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This supplementary material provides some discussions and additional results of spatial

stationarity and Gaussian assumption in Section S.1 and S.2, some implementation issues

for the choices of truncation parameter and spatial lag in Section S.3, additional simulation

results in Section S.4, and some technical proofs for the propositions and lemmas in Section

S.5.

S.1 Issues about the Spatial Stationarity

S.1.1 Some extensions for non-stationary data

To provide theoretical justification of the test statistics based on the lag covariance, we

assume the spatial functional field X(sss, t) is second-order stationary, which actually contains

the following three aspects:

(i) first-order stationarity for the mean function: µ(sss, t) = µ(t),

(ii) second-order stationarity for the covariance function: C(sss, t1;sss, t2) = C(t1, t2),

(iii) second-order stationarity for the cross covariance function: C(sss1, t1;sss2, t2) = C(hhh)(t1, t2),

where hhh = sss1 − sss2.

We clarify that the spatial stationarity as specified above is a different issue from weak

separability and is assumed primarily due to the lack of data replication. On the other

hand, if replicates of the spatial functional field are available, one can perform the test
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following a similar procedure as that in our paper. Suppose we observe i.i.d samples

{Xi(sss, t); i = 1, . . . , n}, and let X̄(s, t) = n−1
∑n

i=1Xi(sss, t), X̃i(sss, t) = Xi(sss, t) − X̄(s, t).

Then C(sss, t1;sss, t2) and C(sss1, t1;sss2, t2) can be estimated by the sample covariance Ĉsss(t1, t2) =

n−1
∑n

i=1 X̃i(sss, t1)X̃i(sss, t2) for any sss, and Ĉsss1,sss2(t1, t2) = n−1
∑n

i=1 X̃i(sss1, t1)X̃i(sss2, t2) for any

sss1 and sss2, without extra assumptions such as stationarity. Similarly to our paper, ξi,r(sss)

could be estimated by the projection of Xi(sss, t) onto ψ̂r(t), which is the r-th eigenfunction

of some empirical covariance operator, and we could propose the statistic

Tn(sss1, sss2; j, k) = n−1/2
n∑
i=1

ξ̂ij(sss1)ξ̂ik(sss2)

= n−1/2
∫∫

X̃i(sss1, t1)X̃i(sss2, t2)ψ̂j(t1)ψ̂k(t2)dt1dt2

=
√
n

∫∫
Ĉsss1,sss2(t1, t2)ψ̂j(t1)ψ̂k(t2)dt1dt2 (S.1)

for any sss1 and sss2. Note that a similar degeneration would occur in (S.1) if {ψ̂r(t)} are the

eigenfunctions of Ĉsss1,sss2(t1, t2). To avoid this, ψ̂r(t) could be obtained through the eigen-

decompostion of the covariance C(sss, t1;sss, t2) for any sss, or the marginal covariance (Lynch

and Chen, 2018)

ĈS(t1, t2) =
1

n

n∑
i=1

∫
S
X̃i(sss, t1)X̃i(sss, t2)dsss,

which aggregates the covariance information at each sss. A completely similar argument in

our proof of Theorem 1 could be applied to derive the null distribution of Tn(sss1, sss2; j, k). As

the proposed weak separability requires that ξi,j(sss1) and ξi,k(sss2) are uncorrelated for any sss1

and sss2, one may further consider a collection of Tn(sss1, sss2; j, k) at different sss1, sss2 to make the

test more powerful. This would be another subject to study.

Besides the above extension to replicated spatio-temporal data, the test can also be

carried out by relaxing the first-order stationarity. For example, one could apply a functional

regression model

X(sss, t) =

p∑
j=1

Zj(sss)βj(t) + ε(sss, t),

where Zj(sss)’s are some spatial covariates and βj(t)’s are the functional coefficients. Through

the observed data {X(sssi, t)}i=1,...,N , this model can be then fitted using the method in Ram-

say and Silverman (2005). Our test can then be performed based on the de-trended data

X(sssi, t)−
∑p

j=1 Zj(sss)β̂j(t), i.e. the residuals ε̂(sssi, t)i=1,...,N . However, to test the weak sepa-

rability of ε(sss, t), we still need assumptions about the second-order properties (ii) and (iii).
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S.1.2 Sensitivity analysis about stationarity

