Supplementary Material for
“Dynamic Principal Component Analysis in
High Dimensions”

S.1 Algorithm

Practitioners may use the retraction-based proximal gradient method (ManPG) (Chen et al.|
2020)) to solve our manifold optimization problem (5). Denote M = V,,; and F(V) =
—Te{V(®)"S)V ()} + p||V(1)]|1 where f(V) = —Tr{V(£)"S(¢)V(t)} is smooth and its gra-
dient is Lipschitz continuous with the Lipschitz constant L and h(V) = p||V (t)]|;. ManPG

first computes a descent direction Dy, (k-th step) by solving the following problem:

minp < 7f(Vi),D > +2|D||% + h(Vi + D) 81

s.t. D™V, +V,'D =0,
where V}, is obtained in the k-th iteration, ¢ > 0 is a step size and D is a descent direction
of F'in the tangent space Ty, M. Based on the Lagrangian function and KKT system, we

get that

E(A) = Ay(D(A)) =0, (S.2)

where A (D) = DTV, + V,ID, D(A) = prox,,(B(A)) — Vi with B(A) = Vi, — t(s7f (Vi) —
A*(A)), A*(A)) denotes the adjoint operator of Ay, where A is a d X d symmetric matrix.
The semi-smooth Newton method (SSN) (Xiao et al. [2018) could be used to solve ([S.2)).
Retraction operation is an important concept in manifold optimization, see |[Absil et al.
(2009) for more details. There are many common retractions for the Stiefel manifold, in-

cluding exponential mapping, the polar decomposition and the Cayley transformation. For



Algorithm 1 Manifold Proximal Gradient Method (ManPG) for Solving (5).
Input: Initial point V5 € V, 4, 6 € (0,1), v € (0,1), Lipschitz constant L

1: for k€0,1,... do

2:  Obtain Dy by solving the subproblem ({S.1|) with ¢ € (0,1/L];
33 Seta=1

4. while F(Retry, (aDy)) > F(V;) — da||Di||% do

O: o=y

6: end while

7. Set Vi1 = Retry, (aDg)

8: end for

example, the exponential mapping (Edelman et al., 1998)) is given by,

VYD —RT Iy
Retry (tD) = [ V oQ ] exp | ¢ :
R 0 0

where QR = (I, — VV)D is the unique QR factorization.

S.2 Additional simulation results

The results under o = 1 with p = 100 and 200 are provided in Tables and [S.2 While
the estimation errors of all considered methods under o2 = 1 are smaller than those obtained
under 02 = 3, the proposed method still achieves consistently better results under both com-
mon and irregular designs. In particular, the DCM and DCM+ methods obtain comparable
performance against the proposed approach when p = 100 and the number of total observa-
tions is large. However, their performance degrades when the dimension increases and the
sampling frequency becomes small. In addition, the BJS and DT fail to obtain reasonable

estimates with large errors.



Table S.1: Average integrated squared errors and standard deviations over 100 replications

for different settings under the irregular design and o? = 1.

Model MISE, MISE | MISEpcas | MISEpeass

m =100 | .020 (.013) | .018(.010) | .019(.011) | .019(.010)

P m =50 | .028(.015) | .026(.012) | .036(.048) | .036(.043)
e m =20 | .051(.035) | .048(.034) | .092(.078) | .095(.100)
p=100 | m =20 | .010(.003) | .009(.003) | .010(.002) | .010(.002)
n=500 | m =10 | .020(.003) | .019(.003) | .018(.003) | .018(.004)
m =4 | .036(.010) | .035(.009) | .053(.050) | .057(.079)

m =100 | .026 (.014) | .023(.012) | .028(.028) | .025(.016)

p m =50 | .034(.024) | .033(.025) | .096(.155) | .062(.076)
n m =20 | .057(.039) | .057(.040) | .320(.253) | .313(.232)
p=200 | m =20 | .016(.001) | .015(.001) | .014(.003) | .014(.003)
n=500 | m =10 | .022(.005) | .021(.005) | .041(.082) | .040(.079)
m=4 | .038(.011) | .037(.013) | .294(.198) | .299(.201)

Table S.2: Average integrated squared errors and standard deviations over 100 replications

for different settings under the common design and 0% = 1.

