For the term ;, Lemma 21 together with condition (b) imply that there exist universal
constants ¢z > 0 and ¢; > 0 such that with probability at least 1 — c3[{log(n)}~! +

exp(—nmi/12) + exp(—nm2/12)],
01 < ca{gnsnloglog(n) /n}'’?. (83)

For the term €25, it is clear that

QQ S Hl + H27 (84>
where
Z1, (1)1/2, 4 (1)=1/2 7 (1)1/2 1
I = | S T ARPYVPAR TR — 1 )sen(BY)),

I = |o) Sy AR sgn(B1) — o 0y AP Psgn(B5)].

For the term II;, it is not difficult to verify that

1)—-1/2 4% (1)1/2 1) 1/2 1
Ty <A™ PR — Ly s {147 S AT 50 (57
- 1)1/2 1) s (1)—1 4 (1)1/2
oy S A v iy A&” I}

To bound the term Hﬁ}l)ls;l%_lA(Tl)l/Q - yi(pl)/E(Tl%_lA(l)l/QHl, based on Lemma 23, and condi-
tions (a) and (b), it can be deduced that there exist universal constants ¢5 > 0 and ¢g > 0

such that with probability at least 1 — c5[{log(n)} ! + exp(—nm;/12) + exp(—nmy/12)],
(1) o()-1, (D12 (1) 1)1/2
I S A o A
<C6[qnsn/n + {log(gns, logn)/n}'/?] - |V(1)/E(T% NS Wzsgn( r}l))| + C6¢nSn
1) «(1 (1)—1

{log(gusn log n) /n} (1 + v S v + {vp) Sy vy loglog(n) /n} 2],
To this end, by combining the above two inequalities with Lemma 5, it can be concluded
that there exist universal constants ¢; > 0 and cg > 0 such that with probability at least
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1 — c7[(gnsn) ™t + {log(n)}~ + exp(—nm; /12) + exp(—nm/12)],

My <es{log(gnsn)/m}"* - o Sy AP sam(57) 1+
cs{tn5n 108(Gn5n) /Y2 {gn 5 log(nsn log n) /n} /2

Ly SR+ () S0 vy Toglog(n) n} 22, (85)
To bound the term Iy, we note that
My <y gusn(L+00) - [Vl + {3 S AP Psgn(87)) | + Xa} - 10, (86)
where ¢; is defined in condition (b) and

1 1)1/2 1)—1 1)1/2 1/2 1 1)1/2 1 _
Ty =|{sen(B0 Y ARSI AD 2sn (B0) H sen (B0 Y AR PR AR sgn (B00) ) — 1,
T, ={iy) s?%* AP Zsgn(B)) Hsgn(BY)) A2 AL sgn(B)) )
{0 S A Psen(8) Hisen(65) Ay P AT sgn (7)),

(1) (1)1 4 (1)1/2 1 1) (1)1 4 (1)1/2 1
Ty =[op) Sy Ap Psen(87)) — vp Spg AR Psen ()]

For the term T, Lemma 22 entails that there exist universal constants ¢y > 0 and ¢;9 > 0

such that with probability at least 1 — cg[{log(n)} ! + exp(—nm;/12) + exp(—nmy/12)],
T < 10[gnsn/n + {loglog(n) /n}/?. (87)

For the term T,, by using similar arguments as in the proof of Lemma 23, it can be
deduced that there exist universal constants ¢;; > 0 and ¢;5 > 0 such that conditional on

any nonempty {Y; = y;}i; " M,, N {Pr}, and for any ¢ > 0,

P[|To| > t|{Yi = y;}ioy N M, 0 {07 }]

<erpexp [ = ern{pSt  op} H sen (B )Y ARV EE T A 2san (80) 142,
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By plugging t = ci3 {0450 0r } /2 {sgn(80) Y AR 2E0 T AN 2sgn (B1) )12 {log log(n) /n} /2

with ¢13 = 012/ into the above inequality, it yields that

P[|Ta| < crs {020 o} 2 {sgn (B0 Y A 2E 0 A 2ggn (510) ) 12
{loglog(n)/n}'?|{Y; = yi}iy N M, 1 {07}]

>1 — en{log(n)}~". (88)
Therefore, we have

P[|Ts| < cia{th S0 or Y/ {sgn (87 AR V2R A 2sgn (5)) ) 12

- {loglog(n)/n}"/?]

> N P[] < eas{oh S5 e} {sen(BY Y AR PR 0 AR Bsgn (5) ) 1/
{yi}?zleMn

{loglog(n)/n}'2[{Yi = g}, ] - P[{Y% = yitin)

= > / [1Ta] < crg{#4 20 o} 2 {sgn (87 ) A28 A 2sgn (00} ~1/2
{yz EMn vr

{loglog(n)/n} 2 {(¥; = uibiy N {or)] - FPrl{Ys =y} )dor - P[{Y: = Y]

>[1 - 011{10g(n)}_1] : Z [{Yz =Y ?:1} =[1- cn{log(n)}_l] - P(M,,)

{yz} =1 eEMy

>1 — ey [{log(n)} ! + exp(—nmi /12) + exp(—nma/12)],

for some universal constant ¢4 > 0, where f(or|[{Y; = v;},) denotes the conditional
density function, and the second inequality is by (88). Together with Lemma 19 yields the
result that there exist universal constants c;5 > 0 and ¢4 > 0 such that with probability

at least 1 — ¢y5[{log(n)} =" + exp(—nm/12) + exp(—nmy/12)],

| Ta| <er6lgnsn/n +loglog(n)/n + v S0 D + (0 w87 W log log(n) /n} /2] /2

(gnsn) ™/ {loglog(n) /n}'2. (89)
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For the term Y3, Lemma 21 leads to the result that there exist universal constants ¢;7 > 0
and c;g > 0 such that with probability at least 1 — cy7[{log(n)}~' + exp(—nm/12) +

exp(—nmy/12)],
T5 < c18{qnsn loglog(n)/n}*/2.

Together with (87), (89) and (86), it can be observed that there exist universal constants
c19 > 0 and ¢z > 0 such that with probability at least 1 —cyg[{log(n)} =" +exp(—nm/12) +

exp(—nmy/12)],

Iy < eo0lqnsn/n + loglog(n)/n + U:(Fl)/ngl%_luc(pl) + {Vi(pl)/Zg}%_lyi(pl) log log(n)/n}l/Q]l/2

- (qusn)/*{loglog(n) /n}? + caolgnsn/n + {loglog(n) /n}Y/?] - [ SE AR sen(B1)))|

+ ¢20{qnSn log log(n)/n}l/2 - [gnsn/n + {log log(n)/n}1/2].