In practice, one could check the assumed first-order and second-order stationarity for the

non-replicated spatio-temporal data through some sensitivity analysis. In the analysis of

the China’s PM2.5 data, taking the NCP region for example. We compare the estimated

mean functions of the six subregions of China and four inner subregions in the NCP region,

respectively, as displayed in Figure S.1 and S.2. We can observe distinct mean patterns

for the six subregions (evidence for non-stationarity) and a similar pattern for the four

inner subregions (evidence for stationarity) in NCP. In addition, one may also perform some

sensitivity analysis to check the assumed (second-order) stationarity, such as that in Section

8.3 of Zhang and Li (2020) through the FPCA approach. Specifically, we perform the FPCA

procedure for the covariance and the lag covariance respectively on the whole NCP region

and its two subregions. The corresponding FPC estimates agree well as shown in Figure

S.3 and Figure S.4, which suggests that there is no serious violation of the (second-order)

stationarity assumption. We have also done such exploratory analyses for the other five

regions, as well as for the Harvard Forest data, and reach similar conclusion, which is not

reported for brevity.

S.2 Discussion about the Gaussian Assumption

As stated in our paper, the Gaussian assumption in Section 3.3 is applied to simplify the

estimation of the asymptotic covariance Γ of the test statistics Th(IRN
), which relies on the

cross fourth-order moments of the FPC scores, i.e., E(ξi1jξi2kξi3j′ξi4k′), i1, i2, i3, i4 = 1, . . . , N ,

(j, k), (j′, k′) ∈ IRN
, as shown in (28) of our manuscript. Since only one realization of the

spatial functional field or the spatio-temporal data can be observed, the ordinary moment

estimators for the asymptotical covariance (e.g. Aston et al., 2017; Lynch and Chen, 2018)

become unfeasible. This is essentially different from the replicated or two-way functional

data and gives rise to challenges for statistical inference.

S.2.1 Sensitivity analysis about the Gaussian assumption

To investigate the sensitivity of the proposed test to the Gaussian assumption, we perform

a simulation study based on the χ2 random fields (Bevilacqua et al., 2020; Ma, 2009) to

investigate the sensitivity of the proposed test to the Gaussian assumption. A χ2(ν) random

field Y (t) with ν degrees of freedom is defined by Y (t) =
∑ν

i=1X
2
i (t), where {Xi(t), i =

1, . . . , ν} are a series of independent, stationary Gaussian processes with mean 0 and variance

1 (Lindgren et al., 2013). The R package “RandomFields” (Schlather et al., 2015) is used to

simulate χ2 random fields with isotropic Matérn covariances. Specifically, we consider the
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Figure S.1: Raw data (in gray) and the empirical mean functions of the six subregions in
China.

Figure S.2: Raw data (in gray) and the empirical mean functions of the four inner subregions
NCP, each of which is extracted with a 20 × 20 grid at northwest, northeast, southwest or
southeast NCP.
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Figure S.3: Sensitivity analysis on the China’s PM2.5 data. The red lines are the estimated
eigenfunctions of covariance Ĉ(t1, t2) using the whole NCP region, while the green dashed
lines and blue dotted lines are the corresponding estimated eigenfunctions using two subre-
gions (northeast and southwest) of NCP.
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Figure S.4: Sensitivity analysis on the China’s PM2.5 data. The red lines are the estimated
eigenfunctions of the lag covariance Ĉh(t1, t2) with h = 1 using the whole NCP region, while
the green dashed lines and blue dotted lines are the corresponding estimated eigenfunctions
using two subregions (northeast and southwest) of NCP.
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following two scenarios:

1. ξ3(·) and ξ4(·) are generated marginally from two χ2(6) random fields with the same

variance ωr and scale parameter φr as in the Gaussian case in our paper for r = 3, 4;

2. ξ3(·) and ξ4(·) are generated from two χ2(8) random fields with the same ωr and φr as

in the Gaussian case for r = 3, 4;

Tables 1 and 2 report the empirical type I errors and power respectively for the different

scenarios: (a), ξ3, ξ4 ∼ χ2(6); (b), ξ3, ξ4 ∼ χ2(8). For the alternative hypothesis, the

correlation coefficient ρ12 for the bivariate gaussian random fields {ξ1(·), ξ2(·)} is set as 0.4

for cases (a) and (b). We can see that the overall performance for the non-Gaussian cases are

comparable to that for the Gaussian case. These results provide evidence for the robustness

of our method to the Gaussian assumption.