Model MISE, MISE MISEpcy | MISEpeas | MISEg;s | MISEpr
m=100 | .024(.016) | .020(.012) | .024(.013) | .023(.012)
p=100
m=50 | .028(.021) | .024(.016) | .031(.021) | .031(.025) | .252(.051) | .149(.041)
n=100
m=20 | .072(.066) | .072(.070) | .101(.117) | .075(.073)
m=100 | .025(.014) | .022(.011) | .038(.053) | .033(.043)
p=200
m=50 | .032(.031) | .030(.029) | .149(.153) | .124(.154) | .411(.054) | .146(.041)
n=100
m=20 | .090(.086) | .091(.090) | .585(.292) | .532(.318)




S.3 Proofs of main results

proof of Theorem 2. We provide the proofs of theoretical results using (4) under the com-

mon design.

Recall that f](t) = > wS, where S; = Y (yu — yi)(ya — y)t/n =

S yays/n —yiy;. Without loss of generality, we assume u(t) = 0 and it can be shown

that y,;y; is a higher order term that is negligible (Vu and Lei, 2013). Therefore, we will

ignore this term and focus on the dominating Y ;| yuy;;/n term in our proofs below.

Note that

(z yuyg/n> s - o,

i=1 S

iwl l zn:x"ll"kl — O“k(t) + z zn:$"l€'kl + l zn:E"ZE'kl — 0‘21(j = k‘)
=1 n =1 v ’ n =1 o n =1 o

= max
.k
1 m n
< max |~ Z Zwﬂijﬂikl —oji(t)]| +
’ =1 i=1
1 .
max |~ Z Zwl%lézkl +max |~ Z Z wieji — 0°1(j = k)‘
’ i=1 =1 Tk i=1 I=1
Denote
1 m n
] = - e g )
H]l’aX nz W Ti51 5kl ng(t)’
=1 =1
Then,
1 n m
I = maX n Zzwl%lfmkl ng(t)
=1 =1
= e | iz 2 AT — E(Wwinrin)} n 3 e { B (i) — wiogk(t)}
7,k R07CR27C - R%,c RO cRQ c R 1,c
maxy, (0t Y0 DL At — E(@iigpvia) } ‘ max; ;[ >0 {E(W@inwin) — diojx(t)} ’
< +
‘RO,CRZ,C - R%,c’ ’RO,CRQ,C - Ric‘
== ]1 + IQ;
where W, = Ry Kj(t; —t) — R Kn(t; — t)(t; — t), and the second equality holds because

>y wi/(RoeRa e — RY,) =1



Let @}, = n;, we have
Wy = RoKy(ta —t) — R (ta — t)(ta — 1),

where t; = t; and Ry = > S Ku(ty — ) (ty — ). We have >0 S @l (ty — t) = 0.
Consequently,
D1 2 AWz — B0y rinwi) }

n2|RO,cR2,c - R%c‘

max; r

[1:

Using Lemma and similar arguments in Lemma 5 by replacing m with m, it is straight-

forward to obtain

max

ZZ{wmm E(i >}\ — 0,{(log p)/*(n*m?h? + n*m*n*)/*}.

=1 [=1

According to Lemma [S.1(a), we have Ro.R, . — R}, =< m*h?. Thus,

logp logp 1/2
[1:Op (—nmh+ n > .

Next we bound the approximation term I5. Under the common fixed design, maxo<;j<m |tj+1—

t;] < Cm™'. We have for each ¢, |{j : |t; — t| < h}| = O(mh). Note that

I = max Z (W11 @DlUjk(t)’
m (2)
(1) Ok (€) -
= maX 2_: {O']k + 0, (t Yt —t) + -2 5 (t; —1)? p — Wyoj(t)
max; \ajk m

= O(m?*h%).