Together with (84) and (85), there exist universal constants co; > 0 and e > 0 such that

with probability at least 1 — co1[(¢n5,) ! + {log(n)} ! + exp(—nm/12) + exp(—nmy/12)],

Qs < c2(qnsn)*{loglog(n) /n}/?

[gusa/n + loglog(n) /n + vy STV + (W S8 log log(n) /n} /2172

+ Coalgnsn/n + {log(qnsn) /n}/ + {loglog(n) /n}"/?] - [ut S8 AR 2sgn(51))]
+ cn{gnsa loglog(n) /n}/2 - [gus,/n + {loglog(n) /n}'/?

}1/2

+ 022{qu5n IOg(QnSn)/n}l/z{Qnsn 10g<Qn5n log n)/n

1+ ug)'z(;} )4 {vy ()’ T% 1V7(~1) loglog(n)/n}'/?Y2.

Together with (82) and (83), it can be concluded that there exist universal constants

co3 > 0 and cg4 > 0 such that with probability at least 1 — co3[(gnsn) ™' + {log(n)}~* +
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exp(—nm/12) + exp(—nmy/12)],

4 S A 2sgn(B) — v ST AR Psgn (B3]
<eaalgusa/n + {108(gusa) /n}? + {loglog(n) /n} %] - i) S0 A sgn(BV))|

+ caa(qusn) /*{loglog(n) /n} 21 + v ST + (0 50 Tog log(n) /n} /)12

+ C24(Gnsn) *{108(4nSn) /1 }*{ G50 10g(gnsy log n) /n} '/

[ S+ () ST vy oglog(n) /22,
which completes the proof. n

Lemma 11. Assume the following conditions (a)—(d):

(a) max{q;s2108(¢nsn), Gnsn 108(Pn — 4n)} = o(n).

(b) c1 < Amin(A(T”‘l/22§3%A(T”‘”2) < )\maX(A 1/22(1 Ay (1= 1/2) < ¢y, for some universal

constants 0 < c; < cs.

(¢) Kilog{(pn—qn)snlogn}/(nX%) < 37,cr 3002 winly < Kalog{(pn—an)snlogn}/(nA;) —

00, for some sufficiently large universal constants Ko > K; > 0.

() migmin]{*|8] > Kollog{(pn — 4.)sn log n}/(nX2)]"/{log(gusn log )/} 2 +
Kallog{ (pn—gn)snlog n}/ (nAn) HIAT 207 AP sgn(B57) o+ Ksflog{ (n—gn) s Tog n} / (nAw)]
[{¢n5n10g(qnsn)/n}? + {gns, loglog(n) /n}1/?], for some sufficiently large universal

constant K3 > 0.
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Then there exists a universal constant cz > 0 such that:

P{sgn(vr) = sgn(ﬁ(T1 )= sgn(ﬂ(l))}

>1 — c3](qnsn) " + {log(n)} " + exp(—nm /12) + exp(—nmy/12)],
where Br}l) = S}% 1%}”, and also recall that v is defined in Lemma 2.

Proof of Lemma 11: First of all, we denote the two index sets S; and S; as
S ={k:e TTf VT > 0}, ={k: ekET% I/T < 0}.

By definition, we have S USy = {1,...,¢,S,}. Moreover, by using Lemma 23 and condi-

tions (a)—(c), it can be shown that there exist universal constants ¢3 > 0 and ¢4 > 0 such

that

P A9 25070 = A
keEST

— calgusn/n + {log(gusa log n) /n}! /2] - AR 2R g
o 03{10g(Qn3n 10gn)/n}1/2 {y(l), —1 (1)}1/2}]

>1 — cy4[{log(n)} ' + exp(—nm /12) + exp(—nmy/12)]. (90)
For the term V(l)lzg,,:)p 1V§p1 ), conditions (b) and (c) entail that
y(Tl) Egp% lyg) ~ log{(pn — qn)snlogn}/(nA2) — 0o, as n — oo.
Together with (90), there exist positive universal constants cs, ¢g and ¢; such that
P[ () {250 > el A5

keS:

— caflog{(pn — gn)salog n}/ (nA2)]/*{l0g(gusn log ) /n} 12}

>1 — ¢r[{log(n)} ! 4 exp(—nm /12) + exp(—nmy/12)]. (91)

47



By choosing K3 > ¢g/cs in condition (d), (91) together with condition (d) further implies

that

P[ ﬂ {e;A(TI)I/QS;% D (1) > 0}] > 1 — cr[{log(n)}* + exp(—nm /12) + exp(—nmy/12)].
keS

Likewise, it can be deduced that there exists a universal constant cg > 0 such that

P[ ﬂ { A 1/2STT) D (1 < 0}] > 1 — cg[{log(n)} " + exp(—nm; /12) + exp(—nmy/12)].

Putting the above two inequalities together implies that there exists a universal constant

cg > 0 such that
P{sgn(Bp’) = sen(By))} > 1~ col{log(m)} ™ + exp(—nm /12) + exp(—nmz/12)].  (92)
Moreover, it can be recalled from Lemma 2 that the quantity v7 can be formulated as
or =08y oy = NSy A sen(By),
where
) ={mnan! (n — 2) 7 H1+ A0 STl%_ AP sgn(py))}
1+ {fanan ™ (n = 27 R SR o]

To this end, by combining conditions (a)—(c) with Lemma 10, it can be deduced that there

exists a universal constant c¢;p > 0 such that with probability at least 1 — c1o[(gnsn) ™! +

{log(n)} ! + exp(—nm /12) + exp(—nmy/12)],

Aot SOTTAR 2sen(BY)) = AuA) ST AR sgn (BY) {1 + o(1)} + o(1).

Similarly, by combining conditions (a)—(c) with Lemma 4, it can be deduced that there
exists a universal constant ¢;; > 0 such that with probability at least 1 — ¢y [{log(n)}~* +

exp(—nmy/12) + exp(—nmy /12)],
(1) o)1 (1 1) «(1)-1 (1
v Spr o) = e S {1+ o(1)
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According to the above three inequalities and Lemma 3, it can be concluded that there exist
universal constants c;o > 0 and ¢13 > 0 such that with probability at least 1 —012[(qn8n)_1 +

{log(n)} ! + exp(—nm /12) + exp(—nm/12)],

9 Zewmma {1+ A Sp AR sen (8 HL + mmary) S0y vy}

For the term Anyg),Egpl)_lAg})l/ngn(ﬁgpl)), one has

v Spp AP Psen(877) < Aa{wp ST Y
_ ’—(1)—
{sem(37) ) APy AR P (BN S An{ansury Sy v}
< [ansnlog{(pn — gn)snlogn} /)" < o(1), (93)
where the second and the third inequalities are based on (b) and (c), and the last inequality
follows from (a). Piecing the above two inequalities together yields that there exist universal

constants c¢y4 > 0 and c;5 > 0 such that with probability at least 1 — ci4[(gnsn) ™! +

{log(n)}~! + exp(—nm/12) + exp(—nmy/12)],
D > (A B0

Together with (91) and (92), it can be deduced that there exist universal constants cyg, ¢17, ¢15 >

0 such that

P (PS> il B ) AP
keSt

~ cillog{(pn — g2} logn} (D] {log(gsi logm) /)2 )]

>1 — c16[(gnsn) ™" + {log(n)} ' + exp(—nm /12) + exp(—nm2/12)].

