Supplementary Material for "Data-driven selection of the number of change-points via error rate control"

Hui Chen¹, Haojie Ren², Fang Yao^{3*} and Changliang Zou¹

¹School of Statistics and Data Science, Nankai University, China
²School of Mathematical Sciences, Shanghai Jiao Tong University, China
³School of Mathematical Sciences, Peking University, China

This supplementary material contains the lemmas used in the proof of Theorem 1 (Appendix C), the proofs of Proposition 1, Theorems 1–3 and Corollaries 1–2 (Appendix D–F), and some additional simulation results (Appendix G).

Appendix B: Equivalence of definitions given by Eqs.(3) and (4)

- If there exists one $\tau_k^* \in \left[\frac{1}{2}(\tau_{j-1} + \tau_j), \frac{1}{2}(\tau_j + \tau_{j+1})\right)$ as (3), we have $\tau_k^* \tau_{j-1} \ge \tau_j \tau_k^*$ when $\tau_j \ge \tau_k^*$ or $\tau_{j+1} - \tau_k^* > \tau_k^* - \tau_j$ when $\tau_j < \tau_k^*$, that is $|\tau_j - \tau_k^*| = \min_{\tau_l \in \mathcal{T}} |\tau_l - \tau_k^*|$ from which τ_j follows (4);
- On the contrary, if $\tau_j = \arg \min_{\tau_l \in \mathcal{T}} |\tau_l \tau_k^*|$ as the definition of (4), we have $\tau_k^* \geq \frac{1}{2}(\tau_{j-1} + \tau_j)$ due to $\tau_k^* \tau_{j-1} > \tau_k^* \tau_j$ if $\tau_k^* < \tau_j$; Similarly, $\tau_k^* < \frac{1}{2}(\tau_j + \tau_{j-1})$ holds for $\tau_k^* > \tau_j$. Say, τ_j follows the definition of (3).

^{*}Corresponding author: fyao@math.pku.edu.cn

Appendix C: Auxiliary lemmas

Lemma S.1 If the model (1) and Assumption 1 hold, $\Omega_n^{-1} = \Sigma + O_p(K_n n^{-1/2})$, where Σ is some positive matrix depending on Σ_k^* 's.

This lemma can be proved using the similar arguments in the Proposition 1 of Zou et al. (2020), thus the details are omitted here.

Lemma S.2 [Bernstein's inequality] Let X_1, \ldots, X_n be independent centered random variables a.s. bounded by $A < \infty$ in absolute value. Let $\sigma^2 = n^{-1} \sum_{i=1}^n \mathbb{E}(X_i^2)$. Then for all x > 0,

$$\Pr\left(\sum_{i=1}^{n} X_i \ge x\right) \le \exp\left(-\frac{x^2}{2n\sigma^2 + 2Ax/3}\right).$$

The third one is a moderate deviation result for the mean; See Petrov (2002).

Lemma S.3 (Moderate Deviation for the Independent Sum)

Suppose that X_1, \ldots, X_n are independent random variables with mean zero, satisfying $\mathbb{E}(|X_j|^{2+q}) < \infty \ (j = 1, 2, \ldots)$ for some q > 0. Let $B_n = \sum_{i=1}^n \mathbb{E}(X_i^2)$. Then

$$\frac{\Pr\left(\sum_{i=1}^{n} X_i > x\sqrt{B_n}\right)}{1 - \Phi(x)} \to 1 \quad and \quad \frac{\Pr\left(\sum_{i=1}^{n} X_i < -x\sqrt{B_n}\right)}{\Phi(-x)} \to 1,$$

as $n \to \infty$ uniformly in x in the domain $0 \le x \le \{\log(1/L_n)\}^{1/2}$, where $L_n = B_n^{-1-\frac{q}{2}} \sum_{i=1}^n \mathbb{E}(|X_i|^{2+q})$.