Z (t, — t)?

where ¢ is between ¢ and ¢;. The last inequality holds since Y ", @;(t; —t) = 0. Note hat

D it — 1) =Roe Y Kn(ti—t)(t —t)* = R > Kulty — t)(t — t)* = O(m*h?).
=1 =1 =1

Since Ry Ra. — R}, =< m*h* from Lemma (a), I, = O(h?). Analogously, we can obtain

the rates of other terms. Combining together and by Lemma 3, we complete the proof. [



Proof of Corollary 2. Recall that

1/2
dU®),0(t)} =0, {(logp + 1°§p> +h2}

1—q/2

nmh

A trade-off between the variance term {logp/(nmh)}'/? and the bias term h? gives the
optimal bandwidth h = O[{log p/(nm)}'/?]. However, by Assumption 9, the bandwidth A is
at least of the order 1/m. To illustrate the effect of the bandwidth on the final result, we

define the function

logp logp\"*  ,

r(h) = + + h*.
nmh n

Obviously, the function r(h) decreases when h < {logp/(nm)}'/° and increases when h >

{log p/(nm)}/5. Together with the condition h > 1/m, if 1/m > {logp/(nm)}'/>, then the

function r(h) attains the minimum when h = 1/m. Otherwise if 1/m < {logp/(nm)}/?,

then the function r(h) attains the minimum at h = {log p/(nm)}'/>.

Based on the above analysis, we obtain the optimal bandwidth and the corresponding

convergence rates under different sampling frequencies.

o If {logp/(nm)}'/®> < 1/m, that is, m/(n/logp)/* — 0, then the optimal bandwidth

AU @), (1)} = 0, { (#)w?} |

o If {logp/(nm)}'/> < 1/m, that is m/(n/logp)*/* — C, then the optimal bandwidth is

is h = O(1/m) and

h = O{(logp/n)**} = O(1/m) and

AU @), ()} = 0, { (ﬂ%)lm} |

o If {logp/(nm)}'/® > 1/m, that is, m/(n/logp)*/* — oo, then the optimal bandwidth

is h = o{(log p/n)/*} with mh — oo, and

dU(t),U(1)} =0, { (logp )1/2_Q/4} .

n
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This completes the proof.

S.4 Auxiliary lemmas and proofs

Lemma S.1. Under the common design, we have
(a) Ry. =< mh’, { =0,1,2. Moreover, we have Ry Ro.— R}, =< mh?.
(b) S0 E{Ro Kty — t) — Ry Kn(t — t)(t — 1)} wipiwa]” = O(mPh?).

(C) Zl;ﬁl’ E (wlxijlxiklwyxiﬂ/xikl/) == O(m4h4), where "LDl = RQyCKh(tl — lf) — Rl,cKh(tl —
)t —t).
Proof of Lemma[S-1. (a) Recall that Ry, = > ;" Kin(t; — t)(t; — t)*, £ = 0,1,2. Under the

common fixed design, maxo<j<m [tj+1—t;| < Cm~'. We have for each ¢, |{j : |t; —t| < h}| =

O(mh). Then,

t—t
Z th( lh )(tl—t)gxmhz,

l:|t;—t|<h

Zm:Kh(tl — )t —t)" =

which is concluded from the properties of the kernel function in Assumption 5.

(b) Note that

Z E [{Ry Kn(t; — t) — R1Kp(t — t)(t — t)}* w?jszm}

1=1
= Z E{Rg,cKi%@l - t)xz?jlxzzkl} —2 Z E{Rl,cRZcKi%(tl =)t — t)x?jlxzzkl} +
=1 =1

Z E{R%,ch%(tl —t)(t — t)%?jzx?kz}
=1

== Il+[2+[3.