In addition, utilizing Lemma 24 and conditions (a)—(c), it can also be justified that there
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exist universal constants ¢;g > 0 and ¢y > 0 such that

Pl ) { Al A2 ST AR g (B)] < Al A PR E A s ()
keSy

+ €100 (a5 /1 + {l0g(gnsn log n)/m}!/2] - e A * Sy A Psen (1)
+ 19Mn {4050 108(4n5n) /0}'? + {gnsn log log(n)/n}l/Q]}]

>1 — cp0[(gnsn) ™ + {log(n)} ™" + exp(—nm /12) + exp(—nmy/12)].

Based on the above two inequalities, it is seen that there exist positive universal constants
Co1, C29 and Ca3 that

P ) {20 > el st A0y
keSy

(e AP0 coollog{ (pn — gn)sn log n}/(nA2)] Y2 {log(gns, log n) /n}'/?

— cnllog{(pn — qu)snlogn}/(nA)] - AR 800 A 2sgn(51)))
— conllog{ (pn — ) snlog /(1)) [{usu 108(an50)/m} V2 + {gusa log log(n) /n} /%)) }

>1 = e33[(nsn) ™" + {log(n)} " + exp(—nm1/12) + exp(—nm2/12)].

By choosing K3 > ¢99 in condition (d), it follows from condition (d) and the above inequality
that
P[ m {e;Ag)l/QﬁT > OH > 1 — co3[(qnsn) " + {log(n)} " + exp(—nm; /12) + exp(—nma/12)].
keS:
Similar reasoning leads to the result that there exists a universal constants coy > 0 such
that
rADL/25 o -1 -1 . .
P ﬂ exAp 7 T0r < 0| 21— cal(gnsn) + {log(n)} ™ + exp(—nm/12) + exp(—nm2/12)].
kES2

Based on (92) and the above two inequalities, there exists a universal constant co; > 0 such
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that

P{sgn(ir) = sgn(By) = sgn(By))}

>1 — c25((gnsn) ™" + {log(n)} ' + exp(—nm /12) + exp(—nm2/12)],
which concludes the proof. O]

Lemma 12. Let a,, and b, be any two sequences of constants such that a, — oo and b, — 0.
Also let X,, and U, be any two sequences of random variables such that X,, = 0,(1) and

U, = 0y(1). Assume that we have the following conditions (a)—-(b):
(a) an X, = 0,(1).
(b) ax*(U, —by) = 0,(1).
Then we have the following property:
O(—ay*(14 X,) + Un) /®(—a,/* + b,) & 1.
Proof of Lemma 12: The proof is analogous to that of Lemma 1 in Shao et al. (2011). O
Lemma 13. Consider a pair A, B of p X p matrices, assume the following condition (a):
(a) Amin(A— B) > 0.
Then we have the following property:
Amin(4) 2 Amin(B), Amax(A) 2 Amax(B).

Proof of Lemma 15 First of all, we have

)\min(A) 2 )\min(A - B) + Amin(-B) Z Amin(B)7
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where the last inequality is by condition (a). Similarly, we also have
Amax(lél) Z Amin(A - B) + )\max(B) 2 )\maX(B)7
where the last inequality is by condition (a) as well, which completes the proof. O]

Lemma 14. For any p X p square matriz A, partitioned as

A Ag
A p—

Ag1 A
where A1y is a k X k matrix for some positive integer k < p, assume we have the following

condition (a):
(a) ¢1 < Anin(A) < Amax(A) < o, for some universal constants 0 < ¢; < ¢3.
Then we have the following properties:

1) e1 < Amin(A11 — A1 Az Agp) < Amax (A1 — A1 As) Agy) < ¢,

c1 < Amin(Agz — Ag AT A1z) < Aax(Aga — Ag1 AT Ap) < ey

2) AmaX(A12A521A21) S )\max<A11) S Ca,
Amax (A1 A7 Ar2) < Amax(Asz) < e,
Amin(A12455 A21) < Amin(A11),

Amin (421477 A12) < Amin(A22).
Proof of Lemma 14: Based on condition (a), we have
63" < Amin(A7) < Amax (A7) < e,

where A~! can be expressed as

= (A1 — A Ayy Agy) ™! — A Ara(Agy — Ag A Apy) ™!

—A2_21A21(A11 - A12A2_21A21)_1 (Aga — A21A1_11A12)_1
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Hence, we have

02—1 < Amin((A11 — A12A2_21A21)_1) < Amax((A11 — A12A2_21A21)_1) < 01_1,

o' < Amin((Agg — Ag1 AT A1) ™) < Ao (Age — At A AR < efl
which implies that

c1 < Amin(A11 — A1 A% As1) < Apax (A1 — A1 Ay Agp) < e,

c1 < Amin(Agz — Ag AT Arg) < Apax (Azg — A9 AT App) < oo,

finishing the proof of property 1). Finally, by combining property 1) with Lemma 13, the

assertion in property 2) follows immediately, which completes the proof. O

Lemma 15. Let {X,..., X, m} be a sample of random vectors in RP. Denote

n

Si=Y (X;—X)(X;—X1)/(n—1), X;= in/n,

=1
n—+m B B B n+m
Sp= Y (Xi=Xo)(X; = Xp)/(m—1), Xo= > Xi/m,
t=n+1 i=n+1
n+m n—+m

S=> (Xi—-X)(X;=X)/(n+m—2), X=> X;/(n+m),
im1 im1
Spoot = {(n = 1)S1 + (m = 1)S2}/(n + m — 2).
Then we have the following property:
S = Spoor + nm(n+m) Hn+m—2)"HX; — Xo)(X) — Xy).

Proof of Lemma 15: The term S can be decomposed as S = I; + I, with

n

I = Z(XZ- — X)(X; = X)/(n+m —2),

n+m

L= (X;—X)(X;—X)/(n+m-2).

i=n+1
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For the term I;, one has
Li=m—-1)n+m-=2)7"5 +nm*(n+m) 2(n+m—2)""(X; — Xo)(X; — X»).
By symmetry, we also have
L=(m—=1)(n+m-—2)"S+mn*(n+m)*(n+m—2)""(X; — X2)(X1 — Xo)".