Gaussian ξ3, ξ4 ∼ χ2(6) ξ3, ξ4 ∼ χ2(8)
FVE Para Nonp Para Nonp Para Nonp
80% 4.6 4.2 4.0 3.4 5.4 5.0
90% 4.8 5.4 4.2 3.6 5.6 5.4
95% 4.8 6.4 6.6 5.4 5.4 6.2

Table 1: Empirical Type I errors (%) for the weak separability tests based on the lag-1 co-
variance under Gaussian or non-Gaussian settings, with the asymptotic covariance estimated
by parametric (Para) and non-parametric (Nonp) methods.

Gaussian ξ3, ξ4 ∼ χ2(6) ξ3, ξ4 ∼ χ2(8)
FVE Para Nonp Para Nonp Para Nonp
80% 100 100 100 100 100 100
90% 95.0 94.5 100 100 100 100
95% 100 100 100 100 100 100

Table 2: Empirical power (%) for the weak separability tests based on the lag-1 covari-
ance under Gaussian or non-Gaussian settings, with the asymptotic covariance estimated by
parametric (Para) and non-parametric (Nonp) methods.

S.2.2 Additional results of the block bootstrap

We also make attempt to approximate Γ using resampling methods. As only one realization

of X(sss, t) can be obtained, standard re-sampling methods for i.i.d. data such as bootstrap

(Aston et al., 2017; Constantinou et al., 2017) are no longer valid. As a possible alternative,

one could use block bootstrap to approximate Γ. Specifically, we perform block bootstrap
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following the procedures in Section 10.6 of Sherman (2011). Let T (SN) := Th(IRN
) be

the test statistic (defined in Section 3.3 of our paper) computed from data in the overall

spatial domain SN , and {S lMN
, l = 1, . . . , L} be L-overlapping sub-blocks of SN where MN

determines the size of each sub-block. Then, Γ can be estimated by

Γ̂BB =
1

L

L∑
l=1

|S lMN
|
{
T (S lMN

)− T̄N
}{

T (S lMN
)− T̄N

}T
,

where T̄N =
∑L

l=1 T (S lMN
)/L. The corresponding χ2 test can then be performed based on

Γ̂BB.

Table 3: Empirical type I errors (%) for the block bootstrap tests with different MN and φ1.

MN = 10× 10 MN = 8× 8

φ1 FVE=80% FVE=90% FVE=95%. FVE=80% FVE=90% FVE=95%
0.2 5.8 24.0 35.6 8.4 31.2 46.0
0.1 4.4 4.4 10.8 4.0 4.0 14.4
0.05 6.4 6.4 7.4 6.8 6.8 7.8

We conduct a simulation using with the same settings as in our paper to check the

performance of block bootstrap, where N = 40 × 40 and the sub-block size MN is set as

10× 10 or 8× 8. As it is known that the performance of block bootstrap is affected by the

strength of spatial dependence, we try different values for φ1, the range parameter of the

first FPC scores which primarily determines the spatial dependence of X(sss, t). Specifically,

we set φ1 = 0.2, 0.1, 0.05, which correspond to relatively strong, moderate, or weak spatial

dependece. As shown in Table 3, the type I error of the block bootstrap test is much inflated

in the relatively strong spatial dependence case, especially when FVE is larger than 90%.

When φ1 = 0.1 and 0.05, the block bootstrap test could achieve relatively reasonable size,

except when φ1 = 0.1 and FVE=95%. It can also be seen that the block bootstrap test with

the sub-block size MN = 10× 10 performs better than that with MN = 8× 8. These results

indicate that block bootstrap may not be a good choice for the proposed weak separability

test for a general spatial functional field with strong spatial dependence.

S.3 More Implementation Issues

S.3.1 Implementation issues about the truncation parameter

In our paper, Conditions 4 and 4* provide upper bounds of RN to allow (but not require) the

truncation slowly diverges. This is in fact a major theoretical challenge in most functional
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data models, as the perturbation theory becomes more intricate, which is necessary in order

to reflect the genuine nonparametric nature of such models.