To bound the term I;, observe that

L =Y E {ZKi(tl—t)(tl—t)4}K§(z€l—t)x?ﬂxfkl +
=1 L \I/=1
S5 {z Kot — )t — 7Kt — )t — t>2} Kt~ t>x3jlx$kl]
=1 | Ly

= O(m*h* +m’n?),

since [{l : |[t; — t| < h}| = O(mh). Similarly, we have I, = O(m?®h3) and I3 = O(m3h?).
(c) Since sup, Ex}(t) < oo for j = 1,...,p, so it suffices to prove that > E(niy) =

O(m*h*). Observe that

> Bl

1A
= Y E[{RocKn(ty —t) — Ry JJ(ty — t)(ty — )} {Ro Kn(ty — t) — Ry Kty — ) (tr — £)}]
1Al
= > B{R3 Kn(ti — t)Kn(ty — )} = > E{Ry oRo JJ(tr — t)(t — 1) K (tr — 1)} —
1AV 1AV
> B{Ry Ry Kn(ty — t)(ty — ) Kyt — 1)} + Y E{R} Ku(ty — t)(tr — t) Kn(ty — t)(ty — 1)}
I IAU

= M, + My + Ms + M,.

Note that
M, = ;E {lf; Kt —t)(t; — t)2}2Kh(tl —t) Ky (ty — t)
= ;E :{lin;Ki(tz — )t —t)4}Kh(tl — ) Ku(ty —t)| +
Y E {Z Ku(ty — t)(t — t)2 K (ty — t) (ty — t)z} Ku(t; — ) Ku(ty — t)]
L

= O(m*h* +m*h?).

In a similar way, other terms are quantified. Combining them together yields the final

result. O

Lemma S.2. (a) |a+b|? < la|?+|b|?, for0<q < 1.
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(b) Let Il = UUT with UTU = Iy. Then, |[vec(I)||¢ < |[vec(U)[2 for 0 < ¢ < 1.

Proof of Lemma[S.9. (a) The inequality trivially holds either a = 0 or b = 0. Thus, we focus
on the case where a,b # 0. It suffices to show that (|a/b] + 1)? < |a/b|? + 1.

Define f(z) = 29+ 1 — (x + 1), x > 0. By the analysis of its derivative, we have
fW(z) > 0. Consequently, we have f(x) > 0 for z > 0, which completes the proof.

(b) Let @, is the j-th row of U. According to the Cauchy-Schwarz inequality,
ja; ;| < llallllas] < llasl ]

Denote by uj; the entry in the j-th row, k-th column of U. Since UTU = I,, we have

|uji| < 1. Then,

[vee(ID)[g = Z ﬁTﬂjlq<Z||qu ;111 (ZZIWH")-

=1 k=1

[]

Proof of Lemma 1. Recall that I' = ¥ + ¢, Il = UUT and II° = U°U°T. Note that by

Corollary 4.1 in |Vu and Lei (2013),

1||H_f[0||2 < <T—3T—11° > —p(|U°; — |U]1)
S
2 A — A1
T = Yoo |[[TT = TI°Yly + p)| U |1 — PHUOHy
N Ad — Ads1

By choosing p =< ||I’ — 3w, we obtain ||IT — II°||2. < || — £||w. From proofs of Theorems 1
and 2, we have ||I’ — %||o = 0,(1). Therefore, ||IT — II°||2 = 0,(1).

It is clear that
(1 =0,11% >~} C {5 — 1% >4},
(I > 29,10 <y} C {50 - 109 >4,

and {j : II;; = 0, ﬂ?j >N {j: I > 27, f[?j < v} = (. By Markov’s inequality,

I — )3

(T = 0,110, > 7} + |{j : I;; > 29,109, < 4} < "



If 4 > ||TT — I1°|| p and min;e, IT;; > 27, then J = J. O

Proof of Lemma 3. Denote d2{U,U} := ¢2 and § = Ay — Ags1. The d-dimensional principal
Uy

subspace of I' is spanned by U = , where Uj; is an orthonormal matrix. Then U;

0
spans the d-dimensional principal subspace of I';;. Define the event I, = {j = J} with

. U; .
probability tending to 1 from Lemma 1. Note that U = 7. On the event I,,, U is an

0
optimal solution to the problem (6) and Uj is feasible. Then by Corollary 4.1 in Vu and Lei

(2013), we have on the event I,

0% < <%y =Ty, U UF —UUF > —p(|Us]ls = |Ush)
< B = DwllUUF = U UT N = p(Usll = |Us]10)
< | = T|el|UUT = U;UT| + pl|Us — Uslh

= I+1I. (S.3)