Based on the above results, we conclude that S = Spp +nm(n+m)~ ' (n+m—2)"1(X; —

X5)(X; — X3)', which finishes the proof. O

Lemma 16. Recall thatT ={1,...,q,}. Assume the matriz Egpl% 15 invertible and consider

the following optimization problem:

0 [y (s ()0
o, 1in [—w’T (S5 + mmavy vy

)wT — 7T17T2U)/TV7(}) + )\n(A(Tl)l/QwT)’sgn(ﬁél))] ,

where wy = (w},...,w, ) with sub-vectors w; = (wj1,...,wj,) € R™. Let wr be the
solution of the optimization problem where wr = (WY,...,w, )" with sub-vectors w; =
(Wj1, ..., Wjs,) € R, then we have:

r =mms(L+ Ml AF" B ) (1 mimaBy S ) 8RSy AR sgn(B7)).
Proof of Lemma 10: First of all, based on first order condition, one has
(E(Tl% + 7T17T21/§«1)I/§11)/)U~}T = 7T17T2V§~1) — AnAg})l/ngn( (Tl)) (94)

Moreover, according to Sherman-Morrison-Woodbury formula, we have

N —1 _ _ _ _ ’ _ _ ’ _
(S +mmrp vp )T =2 = S ey o S ) T s

:Zg}%_l — mme(l 4+ Wlﬂgyi(pl)lxg}%_lVgpl))_lEg}%_lygpl)ug),Egpl%_l.
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Finally, by combining the above two equations, we have

wp = (S0 + mmi v

) {7r T VT —A A(1)1/2sgn( (1))}

=" = mm(1+ mmrp D0 ) T S0
{7r17r21/T — A\ A 1/2sgn(5;1))}

={=0 " = mm(1+ mmeBl B A v S
{7r17r21/§ — A A 1>1/2sgn(ﬁ§1))}

(1)

={mm¥ipy vy — (L mmap ) S067)) 7 B vy ST v

RS A 2 sgn(BY)) — mima (1 + mime B S0 80 BN A2 88113

=mima(1+ Aa[AP 2B ) (1 + mimapy) B0 80) B — X DR A sgn (1)),
which finishes the proof. O

Lemma 17. Consider the following optimization problem:

: 1 1 1), (1) 1 = (1)1/2
,Mnin bw’(E( )+ mmar WD) w — v + A, z; 1A; wj||1} : (95)
‘7:
where w = (wy, ..., w, )" with vectors w; = (wj1,. .., w;,) € R*™. Assume we have the

following conditions (a)—(c):
(a) E(Tl% is invertible.

(b) mima(1 4+ XA 2B ) (1 4 mime B0 S50.800) <mmmmw]k 1Bi) >

€T k<sn

1)1/2 1)—1 1)1/2 1
A |AP 2T A 25 n(80) | oo -

(c) HA “iy Z(Tl%f Al )1/2sgn(ﬁ(Tl))|\oo < 1—7, for a universal constant v € (0, 1].
Denote W as 0 = (W, )" = (W, ) with Wy = 0 € RPn=9)5n - and iy = b where by
i1s defined in Lemma 16. Then we have the following properties:

1) w is a global minimum of (95).
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2) sgn(w) = sgn(BY).

Proof of Lemma 17 First of all, based on (a), (b) and the definition of w, it is trivial
to deduce that sgn(w) = sgn(BW), finishing the proof of 2). Moreover, according to the

optimization theory, we know that w is a global minimum of (95) if and only if

(E(Tl% + 7T17T2V§wl)l/r_§11)l)’lz}T = 7T17T2VT -\ A 1/2sgn(5¥)), (96)
||A§\1,)_1/2{ (ZS@T + 7T17T2U](\})V§«1)/>U~JT — 7T17T21/J(\}) } loo < A, (97)

where (96) and (97) serve as the Karush-Kuhn-Tucker conditions. It is apparent that (96)

follows from (94). In addition, observe that

||A§\})_1/2{ (25\1,2,1 + 7T17T2V](\})l/§w) )wT — 7T17T2VN)}||OO
:||AS§)_1/2{(Z§\1,2[ T 22( E( )- 1%}1)1/;) )wT —7r17r2§] Z(Tl% ! }||OO

=AY PEG (T + mmBY v Vi — 1B oo,

where the first and the second equalities follow from (10) in the main paper. For the term

([ + 7T17r2ﬁT VT) )wT, we have
(I + Wlﬂgﬁg)Vj(})/)wT
=mma(1+ Al [AD 2801085 — Ay AR Psen(B7)
— 7r17r2)\n5:(p1)1/§,1)/Egpl%flA(Tl)l/ngn(ﬁz(,}))
=mimBl) — A AL sen (81,

where the first equality is by Lemma 16. To this end, based on the above two equations,

we deduce that

||A5\1,)_1/2{ (2% + 7T17T2V](V)l/§«) )wT — 7r17r21/N }||C>O

:)\n”Ag\lf)_l/ng\lf)TE(l) 1A(1)1/2 gn(ﬁ:(rl))noo <\,

56



where the last inequality is based on condition (c). According to the above results, it can

be concluded that w is a global minimum of (95), which completes the proof. O]
Lemma 18. For any o € (e™/1%° 1/100), define the event My, (o) as
Mn(0) ={27(gusn/n) — 8{log(e™) /n}/2 < (o4 S5 ofD) /(o4 0 MoAY) -1
< 2(gusa/n) + 16{log(¢™)/n}'? .
Assume the condition (a):
(a) qnsn = o(n).
Then we have the following property:
P{My,(0)} > 1 — 20— 2exp(—nm /12) — 2exp(—nmy/12), Vo € (e7™/1% 1/100).

Proof of Lemma 18: First of all, based on condition (a) and the definition, it is clear to

observe that conditional on any nonempty set {Y; = y;}7, N M,,, we have
(n = 2)SpI{Yi = yi}iey 0 M, ~ Wishart(n — 2|55, (98)

where the degree of freedom of the Wishart distribution is equal to n — 2. Moreover, it is
trivial to verify that conditional on {Y; = y;}"; N M,, one has the fact that 19;1)\{3/} =
i}, N M, is independent of (n — 2)SW{Y; = y:}7, N M,,. Together with (98), condi-
tion (a) and Theorem 3.2.12 in Muirhead (1982), we reach a conclusion that
(n—=2) (05 S 0 )0 Spr 0 ) Y = e Ho OV Mo~ X,

Together with (A.2) and (A.3) in Johnstone and Lu (2009), we conclude that for any
t€[0,1/2),

PlI(n = gusn = )7 (n = 2) (05 Sy 00 )0 S5y o)) =1

>tHY: =y} N /\/ln] < 2exp{—3(n — qus, — 1)t*/16}.
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For any o € (e7™1%,1/100), we plug t = {16(n — ¢,5, — 1) *log(o~")/3}'/? into the above

inequality to obtain

_ ~(1) 1)—1 ~(1 ~(1) 1)—1 ~(1)\—
P[|(n = gusn — 1)L — 2) (00 S5 o0 (08 S5 o) — 1) >

{16(n — gusn — 1) M log(o™ ") /312 {Y; = yi}io, N M,] < 20,
which implies that

_ ~(1) 1)—1 ~(1 ~(1) 1)—1 ~(1)\—
P[|(n — gusn — 1) (n — 2) (03 S8 o) (08 S o) T - 1 <

{16(n — gusn — 1) " log(o™) 3} 2 {Yi = yibi N M.] 21— 20 (99)
Therefore, it can be seen that

_ ~(1) 1)—1 ~(1 ~(1) 1)—1 ~(1)\—
P[|(n = gusn — D)7 (n — 2) (08 SE T o) 08 ST )T - 1) <
{16(n — gus, — 1) log(o™)/3}?]