We emphasize that RN in our test is not a tuning parameter, i.e, we do not choose

a specific RN , but instead inspect a range of RN in order to include enough significant

FPCs. As stated in Conditions 4 and 4*, a reasonable truncation RN also depends on

the eigenvalue decay rate a. The FVE, as a general practice in functional data, is not an

automated criterion itself (saying, one still needs to specify whether to use 90% or 95%),

but corresponds to different RN while taking magnitude of eigenvalues into account to some

extent.

In practice, it is generally unknown where the significant components emerge when we

tend to reject the test. For example, when the non-separable parts emerge in the first two

components, as in our simulation studies, a powerful test can be obtained without a very

large FVE, where RN does not necessarily diverge with N . However, the non-separable

parts may exist in high-order terms; such as for the Harvard forest data in Section 5.2, the

correlated FPC fields that violate the weak separability assumption do not emerge until

RN = 4. In this situation, we could avoid missing potential signal in high-order terms as RN

is allowed to diverge and also adaptive to the eigenvalue decay of the underline processes.

According to one reviewer’s suggestion, we also conduct a simulation study with different

sample sizes. As we can see in Table 4, the type I errors across a large range of RN become

gradually more stable as N increase from 30 × 30 to 60 × 60. On the other hand, if RN is

larger than necessary (e.g. RN = 7), the estimates of high-order terms becomes unstable,

which may deteriorate the test performance. This also justifies the proposed theoretical

result that we only need a very slow rate of RN (e.g. N1/8) that is not very large in practice.

Table 4: Type I errors (%) for the parametric and non-parametric weak separability tests
using lag-1 covariance with different sample size and different RN .

30× 30 40× 40 50× 50 60× 60
RN Para Np Para Np Para Np Para Np
2 4.8 4.2 4.6 4.2 3.8 4.6 3.2 5.4
3 5.6 9.4 5.0 6.4 5.4 6.4 3.8 6.4
5 9.0 11.6 6.0 7.0 5.0 6.4 4.0 4.8
7 5.4 7.2 3.8 5.8 4.0 2.4 3.6 2.2

In summary, our theoretical results provide some insight for a reasonable range of RN ,

while specifying different values of FVE is helpful to include the most important FPCs.
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S.3.2 Multiple tests using different lags

According to the proposed definition, the claim of weak separability in general should be

a comprehensive conclusion across different lag h. However, it is common for spatial data

that observations separated by smaller lags are more correlated (Sherman, 2011), which

could result in more powerful tests using smaller lags. We also attempt the multiple tests

to combine the information from different lags. Specifically, we perform the Bonferroni

correction through the following procedure. Assume we have n = 4 hypothesis tests (A1,

A2, A3, A4) with each of the null hypothesis is that, H0,h: the eigen-decomposition of lag-

covariance C(h)(t1, t2) (see equation (10) in our paper) holds for any {X(sss, ·), X(sss+h, ·)} for

h = 1, 2, 3, 4. Then the global null hypothesis H0 is that each of {H0,h}h=1,...,4 holds, and H0

is rejected if at least one of the {H0,h}h=1,...,4 is rejected using the corrected significant level

α/n. (According to the definition of weak separability, the global null hypothesis H0 should

be that the H0,h holds for any h; however, it is obviously unfeasible to perform tests for all

possible h, so we just combine lag-1 to lag-4.)

We apply the Bonferroni correction in our simulation and compare its performance with

the lag-1 to lag-4 covariances. The results are displayed in Table 5, where we can see that

the test using the Bonferroni correction is more powerful than those using the lag-2 to lag-4

covariances, but is less powerful than that using the lag-1 covariance. Based on the new

empirical evidences, we feel that the new testing procedure combining information from

different lags through the Bonferroni correction may not lead to a more powerful test for

weak separability, so we suggest using the lag-1 covariance for grid data.

Table 5: Rejection rates (%) for the weak separability tests based on the lag-1 to lag-4
covariances and Bonferroni correction.