For notational convenience, we note that our estimation procedure can be reformulated as follows. Suppose we have two independent sets of *d*-dimensional observations $\{\mathbf{S}_1^O, \ldots, \mathbf{S}_n^O\}$ and $\{\mathbf{S}_1^E, \ldots, \mathbf{S}_n^E\}$ collected from the following multiple change-point model

$$\mathbf{S}_{j}^{O} = \boldsymbol{\mu}_{k}^{*} + \mathbf{U}_{j}, \ \mathbf{S}_{j}^{E} = \boldsymbol{\mu}_{k}^{*} + \mathbf{V}_{j}, \ j \in (\tau_{k}^{*}, \tau_{k+1}^{*}], \ k = 0, \dots, K_{n}$$

where $\mathbf{U}_1, \ldots, \mathbf{U}_n, \mathbf{V}_1, \ldots, \mathbf{V}_n$ are independent standardized noises satisfying $\mathbb{E}(\mathbf{U}_1) = \mathbf{0}$ and $\operatorname{Cov}(\mathbf{U}_1) = \operatorname{Cov}(\mathbf{V}_1) = \mathbf{\Sigma}_k^*$. Let $\underline{\boldsymbol{\varpi}} = \min_{0 \leq k \leq K_n} \operatorname{Eig}_{\min}(\mathbf{\Sigma}_k^*)$ and $\bar{\boldsymbol{\varpi}} = \max_{0 \leq k \leq K_n} \operatorname{Eig}_{\max}(\mathbf{\Sigma}_k^*)$, where $\operatorname{Eig}_{\min}(\mathbf{A})$ and $\operatorname{Eig}_{\max}(\mathbf{A})$ denote the smallest and largest eigenvalues of a square matrix \mathbf{A} . By Assumption 1, we know that $0 < \underline{\omega} < \overline{\omega} < \infty$. To keep the subscript consistent with the main body, we roughly let \mathbf{S}_{2i}^{O} , \mathbf{U}_{2i} , \mathbf{S}_{2i-1}^{E} , \mathbf{V}_{2i-1} as 0 for $i = 1, \ldots, m$.

The next one establishes an uniform bound for $\|\sum_{i=k_1+1}^{k_2} \mathbf{U}_i\|$.

Lemma S.4 Suppose Assumption 1 holds. Then we have as $n \to \infty$,

$$\Pr\left(\max_{(k_1,k_2)\in\mathcal{T}(\omega_n)}(k_2-k_1)^{-1}\left\|\sum_{i=k_1+1}^{k_2}\mathbf{U}_i\right\|^2 > C\log n\right) = O(n^{1-\frac{\theta}{\theta-\kappa}}),$$

for some large C > 0 and any $0 < \kappa < \theta - 2\eta^{-1}$.

Proof. We shall show that the assertion holds when d = 1 and the case for d > 1 is straightforward by using the Bonferroni inequality. Denote $M_n = n^{1/(\theta-\kappa)}$ for some $0 < \kappa < \theta$, and observe that

$$U_{i} = [U_{i}\mathbb{I}(|U_{i}| \leq M_{n}) - \mathbb{E}\{U_{i}\mathbb{I}(|U_{i}| \leq M_{n})\}] + [U_{i}\mathbb{I}(|U_{i}| > M_{n}) - \mathbb{E}\{U_{i}\mathbb{I}(|U_{i}| > M_{n})\}]$$

=: $U_{i1} + U_{i2}$.

It suffices to prove that the assertion holds with U_{i1} and U_{i2} respectively. Let $x = \sqrt{C \log n}$ with a sufficiently large C,

$$\Pr\left(\max_{\substack{(k_1,k_2)\in\mathcal{T}(\omega_n)}} (k_2 - k_1)^{-1} \left(\sum_{i=k_1+1}^{k_2} U_i\right)^2 > x^2\right)$$

$$\leq \Pr\left(\max_{\substack{(k_1,k_2)\in\mathcal{T}(\omega_n)}} (k_2 - k_1)^{-1/2} \left|\sum_{i=k_1+1}^{k_2} U_{i1}\right| > x/2\right)$$

$$+ \Pr\left(\max_{\substack{(k_1,k_2)\in\mathcal{T}(\omega_n)}} (k_2 - k_1)^{-1/2} \left|\sum_{i=k_1+1}^{k_2} U_{i2}\right| > x/2\right)$$

$$=:P_1 + P_2.$$

On one hand, by the Bernstein inequality in Lemma S.2, we have

$$P_1 \le n^2 \Pr\left((k_2 - k_1)^{-1/2} \left| \sum_{i=k_1+1}^{k_2} U_{i1} \right| > x/2 \right) \le 2n^2 \exp\left\{ -\frac{w_n x^2}{C_1 w_n + C_2 M_n w_n^{1/2} x} \right\} = o(n^{1 - \frac{\theta}{\theta - \kappa}}),$$

where C_1, C_2 are some positive constants and we use the assumption that $\kappa < \theta - 2\eta^{-1}$.