_ ~(1) 1)—1 ~(1 ~(1) 1)—1 ~(1)\—
> Y P[l(n— quse — 17— 2) (08 SR 00 (07 S8 )
{yi}?:leMn

— 1| < {16(n — gusn — 1) log(o™ ") /3}2{Yi = widin] - P[{Y: =y} ]

>(1-20) Y PHYi=y}r]=(0-20)PM,)
{yi}j_ EMn

>1 — 20 —2exp(—nm /12) — 2exp(—nmy/12), (100)

where the second inequality is by (99), and the last inequality follows from Lemma 3. To this

end, based on condition (a), it is straightforward to verify that for any o € (e~/1%°,1/100),

1n(0) € Min(0), (101)

in which M}, (0) = {|(n — gusn — 1)7"(n — 2@ S5 o) 05 SR o) — 1) <
{16(n — gns, — 1)~ log(o™")/3}"/?}. Finally, the assertion follows immediately from (100)

and (101). O
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Lemma 19. For any o € (e7/'%°,1/100), define the event My, (o) as
Man(e) = { = (4007 75") "2 [1og(0™") fr + {4 =41y 1A Tog(0™) /n} ]
< 19 2(1) ' ) 1/}1)/2(;%_11/}1) < (4007 by 1)Y/2
[@usn/n +log(a™) /n + {4V S v 0g (07 /2] }.
Then we have the following property:

P{May,(0)} > 1 20— 2exp(—nm/12) — 2exp(—nmy/12), Vo € (e7™/1%° 1/100).
Proof of Lemma 19. First of all, it is apparent that conditional on any nonempty set
{Y; =y} N M,,, we have

VT ’{Y = Yitimg N My ~ N(V’Er)amﬁ Ny 12?%)
which entails that
ningn 11/T 2(1) D |{Y =yt NM, XgnSn(nann’IVél)/E(Tl%_lyg)), (102)

where x? . (ninan 1V}1)/Z(T% 1V;1)) means the noncentral chi-square distribution with ¢,s,

degrees of freedom, whose noncentrality parameter has the form ninyn =" (1)/E(T:)F ! (1) By

combining (102) with (8.34) of Lemma 8.1 in Birge (2001), it can be deduced that for any

t >0,
PAY S 04D — AV SED > (0 03 ) (s /) + (g )
(2t/n) + 2(n7 '3 1) {(gusa/n + 2naman =20 DRV (t/n) 12
(¥ = 5l 0 M| < exp(—1).
By plugging ¢ = log(p™!) into the above inequality, we obtain
PlAY S — VS0 < (07030 (g /) + 25 g ')
{log(g™")/n} +2(n7" 15 02) (gusn/n + 2ninan~2ug L2,

{log(e™") /2 [{¥; =y} T M| 21—
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Moreover, conditional on {Y; = y;}7, N M,,, we also note that

(ny'ny 'n®) (gnsa/n) + 2(ny 'ny 'n?){log(o™") /n}
+ Q(nfan 1 )(qnsn/n + 2nynon” yi(p) E(l) 'y )1/2{log( _1)/n}1/2

< (4007, 'y ) Y2 [gusn/n + log(o~ ) /n + {8 i log (07 Y) /n} 2],

according to the definition of M,, in Lemma 3. Therefore, based on the above two inequal-

ities, we have

PLoRY S o) — S0 < (4007 75 1) 2 g/ + Tog(e ™)/

+ ) s log (07 h) /)2

=gl M 21-0 (103)

Analogously, based on (102) and (8.35) of Lemma 8.1 in Birge (2001), it is obvious that

for any ¢t > 0,

LAY S oA — oSBT < (0705 0% (g ) — 20 g0,
(oo + 2mmam 2 SO ) 2| = b, M, )

< exp(—t).
We then substitute ¢t = log(o™!) into the above inequality to obtain

P S0 o) — v S0 > (07 g 'n?) (gasa/n) — 2(ny iy 'n?)-

(qusn/n + 2mman 20 SO )2 {log (07 /m} 2 (Y = pibi M| 21— 0
Likewise, we note that conditional on {Y; = y;}I'.; N M,,

(07 '3 '0%) (gnsn /1) = 2(n7 05" 0%) (Gusn/n + 2ninan 2wy S0 WD) 2 {log (07) /)2

. (4007r1_17r2_1)1/2[log(g_l)/n+ {1/}1)' 1T— VT)10g< _1)/n}1/2}.
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We then derive from the above two inequalities that
PLoRY Sy o) — o S0 > — (400w ng )2 log(o7)
+ S D100 i} (Y = wbL ML b 21—,
Together with (103), we arrive at
P[Mon(0){Yi = i}y N M, ] > 11— 20. (104)
Finally, we have

P{Ma,(0)} 2P{Mz,(0) "M} = > P[Ma({Vi = wi}iy] - P{Yi = wi}iy]
{vi}i eMy

>(1-20) Y P[{Yi=ul}] =(1-20)P(M,)
{yi}j_ EMn

>1—20 — 2exp(—nm /12) — 2exp(—nmy/12),

where the second inequality is by (104), and the last inequality follows from Lemma 3.

This finishes the proof. O

Lemma 20. For any o € (e™/1%° 1/100), define the event My, (o) as

dnSn
Mun(o) = ﬂ {|€§A(Tl)1/22$}_119§1) _ e;Ag})l/ZEg%—lyé})l < (Srimpt)2
j=1

[ A2 u A e 2 log (qusno ) fn} 2},

where {e; : j < qu8,} denotes the standard basis for Ri*~. Then we have the following

property:
P{Muy,(0)} > 1 — 20— 2exp(—nm /12) — 2exp(—nmy/12), Vo € (e 1/100).