.

lag-1 lag-2 lag-3 lag-4 Bonferroni
ρ12 FVE Para Nonp Para Nonp Para Nonp Para Nonp Para Nonp
0 80% 4.6 4.2 6.6 4.0 8.2 5.2 6.2 4.4 5.4 2.8

90% 4.4 4.6 6.2 4.8 8.0 5.2 6.2 4.4 5.4 4.2
95% 4.8 6.4 6.6 7.6 7.2 5.6 5.6 4.0 5.6 5.8

0.2 80% 85.0 87.5 76.5 69.5 31.5 30.5 12.0 15.0 76.0 77.0
90% 74.5 79.5 74.0 67.5 31.0 30.5 12.0 15.5 70.5 71.5
95% 70.5 77.5 63.5 63.0 28.5 32.0 11.0 16.5 63.5 65.0

0.4 80% 100 100 94.0 94.0 68.0 68.0 32.5 37.0 100 100
90% 100 100 95.0 94.5 68.5 68.5 32.5 37.5 100 100
95% 100 100 98.5 98.0 74.0 78.0 31.0 39.0 99.5 100

0.6 80% 99.0 99.5 87.5 89.0 67.5 68.0 37.0 41.0 98.5 99
90% 100 99.5 90.0 91.0 68.0 68.0 37.0 41.0 99.5 99.5
95% 100 100 99.5 99.5 79.5 81.5 41.5 47.5 100 100
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We also perform multiple tests on the China’s PM2.5 data using the Bonferroni correction

with lag-1 to lag-4 covariance. The corrected significant level is 0.05/4 = 0.0125. Tables 6 to

9 report the p-values of these tests across different RN (at 80%, 90%, 95% FVE as in Section

5.1 of our paper). For NCP and YRD, the two regions for which the weak separability test

using the lag-1 covariance was passed, the p-values across different lags are all larger than

0.0125, which is consistent with our previous results. In contrast, for Xinjiang and Tibet for

which weak separability was rejected using the lag-1 covariance, the p-values lead to different

conclusions, although the p-values for the lag-1 covariance are all less than 0.01. This is not

surprising given that our simulation results reveal that the test based on the lag-1 covariance

is more powerful than the others.

lag-1 lag-2 lag-3 lag-4
RN = 2 Para 0.136 0.313 0.405 0.442

Nonp 0.287 0.398 0.432 0.439
RN = 3 Para 0.150 0.123 0.111 0.135

Nonp 0.212 0.103 0.072 0.079
RN = 6 Para 0.759 0.707 0.768 0.811

Nonp 0.289 0.100 0.535 0.554

Table 6: The p-values of multiple tests with lag-1 to lag-4 covariance for NCP region.

lag-1 lag-2 lag-3 lag-4
RN = 3 Para 0.925 0.868 0.794 0.653

Nonp 0.620 0.374 0.219 0.128
RN = 6 Para 0.863 0.996 0.999 0.995

Nonp 0.399 0.791 0.676 0.477
RN = 9 Para 0.997 1 0.999 0.995

Nonp 0.119 0.424 0.430 0.587

Table 7: The p-values of multiple tests with lag-1 to lag-4 covariance for YRD region.

lag-1 lag-2 lag-3 lag-4
RN = 2 Para 0.002 0.087 0.394 0.612

Nonp 0.000 0.003 0.133 0.518
RN = 5 Para 0.000 0.073 0.309 0.000

Nonp 0.000 0.011 0.052 0.000
RN = 8 Para 0.000 0.000 0.423 0.000

Nonp 0.000 0.000 0.058 0.000

Table 8: The p-values of multiple tests with lag-1 to lag-4 covariance for Xinjiang region.
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lag-1 lag-2 lag-3 lag-4
RN = 3 Para 0.000 0.485 0.169 0.000

Nonp 0.000 0.027 0.213 0.093
RN = 5 Para 0.000 0.000 0.000 0.000

Nonp 0.000 0.098 0.002 0.053
RN = 8 Para 0.000 0.000 0.000 0.000

Nonp 0.000 0.000 0.000 0.001

Table 9: The p-values of multiple tests with lag-1 to lag-4 covariance for Tibet region.

S.4 Additional Results for Simulation Study

We present the additional simulation results on the test performance with different φ1, the

range parameter of the first FPC scores which primarily determines the spatial dependence

of X(sss, t). The case φ1 = 0.15, 0.2 and 0.25 can be respectively regarded as the “weak”,

“medium” and “strong” spatial correlation. Table 10 summarizes the empirical rejection

rates from 200 simulation trials. For each φ1, the first row ρ12 = 0 yields the null hypothesis,

and we see that both parametric and non-parametric tests have stably reasonable size across

different choices of lags. We know that for data without spatial correlation (which implies

φ1 = 0), the KL expansion is always correct, thus the weak separability holds even for

ρ12 > 0. The rejection of weak separability tends to be more significant when the spatial

correlation is stronger, as shown in Table 10 that the tests appear to obtain larger power

for the “medium” and “strong” scenarios (φ1 = 0.2 and 0.25). It is obvious that the lag-

1 covariance outperforms the others for most scenarios except (φ1, ρ12) = (0.25, 0.2) and

(φ1, ρ12) = (0.25, 0.4), and the test performance dramatically deteriorates as the lag number

increases, especially when ρ12 = 0.4 or 0.6.