Introduce the shorthand notation A = vec(U,;UT — U,;UT), where vec(A) denotes the vector
of length p? obtained by stacking the columns of a p x p matrix A. Using a standard argument

of bounding /; norm by the [, and [, norms, we have for all 7> 0 and 0 < ¢ <1,
1Al < T2 A lI A2 + 71| AL, (S4)

and when ¢ = 0,

1AL < A2 Al (S.5)

First we need to bound the term ||A||g Denote by 4 € R% [ =1,...,p, the I-th row of

e Case 1: ¢ = 0. We have |[vec(U,)|lo < dRy since U € U(0, Ry) and also ||vec(Uy)]|o <

dRy. Thus, we have ||Ally < d®R2.

10



e Case 2: 0 < ¢ < 1. Note that

[vec(U,U7 = U,UN[E = ) [y — )

ieJ jeJ
DD SRS B
ied jed ied jed
< vec(U)IIF* + lIvec(Us) |3
< (lvee(Uy = Up)|§ + [lvee(Uy )Ilq)2+ Ivee(Us)|3*
< (Z o qul—udw) + 3| vec(U,)[| %
i€J
< { qdma |Uzl Uzl| ZH } +3HVeC(UJ>HZq
ieJ

< 2GR+ 3d21~2§,

where w;; is the i-th row, j-th column element of U, the first and third inequalities hold
because |a+b]? < |a|?+|b|? for 0 < ¢ < 1 in Lemmal[S.2|(a), the second inequality holds
for ||vec(I1;)[|¢ < [[vec(U;)||2¢ in Lemma (b), the forth inequality holds due to the
fact that minje;I1;; > 27, and the last inequality holds since max;; [ty — uy|/v < 1

from Lemma 1, ||vec(U;)||? < dR, and ) & < lvec(Uy)]|2.

zEJ

From the above discussion, we can similarly obtain ||[vec(U; — U,)|lo < dRo and ||vec(U; —

U8 < 27%*R, when 0 < ¢ < 1. Define Cy = Cd*R, for some constant C' > 0. Then by
B4) and (), for 0< g <1,
1Al < Cer™ 2| Al + O,
In a similar way, we have
lvee(Us = Un)lls < Cur™ | Allz + O,

since |[vec(U; — Uy)|l2 < ||A||2 according to Proposition 2.2 in [Vu and Lei (2013).

Let 7 = p/d. On the event I,,, choose p < || — I'||, then by (S.3)), we have

€ < 2V2C, 77 %e + 2027771,

11



Hence, ¢ < (2 +V/2)C, 71792,

]

Proof of Lemma 4. (a) Recall that R, = Y7 | S Kp(ty —t)(tqg — )%, £ =0,1,2. We have

ER, = i i/K(uil)uflhﬁf(uﬂ)duﬂ = O(nmh").

i=1 [=1

n  m;

var(Ry) < Z Z E{Kp(ty —t)(ta — t)e}Q

i=1 [=1

— ZZ/[(?(U'H)u?fh?f1f(uil)duil = O(nmh®).

i=1 =1
Combining the above arguments together yields the desired results.

(b) Note that
E [{RoEy(tu —t) — RiKy(ta — t)(ta — t)} o323
= E{RgKf%(til - t)xgjlxz?kl} - 2E{R1R2K}%(til —t)(ta — t)x?jlx?kl} + E{R%Kl%(til —t)(ta — t)Qx?jlx?kl}

= L+ 1+ Is.
To bound the term I;, observe that

L = E {ZZKﬁ(tu—t)(tu—O“}Kﬁ(tu—t)f?jﬂ?kl +

i=1 [=1

E D Kty — )t — £ Kn(tor — 0)(tor — )7 p K (ta — t)23,20
| L aozen)
— Omm2hY),

by the change of variables and Assumptions 2 and 5. Similarly, we have I, = O(n?>m?h?)
and I3 = O(n*m?h?).