Proof of Lemma 20: First of all, we note that conditional on any nonempty {Y; = y;}7, N
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M,

ADVRE 0 6y a5 g, o NADVEEI 0 oty D120 D12

(105)
Moreover, it can be observed that

dnSn

P[Mun(0)|{Y: = yitis, N M) ZP[MW(Q)HY Yitiy N My = (gnsn — 1),

where the events My,;(0 {‘ ’A(l)l/2 1D (1) ’.Ag})l/QZ(TI% ! ’ G
{e;Agpl)lﬂEgpl%_lAg)l/zej}1/2{10g(qnsng_1)/n}1/2} for all j < g,s,. Under (105), the con-
centration inequality entails that for all 7 < ¢,s,
P[Munj(0){Y: = yi}iey N My ] >1 = 2exp{—log(gnsno™")} = 1 — 2¢, "5, 0.
Putting the above two inequalities together leads to
P[Muy(0){Y; = yi}imy N My] > 1—20. (106)

Therefore, we have

P{Mun(0)} > P{Mun(0) N My}

>(1-20) Y Pl{Yi=wl}r]=(1-20)PM,)

{vi }?:1 EMn

>1— 20— 2exp(—nm /12) — 2exp(—nmy/12),

where the second inequality is by (106), and the last inequality follows from Lemma 3.
This finishes the proof. O
Lemma 21. For any o € (e7™/1% 1/100), define the event Ms, (o) as

M (0) :{ P SN2 50 0 1y (D12

59”( T

1
v Srp Ay’ sgn(By Y ())|§

max

(87r‘1 —1)1/2)\1/2 (A )1/22(1) 1A(1 1/2){qnsnlog(g_l)/n}l/Q}.

Then we have the following property:
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P{Ms,(0)} > 1— 20— 2exp(—nm /12) — 2exp(—nmy/12), Vo € (e 1/100).

Proof of Lemma 21: First of all, we know that conditional on any nonempty {Y; = y;}.1 N

M,

2O AW 250 (BI|{Y; =y} A M,

NN(V(Tl),Z(Tl%_lA(Tl)l/ngn(B(Tl)), nflnz_ln{sgn(ﬂ(Tl))'A(Tl)1/22%%_1A(T1)1/2sgn(5§}))}).
Together with the concentration inequality, we conclude that for any ¢ > 0

P{

~(1 1 1)—1, (1)1/2 1 n
(05 = vy Sy AP Psen(87) | < H{Y; = wiYie N M)

>1—2exp [ — 8’17T17r2{qnsn/\max(Ag})l/2Z(TI%_1A(Tl)1/2)}’1nt2].

Plugging ¢ = (877 'my )2 AU (AW2R M AMY2) 00 s log(07) /n} /2 into the above in-

equality yields
P[Ms,(0)|{Yi = yi}iy " M, ] > 1 - 20. (107)
Finally, we have

>(1-20) Y P{Yi=wl}]=(1-20PM,)
{vitio eMy

>1 — 20— 2exp(—nm /12) — 2exp(—nmy/12),

where the second inequality is by (107), and the last inequality follows from Lemma 3.

This completes the proof. O
Lemma 22. Assume the following condition (a):
(a) GnSn = o0(n).

Then there exists universal constants ¢; > 0 and co > 0 such that:
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1) P(max‘ e} A I/QE(TI%_IA(TI)I/2 i)/ (€] A 1/2ST% A(Tl)1/2ej) —-1| <

J<qnsn

¢1[qnsn/n+{log(g,sn log n)/n}1/2]> > 1—cy [{log(n)} ' +exp(—nm /12)+exp(—nmy /12)].

2) P<max} e} A 1/QSTT) A(Tl)l/er)/(e

J<qnsn

1/2 1,4 (1)1/2
AP AR ) 1

J

¢1 [qnsn/n+{log(g,s, log n)/n}l/z]) > 1—c;[{log(n)} " +exp(—nm /12)+exp(—nmy /12)].

3) P(|{sgn(87y AP 2 u AN 2 sgn(B)} Lson(B7 Y APV S0 A 2 sgn(8))
— 1] < eifgnsn/n + {loglog(n)/n}m]) > 1 - eo[{log(n)}" + exp(—nm/12) +

exp(—nm/12)].

4) P([{som(B Y APV S0 AP 2 gn( B0}/ sgn( B0 Y A2 A2 sgn( 1))
1] < fgusn/n + {loglog(m)/n}?]) = 1 - ca{log(m)} ! + exp(—nm/12) +
exp(—nm/12)].

Recall that {e; : j < gnSn} denotes the standard basis for R,

Proof of Lemma 22: First of all, according to (98), condition (a) and Theorem 3.2.12 in

Muirhead (1982), we know that conditional on any nonempty {Y; = y;}!; N M,,, and for

every j < @nSn,

)1/2(1)—1 4 (1)1/2 1)1/2 o(1)—1 4 (1)1/2
(n = 2)(GAF 28 A e ) (AR 28y T AR o)) Y = i M~ X g

J

Together with (A.2) and (A.3) in Johnstone and Lu (2009), it can be deduced that for any

€ [0,1/2) and for every j < gnsn,

_ 1/2 1)1/2 1)1/2 1)—1 1)1/2 _
P[|(n — gusn — 1)7Hn — 2) (e, AP 2R0 T AN 2e ) (L A2 S0 T A 2e )

— 1| > tH{Y; = v} N M,] < 2exp{=3(n — gus, — 1)t*/16},
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which together with condition (a) implies that

1)1/2w(1)—1, (1)1/2 1)1/2 o(1)—1, (1)1/2 —
PlI(efAF 285y AR e (A0 28y AR ey) T — 1)
S 4Qn3n/n + 2t|{Y; =Y ?:1 N Mn] Z 11— 2€Xp{—3(71 — GnSn — 1)t2/16}

>1 — 2exp(—nt?/16).
Together with the union bound inequality, it can be observed that for any ¢ € [0,1/2),

Pl max (A0 P8 AP ) (A S A e T - 1]

71<qnsn J

<Agpsp/n+2t{Y; = yitin, N ./\/ln} > 1 — 2q,5, exp(—nt?/16).
Subsequently, we substitute ¢t = {1610og(g,s, logn)/n}? into the above inequality to obtain

1)1/2(1)—1 5 (1)1/2 D1/2 o(1)=1 4 (1)1/2 \—
Pl max [(eA7" 5 A e (€A 255y T A e T 1)

< 4Agpsn/n + 8{log(gnsn logn) /n}' 2 {Y; = y;}i, N Mn}

>1— 2{log(n)} . (108)
It then follows that

1)1/2 1)—1 1)1/2 1)1/2 ~(1)—1 1)1/2
P(max (AP S 0T AP ) /(e APV ST AR Pe) -1

J<gnsn
< 8[gusn/n + {108 (gusn logn) /n} /7] )

1)1/2(1)—1 4 (1)1/2 1)1/2 o(1)—1 4 (1)1/2
> Y P ALY ) AP ST A )

{yi}_ EMn J<qnsn
— 1] < 8[gusn/n + {log(ansalog )/} 2] | (i =y} ) - PV = s}

>[1—2{log(m)} '] D> PH{Yi=y}ini] = [1 —2{log(n)} "]P(M.,)

{yi}?:1€Mn

>1 —2[{log(n)} " + exp(—nm/12) + exp(—nm/12)],

where the second inequality is by (108), and the last inequality follows from Lemma 3.