S.5 Technical Proofs

S.5.1 Proof of Proposition 1 and Proposition 2

Proof of Proposition 1. For a strongly separable X(sss, t), we see that the time covariance

C(t1, t2) implies the eigen-decomposition in time domain C(t1, t2) =
∑∞

r=1 ωrψr(t1)ψr(t2) for

some orthogonal basis system {ψr(t)}. To show that X(sss, t) is weakly separable, we only

need to show that the projected scores {ξr(sss)} on basis {ψr(t)} are mutually uncorrelated.

For j 6= k, and any sss1, sss2, we have

E{ξj(sss1)ξk(sss2)} = E

[∫
{X(sss1, t)− µ(sss1, t)}ψj(t)dt

] [∫
{X(sss2, t)− µ(sss2, t)}ψk(t)dt

]
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Table 10: Rejection rates (%) for the parametric (Para) and non-parametric (Np) weak
separability test based on lag-1 to lag-4 covariance, with different φ1 and ρ12 values. The
FVE threshold value is 95%.

φ1 ρ12
lag 1 lag 2 lag 3 lag 4

Para Np Para Np Para Np Para Np

0.15

0 6.0 3.5 7.0 7.0 4.0 5.0 3.5 3.5
0.2 39.5 44.0 13.0 21.5 7.0 10.0 3.5 5.0
0.4 96.0 98.0 44.0 26.0 18.5 27.0 5.0 7.5
0.6 100 100 73.5 82.0 26.0 35.0 5.5 10.0

0.2

0 4.5 6.5 6.5 6.5 5.5 7.5 3.5 4.5
0.2 70.5 77.5 63.5 62.5 27.5 31.5 11.0 15.0
0.4 100 100 98.5 98.0 73.5 77.0 31.0 39.0
0.6 100 100 99.5 99.5 79.5 81.5 41.5 47.5

0.25

0 5.0 3.5 3.5 6.5 3.0 6.0 2.5 4.5
0.2 57.5 66.0 72.5 68.0 54.5 50.5 29.0 24.5
0.4 98.5 98.5 100 100 88.0 87.0 54.0 56.5
0.6 100 100 100 100 93.5 92.0 64.5 68.5

= E

∫∫
{X(sss1, t1)− µ(sss1, t1)} {X(sss2, t2)− µ(sss2, t2)}ψj(t1)ψk(t2)dt1dt2

=

∫∫
C(sss1, t1;sss2, t2)ψj(t1)ψk(t2)dt1dt2

=

∫∫
C(sss1, sss2)C(t1, t2)ψj(t1)ψk(t2)dt1dt2

= C(sss1, sss2)

∫∫
C(t1, t2)ψj(t1)ψk(t2)dt1dt2

= C(sss1, sss2)

∫
ωjψj(t2)ψk(t2)dt2 = 0.

The conversion between integral and double integral is allowed by the Fubini theorem.

Proof of Proposition 2. In the proof of Proposition 1, let j = k we have

E{ξj(sss1)ξj(sss2)} = C(sss1, sss2)

∫
ωjψj(t2)ψj(t2)dt2 = ωjC(sss1, sss2)

for each j. For a weakly separable process X(sss, t) with E{ξr(sss1)ξr(sss2)} = ωrρ(sss1, sss2), one

could derive that C(sss1, t1, sss2, t2) = ρ(sss1, sss2)
∑∞

r=1 ωrψr(t1)ψr(t2) = ρ(sss1, sss2)C(t1, t2) using

equation (6), thus X(sss, t) is strongly separable.

12



S.5.2 Proof of Lemmas

Proof of Lemma 1. This lemma comes directly from Theorem 8.1.2 of Hsing and Eubank

(2015) using the tightness and convergence of finite dimension projection argument as in

Theorem 7.7.6 of Hsing and Eubank (2015).