On the other hand, according to Cauchy inequality and Markov inequality, we note that

$$\mathbb{E}^{2}\{|U_{i}|\mathbb{I}(|U_{i}| > M_{n})\} \leq \mathbb{E}(U_{i}^{2})\operatorname{Pr}(|U_{i}| > M_{n}) \leq C_{3}n^{-\frac{\theta}{\theta-\kappa}},$$

for some constant $C_3 > 0$. Further, it yields $\max_{(k_1,k_2)\in\mathcal{T}(\omega_n)}(k_2-k_1)^{1/2}\mathbb{E}\{|U_i|\mathbb{I}(|U_i|>M_n)\} = o(1)$. Thus, by Assumption 1 and Markov inequality, we have

$$P_{2} \leq \Pr\left(\max_{(k_{1},k_{2})\in\mathcal{T}(\omega_{n})}(k_{2}-k_{1})^{-1/2}\sum_{i=k_{1}+1}^{k_{2}}|U_{i}|\mathbb{I}(|U_{i}|>M_{n})>x/4\right)$$

$$\leq \Pr\left(\max_{(k_{1},k_{2})\in\mathcal{T}(\omega_{n})}(k_{2}-k_{1})^{-1/2}\sum_{i=k_{1}+1}^{k_{2}}|U_{i}|>x/2\mid\max_{i}|U_{i}|>M_{n}\right)\Pr\left(\max_{i}|U_{i}|>M_{n}\right)$$

$$\leq n\Pr\left(|U_{i}|^{\theta}>M_{n}^{\theta}\right)\leq C_{4}n^{1-\frac{\theta}{\theta-\kappa}},$$

for some positive constant C_4 . The lemma is proved.

A direct corollary of Lemma S.4 is the following lemma. Denote $\mathbf{T}_{1j} = \sqrt{\frac{n_j n_{j+1}}{n_j + n_{j+1}}} \mathbf{\Omega}_n (\bar{\mathbf{S}}_j^O - \bar{\mathbf{S}}_{j+1}^O)$ and $\mathbf{T}_{2j} = \sqrt{\frac{n_j n_{j+1}}{n_j + n_{j+1}}} (\bar{\mathbf{S}}_j^E - \bar{\mathbf{S}}_{j+1}^E)$.

Lemma S.5 Suppose Assumptions 1-2 hold. For those $j \in \mathcal{I}_0$, then we have as $n \to \infty$,

$$\Pr\left\{\|\mathbf{T}_{kj}\|^{2} > C(\log n + \omega_{n}^{-1}\delta_{n}^{2})\right\} = O(n^{1-\frac{\theta}{\theta-\kappa}}), \ k = 1, 2$$

for some large C > 0 and any $0 < \kappa < \theta - 2\eta^{-1}$.

Proof. We take \mathbf{T}_{2j} as example. By Assumption 2, if there exists a true change point τ_k^* between $\hat{\tau}_{j-1}$ and $\hat{\tau}_{j+1}$, it can only be either close to $\hat{\tau}_{j-1}$ or $\hat{\tau}_{j+1}$, but not $\hat{\tau}_j$. Without loss

of generality, assume $0 \leq \tau_k^* - \hat{\tau}_{j-1} \leq \delta_n$. Then we note that