Hence, property 1) is justified by the above inequality. To prove property 2), notice that
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under the event { max |(e;A(T”l/ZE‘Tl%‘lAEﬁ)”er)/

J<qnsn

(e;-Agpl)lﬂSé}%_lAg})l/er) — 1| < 8[gnsn/n + {log(g,sn logn) /n}/?] }, it is straightforward

to verify that

1)1/2 o(1)—1 (1)1/2 1)1/2(1)—1 4 (1)1/2
s (AR5 A AV AP )

J<qnsn
1)1/2 -1, (1)1/2 D1/2 x(1)—1 4 (1)1/2
<2 e [ (A S A (A S AL ) 1|

J<Gnsn

Putting the above two inequalities together leads to

P [ (€A A 2 (AL PG AP ey) 1] <

J<qnsn ’
16[gu50/7 + {log(gnsn log ) fn}/])

>1 —2[{log(n)} ™" + exp(—nm /12) + exp(—nmy/12)],

which completes the proof of property 2). Similar reasoning leads to properties 3) to 4),

finishing the proof of the Lemma. [l
Lemma 23. Assume the following condition (a):
(a) GnSn = o(n).

Then there exist universal constants ¢; > 0 and cg > 0 such that:

dnSn
P {lea 2571k — A2 D] < ) (gusa/n + {10g(gu5 log m) /n} 2]
j=1

e AR [+ ol SO Y + (Y S Tog log(n) /n} )
- {10g(qusn log n) /n}'/2 - {e AL 2R AR ey 1)

>1 — ca[{log(n)} ™" + exp(—nmi/12) + exp(—nmy/12)].
Proof of Lemma 25 First of all, we note that for every 5 < ¢,s,,
e AD2ST 00 — ARV D) < Qo+ Oy, (109)
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where

ng _ yegAg})l/QZg}% 11/ o /A(l 1/22§1T 1 (1)|

1)1/2 1.(1 1)1/2w(1)—1 (1
ARSI AR

ng =

Invoking Lemma 20, it can be deduced that there exist universal constants ¢; > 0 and

¢y > 0 such that

dnSn

P[ ﬂ {Qlj < 1{log(qnsn log n)/n}1/2{e}Agpl)lmE(Tl%_lA(Tl)l/zej}1/2}]
j=1
>1 — ca[{log(n)} " + exp(—nmi/12) + exp(—nma/12)]. (110)
Regarding the term 2y, it can be seen that
o LA R AD e ) - T (14 Tyy) + (Qu; + [ A 200 ) - Ty,
where

12 1)1/2 1)—1 1)1/2 _
={/ AV ST DI e A 2SR T AR ey
12 11 12 1)1/2 _
— AT S AR PR T A e
12 1 1 12 1)1/2 1 1 1)1/2 _
Moy = {07 S Ay e Hepa ISl a5 e}t = 1],

For the term Iy, it follows from Lemma 22 that there exist universal constants c3 > 0 and

¢4 > 0 such that

P( max Iy; < cslgusn/n + {log(gus, logn) /n}!/?))

J<qnsn

>1 — cq[{log(n)} " + exp(—nm; /12) + exp(—nm2/12)].

To this end, based on the above three inequalities, we conclude that there exist universal
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constants c5 > 0 and ¢g > 0 such that

dnSn
Pl {9 < e (Tl {AP2S 0 AP 2es} + [qusa/n + {10g(ansa log n) /n}
Jj=1

-{log(qnsn log n)/n}l/2 . {e;Ag})l/QZ(Tl%_lA(Tl)l/zej}1/2 + [gnsn/n + {log(gns, logn) /n}'/?]

AGAPEE V) 21— e [{log(m)} ! + exp(—nm /12) + exp(—nms/12)].
(111)

To bound the term II;;, for every j < g,s,, we define a 2 x g,s, random matrix Mj as
[A(l 1/2 ~ ] c ]R2><(1n$n

Elementary algebra shows that for every j < ¢,s,,

A2 01 (D1/2 (1261, ]
N1y A "Srr ArTes Ar TS c R2x2
iPTT i ;
GADVISI N s,
) ) e ADVIEDIA D2, g D251
NSO = SR eR¥2. (112)
¢ ADVES oy YO

Moreover, since v is independent of Sf(pl%, it can be shown that conditional on any nonempty

{Yi =y}, n M, 0 {dr}, and for every j < ¢,sp,

(n = 2) (VS VY Y = g}y 0 Mo 1 {ip} ~ Wishart(n — gus,| (V507 517) ),
(113)

using Theorem 3.2.11 in Muirhead (1982). To this end, by combining (112), (113) with

Theorem 3(d) in Bodnar and Okhrin (2008), it is straightforward to reach a conclusion

that for every j < ¢, S,
{(n = qusn — 3) /5 } PTG Y: = gidisy DML 0 {or} ~ t(n = gus, — 3),

where t(n — ¢, s, — 3) represents the student t-distribution with n— ¢, s, —3 degrees of free-

-1, 1)1/2 1/2 (1)1/2 1. )1/2
dom, and ; = {U TT Ti{e IA()/ET:)F A(T)/ } {eA)/ZTT }{eA W T:)F
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Together with Lemma 20 in Kolar and Liu (2015), it is clear that there exist universal con-

stants c; > 0 and cg > 0 such that for every j < g,s,, and for any t; > 0,

P[] = t;[{Y; = yi}iey N M N {or}] < crexp{—cs(n — gns, — 3)59-_175?}

<crexp [ — 27 an{ TT_ VT} 1{ /A(l 2 T:)F Agfl)l/er}t?L

which further implies that

Pl (|| < 63{Y: = widimy N My N {or}]
dnSn
ZI—ZC7exp[ 2 egn{ih (1) 15 r} He ’A )1/2 T% A(1)1/2 ]}tQ}

=1
By plugging t; = co{ 7} TT ' }1/2{6 A 1)1/225% Agpl)l/er}*lﬂ{log(qnsn logn)/n}'/? with
co = (2cg )2 into the above inequality, it can be obtained that

dnSn

Pl () {1yl < eo{or iy on AP S AR e} log(gus, log m) /m} /2
j=1
b0 = widis 0 M 0 i 2 1= erflog(m)} (114)