Proof of Lemma 2. The proof of Lemma 2 utilizes the central limit theorem for strongly

mixing processes in Hilbert space, which is a natural extension of that in real-valued spaces

(see e.g. Theorem 1.7 of Bosq, 2012). To be more specific, denote Ui = (Xi− X̄)⊗ (Xi− X̄)

and SN = N−1/2
∑N

i=1 Ui. Under Conditions 1 and 2, the series
∑N

i=1 Cov(U1,Ui) converge

absolutely to an element σ2
U in L2(T )× L2(T ) using the Davydovs Inequality (Bosq, 2012)

in Hilbert space with q = r = v/2 and 1/p = 1− 2/r, and then Var(SN) converge absolutely

to σ2
U . To prove the asymptotic normality of SN , we apply a blocking technique as in Bosq

(2012); Guan et al. (2004) and denote S ′N = N−1/2
∑N

i=1 Vi, where Vi = U(i−1)(p+q)+1 + · · ·+
Uip+(i−1)q with N ∼ logN , p ∼ N/(logN) − N1/4 and q ∼ N1/4. Using the coupling results

(Lemma 1.2 of Bosq, 2012), we can construct independent random elements W1, . . . ,WN

s.t. Wi has the same distribution as Vi, and the probability P
(
|N−1/2

∑
i(Vi −Wi)| > ε

)
can be shown to converge to 0. The asymptotic normality of N−1/2

∑
iWi follows from

the i.i.d case in Lemma 1, and it can also be shown that S ′N − SN
p−→ 0. Consequently

the asymptotic normality of N1/2(Ĉ −C) holds, and similarly the asymptotic normality of

N
1/2
h {Ĉ(h) −C(h)} can be obtained. Finally the proof of joint normality follows directly by

applying the Cramer-Wold device (e.g. Guan et al., 2004).

Proof of Lemma 3. To prove Lemma 3(a), we first let ∆̂ = ‖Ĉ − C‖HS, ∆̂(h) = ‖Ĉ(h) −
C(h)‖HS. Under Condition (17) and by the Lemma 3.3 of Hall and Hosseini-Nasab (2009),

we have E(∆̂C) = O(N−C/2) for any C > 0, and similarly E(∆̂C
(h)) = O(N−C/2) by the

proof of Lemma 2. Let KN = {r = 1, . . . ,∞ : η
(h)
r − η(h)r+1 > 2∆̂(h)}, that is, the index set

containing r ∈ KN for which the distance between η
(h)
r and η

(h)
r+1 does not fall below 2∆̂(h).

As ∆̂(h) = Op(N
−1/2) implied by E ∆̂2

(h) = O(N−1) and Ra+1
N N−1/2 → 0 implied by Condition

4, we have η
(h)
j − η

(h)
j+1 ≥ R−a−1N > 2∆̂(h) for j = 1, . . . , RN as N →∞, that is RN ∈ KN for

large N . Note that η̂
(h)
j − η

(h)
j ≤ ∆̂(h) = Op(N

−1/2) (see e.g. Hall and Horowitz, 2007), and

max{η(h)j − η
(h)
j+1, η

(h)
j−1 − η

(h)
j } ≥ R−a−1N ≥ CN−τ/2 for some C and any τ > 1, it follows that

P(EN,RN
)→ 1 as N →∞.

Following (5.22) of Hall and Hosseini-Nasab (2009) and Lemma 1 of Kong et al. (2016), we

have the following expansion

ψ̂
(h)
j − ψj =

∑
k:k 6=j

(η
(h)
j − η

(h)
k )−1ψk

∫ (
Ĉ(h) −C(h)

)
ψjψk + ψj

∫
(ψ̂

(h)
j − ψj)ψj

13



+
∑
k:k 6=j

(η
(h)
j − η

(h)
k )−1ψk

∫ (
Ĉ(h) −C(h)

)
(ψ̂

(h)
j − ψj)ψk

+
∑
k:k 6=j

η̂
(h)
j − η

(h)
j

(η
(h)
j − η

(h)
k )(η̂

(h)
j − η

(h)
k )

ψk

∫ (
Ĉ(h) −C(h)

)
ψ̂

(h)
j ψk.