$$\begin{aligned} \|\mathbf{T}_{2j}\| &= \left\| \sqrt{\frac{n_j n_{j+1}}{n_j + n_{j+1}}} \left\{ \frac{1}{n_j} \sum_{i=\hat{\tau}_{j-1}+1}^{\hat{\tau}_j} \mathbf{V}_i - \frac{1}{n_{j+1}} \sum_{i=\hat{\tau}_j+1}^{\hat{\tau}_{j+1}} \mathbf{V}_i + \frac{\tau_k^* - \hat{\tau}_{j-1}}{n_j} (\boldsymbol{\mu}_k^* - \boldsymbol{\mu}_{k+1}^*) \right\} \right\| \\ &\leq \sqrt{\frac{n_j}{n_j + n_{j+1}}} \left\| n_j^{-1/2} \sum_{i=\hat{\tau}_{j-1}+1}^{\hat{\tau}_j} \mathbf{V}_i \right\| + \sqrt{\frac{n_{j+1}}{n_j + n_{j+1}}} \left\| n_{j+1}^{-1/2} \sum_{i=\hat{\tau}_j+1}^{\hat{\tau}_{j+1}} \mathbf{V}_i \right\| + \left\| \frac{\tau_k^* - \hat{\tau}_{j-1}}{n_j} (\boldsymbol{\mu}_k^* - \boldsymbol{\mu}_{k+1}^*) \right\| \\ &\leq \sqrt{\frac{n_j}{n_j + n_{j+1}}} \left\| n_j^{-1/2} \sum_{i=\hat{\tau}_{j-1}+1}^{\hat{\tau}_j} \mathbf{V}_i \right\| + \sqrt{\frac{n_{j+1}}{n_j + n_{j+1}}} \left\| n_{j+1}^{-1/2} \sum_{i=\hat{\tau}_j+1}^{\hat{\tau}_{j+1}} \mathbf{V}_i \right\| + \omega_n^{-1/2} \delta_n \left\| \boldsymbol{\mu}_k^* - \boldsymbol{\mu}_{k+1}^* \right\| \\ &\leq 2 \max_{(k_1,k_2)\in\mathcal{T}(\omega_n)} (k_2 - k_1)^{-1/2} \left\| \sum_{i=k_1+1}^{k_2} \mathbf{V}_i \right\| + \omega_n^{-1/2} \delta_n \left\| \boldsymbol{\mu}_k^* - \boldsymbol{\mu}_{k+1}^* \right\|. \end{aligned}$$

The assertion is immediately verified by using Lemma S.4.

Appendix D: Proof of Proposition 1

The proof of this proposition follows similarly to Theorem 2 in Barber et al. (2020) which shows that the Model-X knockoff selection procedure incurs an inflation of the false discovery rate that is proportional to the errors in estimating the distribution of each feature conditional on the remaining features. Fix $\epsilon > 0$ and for any threshold t > 0, define

$$R_{\epsilon}(t) = \frac{\sum_{j \in \mathcal{I}_0} \mathbb{I} \left(W_j \ge t, \Delta_j \le \epsilon \right)}{1 + \sum_{j \in \mathcal{I}_0} \mathbb{I} \left(W_j \le -t \right)}.$$

Consider the event that $\mathcal{A} = \{\Delta := \max_{j \in \mathcal{I}_0} \Delta_j \leq \epsilon\}$. Furthermore, for a threshold rule $L = T(\mathbf{W})$ mapping statistics \mathbf{W} to a threshold $L \geq 0$, for each index $j = 1, \ldots, p$, we define

$$L_j = T(W_1, \dots, W_{j-1}, |W_j|, W_{j+1}, \dots, W_p) \ge 0$$

i.e. the threshold that we would obtain if $sgn(W_j)$ were set to 1.

Then for the MOPS method with the threshold L, we can write

$$\frac{\sum_{j\in\mathcal{I}_0}\mathbb{I}\left(W_j\geq L,\Delta_j\leq\epsilon\right)}{1\vee\sum_j\mathbb{I}(W_j\geq L)} = \frac{1+\sum_j\mathbb{I}\left(W_j\leq-L\right)}{1\vee\sum_j\mathbb{I}(W_j\geq L)}\times\frac{\sum_{j\in\mathcal{I}_0}\mathbb{I}\left(W_j\geq L,\Delta_j\leq\epsilon\right)}{1+\sum_j\mathbb{I}\left(W_j\leq-L\right)}\\\leq\alpha\times R_{\epsilon}(L).$$