It then follows that

dnSn

Pl {IT] < cofor D0 or) LA R0 AR 2}~ (log gusn log )/} }

7j=1

qnSn
> Z Z P[ ﬂ {|H1]| < CQ{VT TT 1A }1/2{ A(1)1/2 1) 1A(1)1/2 j}_l/Q

(i} €M DreEMy  j=1

{log(gusnlogn)/m}/? b {Y: = yibiy N {or}] - PL{Y: = wbiy 0 {or)]

>[1—crflogm)} - > > PHYi=wt n{ir}] = [1— cr{log(n)} "] - P(M,)

{yi}"_eEMp DTEMy

>1 — c1o[{log(n)} " + exp(—nmi /12) + exp(—nma/12)],

for some universal constant ¢;p > 0, where the second inequality is by (114). Together with
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Lemma 19, it is seen that there exist universal constants ¢;; > 0 and ¢15 > 0 such that,

dnSn
Pl {Imy] < en{e AP S0 AR 26,112 (log(gusy log ) /n} 2
j=1

< (qnsn/n +1oglog(n)/n + [1 + gusn/n + {loglog(n) /n}"? {0
+ {loglog(m)/m} A )12y 2]

>1 — c12[{log(n)} ! + exp(—nmi /12) + exp(—nm/12)].

Together with (111), it is clear that there exist universal constants c¢;3 > 0 and ¢4 > 0

such that,
ne 1)1/2 1 (1
PN {2 < crallansa/n+ {10g(ansn log m) /n}' ) - | A 285 p?)
j=1

+ [gnsn/n + loglog(n)/n + V:(Fl) = T_ VT +{vr 2 T_ VT)log log(n)/n}"/?]'/?
- {l0g(ausalogn) /n} /2 - {el A PR A e 2 L)
>1 — c1a[{log(n)} ' + exp(—nmi /12) + exp(—nma/12)].

Together with (109) and (110), it is not difficult to verify that there exist universal constants

c15 > 0 and ¢ > 0 such that,

4nSn

PGS A ) < s+ st/

: |69A(T)1/22’EFT ' (1)| + 1+ V;) 2(1% 1VT + {VT TT Vé’l) log log(n )/n}1/2]1/2

- {10g(gnsn logn) /n}!7? - {63-/\%1)1/22%1%‘1/\?”/2@}1/2) }>

>1 — e [{log(n)} ! + exp(—nm /12) + exp(—nmy /12)],
which completes the proof. O

Lemma 24. Assume the following conditions (a)—(b):

(a) @252 10g(qnsn) = o(n).
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(b) c1 < Amin(A(T”‘l/ngf%A(T”‘”?) < )\max(A 1/22(1 Ay ()= 1/2) < ¢, for some universal

constants 0 < c; < cy.

Then there exist universal constants c3 > 0 and ¢4 > 0 such that:

dnSn
1/2 1)1/2 1 D1/2(1)—1 4 (1)1/2 1
P {1, A0S A2 gm0 — A AWV g5

j=1
<3 [{qnsn 108(Gnsn) /132 + {Gnsn log log(n)/n}l/ﬂ
+ cal AP 2sgn(B0)] - [gusn/n + {log(gusn log m) /n}/?] |

>1 — caf(gusn) ™ + {log(n)} " + exp(—nmi/12) + exp(—nm2/12)].
Proof of Lemma 24: First of all, we note that for every 5 < ¢,s,,
A" S AR Psan(8)) — AR P AR Pagn(B1)] <y + Q0 (115)
where

Oy _‘ /A(1)1/25(1) IA(1)1/2Sgn(B( ) ¢, A(1)1/2 (T% A( )1/2Sgn<6(1))|7

Qo; = S AV 2SO TTAR sgn(B)) — e, ARV2SETT AR 2sgn (0.
For the term €y, it is apparent to see that for every j < g,s,,
<ot (1 Thy) - [Ty |+ [eAF S AP Psen(57))] - Ty, (116)
where ¢; is defined in condition (b), and

1)1/2 1)—1 1)1/2 1)1/2 1)—1 1)1/2 _
I, =[{e, AP S0 AR e M e A P20 Aé) Pey -1,
12 1)1/2 1 12 1)1/2 _
={e/ ARSI TN Psgn (B0 He A2 ST T A Pe 3

1H1/2 1)—1 1)1/2 1 1)1/2 1)=1 1)1/2 _
— {ef AR ADY sgn(ﬁ;’»{e;A‘T) [y ADY2e 1

To bound the term II;;, invoking Lemma 22, it can be seen that there exist universal

constants ¢z > 0 and ¢; > 0 such that with probability at least 1 — c3[{log(n)}~! +
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exp(—nm/12) + exp(—nmy/12)],

ax II;; < cq[gnsn/n + {log(g,s, log n)/n}l/z]. (117)

J<qnsn

To bound the term II;, based on similar argument as in the proof of Lemma 23, it can be
shown that there exist universal constants c; > 0 and ¢ > 0 such that conditional on any

nonempty {Y; = y;}i; N M, and for any ¢ > 0,
P {|Tyy] < tH{Y: = witimy N M) > 1= c5qnsn exp{—cen(gnsn)t°}.

By setting ¢; = cg1/2 and plugging t = c7{¢ns, 10g(gns, logn)/n}'/? into the above inequal-

ity, it can be obtained that

P max |Ily;| < c7{gnsn10g(gnsn log n)/n}l/Q‘{Yi =y}, NM,] >1—cs{log(n)} .

J<qnsn

Together with Lemma 3, there exist universal constants cg > 0 and c9 > 0 such that with

probability at least 1 — cg[{log(n)} " + exp(—nm1/12) + exp(—nma/12)],

max Ily; < co{gnsn log(gns, log n)/n}1/2. (118)

J<qnsn

By combining (117), (118) with (116), it is seen that there exist universal constants ¢;o > 0

and c¢;; > 0 such that

dnSn
P[ ﬂ {Qlj < 10{qnsn l0g(qns, log n)/n}1/2 + 010\e;A(T1)1/2Z(Tl%flA(Tl)l/ngn(ﬁél))\
j=1

[gusn/n + {10g(gusn log ) fn} 2]}

>1 — e [{log(n)} ! + exp(—nm1 /12) + exp(—nmy/12)]. (119)
To bound the term 255, it can be verified that

1)—-1/2 % (1)1/2 1)1/2 1)—1 1)1/2
max Qo; <(gnsn) VAN TEADYZ L s - [AS2SET A,

jSQnSn
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Together with Lemma 5 and Lemma 8, it is seen that there exist universal constants

C12, c13 > 0 such that

P[ max Qo; < c1o{qnsn IOg(QnSn)/n}l/z]
J>qnSn

>1 — c13[(gnsn) " + exp(—nm1/12) + exp(—nma/12)].

Together with (115) and (119), the assertion holds trivially, which completes the proof. [
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