(c) Since sup, Exzj(t) < oo for j = 1,...,p, so it suffices to prove that E(wywyr) =

12



O(n?m?h*). Observe that

E(Wywyy) = E[{ReKn(ty —1t) — RiKp(ty —t)(ty — )} {RoKp(tiv —t) — RiKp(tow —t)(tiy —t)}]
= E{R%K}l(tzl — t)Kh(ti/l/ — t)} — E{RleKh(til — t)(til — t)Kh(ti/l/ — t)} —
E{RleKh(ti/l/ — t) (tz"l’ — t)Kh(til — t)} + E{R%K}L(tzl — t)(til — t)Kh(ti/l/ — t) (tz"l’ — t)}

= M1+M2+M3+M4.

Note that
n 2
M, = E {ZZKh a —t)(ta — 75)2} Kty — ) Ky (tyy — 1)
=1 [=1
= L {ZZKh il l - t)4} Kh(til - t)Kh(ti’l’ — t) —+
i=1 [=1
E Z Kh zl - t)( il t)th(ti’l/ — t)(ti’l/ — t)2 Kh(til — t)Kh(ti’l’ — t)
(@D 1)
= O(Pm*h).

Other terms can be quantified similarly and the details are omitted. Combining them to-

gether yields the final result. m

Proof of Lemma 5. Define Wiy, ==Y " {wyzijivin — E (Wyzijiwa)}, for 1 <i<n,1 <1<
my, 1 < g,k < p. Then from Lemma 4, we have
var{Wir(t,h)} < Z L (w'?lx?jlxgkl) + Z E (02 ijiiga Wi T k)
=1 14U
= O(mmn*m*h® + min*m?n).
Let by > var(Wyji) and b = O{var(Wiji)} = O(mmnm2h® + mZn*m?h*). If there exists
a sufficiently small constant @ > 0 such that Ee®i* < oo holds, then Fe®Wir < e®bijk by

Theorem 2.13 in Wainwright| (2019). To see this, when n is large enough, by the Jensen’s

13



inequality and the Cauchy-Schwarz inequality we have

14 Z Z—:E (Z @z%ﬂ%kl)

mg ~
Eet 202 PaTijiTiel <&

IN

<

m;

rlmz

Z E‘wzlnglxzkl|

-1

s a m
+ Z Z{E (| 2550)" + B[] a0)*}

r=1 ! =1

: Z (1 + Z <a7ji) \wzz|m”l )+ Z i E(|wg|22,)" )
’ r=1

r=1

<E6ami\7ﬂizll’?jl + Eeami|@iz|1‘?kz> ]
=1

Denote the event £, = {Exeazgl warijitict < o0}, where Ey means that the expectation is

taken on x conditional on ;. Then, it holds for all ¢ by picking some appropriate w; and a

such that max; am;|w;| is sufficiently small, since 3(t) is sub-exponential uniformly in ¢ by

Assumption 2.

Define B := Y"1 | bijr = O (n®m?®h® + n3m*h*). For sufficiently large n, we have

P (Z Wik = T
=1

En) < exp{—cwn}E{exp (azn:mjk> En}
= exp{—av,} H E {exp(aWijk) En}

< exp{—ay, + Ba’}. (S.6)

Note that (S.6) is minimized when a = ~,,/(2B) and that the minimizer is exp {—~2/(4B)}.

Thus, there exists some positive constant C' such that

P (Z Wiik 2 Vn
i—1

Similarly, we obtain

P <Z Wijk < =
=1

En> <exp {—Cv2/(n*m*h* + n*m*h?)} .

En> <exp {—C~./(n*m’h® + n’m*h*)} .

14



n my

The following obtained by a simple union bound holds for each t € T,
SN {wuwirin — E (buzigiwi) }

P | max
j7k“
i=1 I1=1

< 2pPexp {—Crz/(n®m’h® 4+ n*m*h*)} .

> Yn

:

Let 7, = O{(log p)/?(n*m3h3 +n>m*h*)Y/2}. Note that @y = O,{(n*m?h?)'/?} from Lemma

4, then with probability tending to 1, the event E,, holds from Assumption 4. Consequently,

max
Ik

> Adazipwa — E (wi,miﬂxik,)}| = O,{(logp)"*(n*m’n* + n*m*h*)"/2}.

i=1 [=1
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