Denote the last three terms by αj ≡ α1j +α2j +α3j, and let Mk,j = (η
(h)
j − η

(h)
k )−1

∫
(Ĉ(h)−

C(h))ψjψk, δj = minr=1,...,j(η
(h)
r − η

(h)
r+1). According to (6.55) of Hall and Hosseini-Nasab

(2009), for each integer b > 0,

E (
∑
k:k 6=j

M 2
k,j)

b ≤ Cb(j
2N−1)b (S.2)

uniformly in j ∈ KN , under the assumption that E(
∫
{X(sss) − µ}ψj)2b ≤ Cb[E{

∫
{X(sss) −

µ)ψj}2]b which is implied by condition (18) (see e.g. (2.18) of Hall and Hosseini-Nasab, 2009).

Following (6.58) of Hall and Hosseini-Nasab (2009), we have ‖ψ̂(h)
j −ψj‖2 ≤ 32(

∑
k:k 6=j M

2
k,j)

on EN,RN
, which leads to the result in Lemma 3(b) that E‖ψ̂(h)

j − ψj‖2b = O{(j2N−1)b}.
To derive the bound for E‖αj‖2 in Lemma 3(c), we first note that ‖α1j‖ = |

∫
(ψ̂

(h)
j −ψj)ψj| =

‖ψ̂(h)
j −ψj‖2/2, leading to E‖α1j‖2 = O(j4N−2) letting b = 2 in (S.2). To bound α2j, noting

‖
∑

r crψr‖2 =
∑

r c
2
r due to orthonormal {ψr} and using Cauchy-Schwarz inequality,

‖α2j‖2 ≤
∑
k:k 6=j

(η
(h)
j − η

(h)
k )−2{

∫ (
Ĉ(h) −C(h)

)
(ψ̂

(h)
j − ψj)ψk}2

≤ δ−2j ∆̂2
(h)‖ψ̂

(h)
j − ψj‖2,

which leads to E‖α2j‖2 ≤ δ−2j {E(∆̂4
(h))E(‖ψ̂(h)

j − ψj‖4)}1/2 = O(j2a+4N−2) letting C = 4

in E(∆̂C
(h)) = O(N−C/2) and b = 2 in (S.2). For α3j, noting that η̂

(h)
j − η

(h)
j ≤ ∆̂(h) and

(η̂
(h)
j − η

(h)
k )−2 ≤ 2(η

(h)
j − η

(h)
k )−2, we have

‖α3j‖2 = (η̂
(h)
j − η

(h)
j )2

∑
k:k 6=j

(η
(h)
j − η

(h)
k )−2(η̂

(h)
j − η

(h)
k )−2{

∫ (
Ĉ(h) −C(h)

)
ψ̂

(h)
j ψk}2

≤ 2∆̂2
(h)

[∑
k:k 6=j

(η
(h)
j − η

(h)
k )−4{

∫ (
Ĉ(h) −C(h)

)
ψjψk}2

+
∑
k:k 6=j

(η
(h)
j − η

(h)
k )−4{

∫ (
Ĉ(h) −C(h)

)
(ψ̂

(h)
j − ψj)ψk}2

]
.

Let A1 = ∆̂2
(h)

∑
k:k 6=j(η

(h)
j − η

(h)
k )−4{

∫
(Ĉ(h) − C(h))ψjψk}2 and A2 = ∆̂2

(h)

∑
k:k 6=j(η

(h)
j −

η
(h)
k )−4{

∫
(Ĉ(h) −C(h))(ψ̂

(h)
j − ψj)ψk}2. It then follows that A1 ≤ δ−2j ∆̂2

(h)(
∑

k:k 6=j M
2
k,j) and
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A2 ≤ δ−4j ∆̂4
(h)‖ψ̂

(h)
j −ψj‖2 (see also the proof of Lemma 1(c) of Kong et al., 2016), which leads

to EA1 ≤ δ−2j {E(∆̂4
(h))E(

∑
k:k 6=j M

2
k,j)

2}1/2 = O(j2a+4N−2) and EA2 ≤ δ−4j {E(∆̂8
(h))E(‖ψ̂(h)

j −
ψj‖)4}1/2 = O(j4a+6N−3) using the similar arguments as before. Then EA2 = o(j2a+4N−2)

by Condition 4, leading to E‖α3j‖2 = O(j2a+4N−2). Combining these results we obtain that

E‖αj‖2 = O(j2a+4N−2) uniformly in j = 1, . . . , RN .
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