It is crucial to get an upper bound for $\mathbb{E}\{R_{\epsilon}(L) \mid \mathcal{Z}_O\}$. In what follows, all the " $\mathbb{E}(\cdot)$ " denote the expectations given \mathcal{Z}_O . We have

$$\mathbb{E}\{R_{\epsilon}(L)\} = \sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\geq L, \Delta_{j}\leq\epsilon\right)}{1+\sum_{j\in\mathcal{I}_{0}}\mathbb{I}\left(W_{j}\leq-L\right)}\right\} \\
= \sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\geq L_{j}, \Delta_{j}\leq\epsilon\right)}{1+\sum_{k\in\mathcal{I}_{0},k\neq j}\mathbb{I}\left(W_{k}\leq-L_{j}\right)}\right\} \\
= \sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left[\mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\geq L_{j}, \Delta_{j}\leq\epsilon\right)}{1+\sum_{k\in\mathcal{I}_{0},k\neq j}\mathbb{I}\left(W_{k}\leq-L_{j}\right)}\mid|W_{j}|, \mathbf{W}_{-j}\right\}\right] \\
= \sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\Pr\left(W_{j}>0\mid|W_{j}|, W_{j-1}, W_{j+1}, \mathcal{Z}_{O}\right)\mathbb{I}\left(|W_{j}|\geq L_{j}, \Delta_{j}\leq\epsilon\right)}{1+\sum_{k\in\mathcal{I}_{0},k\neq j}\mathbb{I}\left(W_{k}\leq-L_{j}\right)}\right\}, \quad (S.1)$$

where the last step holds since the only unknown is the sign of W_j after conditioning on $(|W_j|, W_{j-1}, W_{j+1})$. By definition of Δ_j , we have $\Pr(W_j > 0 \mid |W_j|, W_{j-1}, W_{j+1}, \mathcal{Z}_O) \leq 1/2 + \Delta_j$.

Hence,

$$\mathbb{E}\{R_{\epsilon}(L)\} \leq \sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\left(\frac{1}{2}+\Delta_{j}\right)\mathbb{I}\left(|W_{j}|\geq L_{j},\Delta_{j}\leq\epsilon\right)}{1+\sum_{k\in\mathcal{I}_{0},k\neq j}\mathbb{I}\left(W_{k}\leq-L_{j}\right)}\right\} \leq \left(\frac{1}{2}+\epsilon\right)\left[\sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\geq L_{j},\Delta_{j}\leq\epsilon\right)}{1+\sum_{k\in\mathcal{I}_{0},k\neq j}\mathbb{I}\left(W_{k}\leq-L_{j}\right)}\right\}+\sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\leq-L_{j}\right)}{1+\sum_{k\in\mathcal{I}_{0},k\neq j}\mathbb{I}\left(W_{k}\leq-L_{j}\right)}\right\}\right] = \left(\frac{1}{2}+\epsilon\right)\left[\mathbb{E}\{R_{\epsilon}(L)\}+\sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\leq-L_{j}\right)}{1+\sum_{k\in\mathcal{I}_{0},k\neq j}\mathbb{I}\left(W_{k}\leq-L_{j}\right)}\right\}\right].$$

Finally, the sum in the last expression can be simplified as: if for all null j, $W_j > -L_j$, then the sum is equal to zero, while otherwise,

$$\sum_{j\in\mathcal{I}_0}\mathbb{E}\left\{\frac{\mathbb{I}\left(W_j\leq -L_j\right)}{1+\sum_{k\in\mathcal{I}_0,k\neq j}\mathbb{I}\left(W_k\leq -L_j\right)}\right\}=\sum_{j\in\mathcal{I}_0}\mathbb{E}\left\{\frac{\mathbb{I}\left(W_j\leq -L_j\right)}{1+\sum_{k\in\mathcal{I}_0,k\neq j}\mathbb{I}\left(W_k\leq -L_k\right)}\right\}=1,$$

where the first step comes from the fact: for any j, k, if $W_j \leq -\min(L_j, L_k)$ and $W_k \leq -\min(L_j, L_k)$, then $L_j = L_k$; see Barber et al. (2020).

Accordingly, we have

$$\mathbb{E}\{R_{\epsilon}(L)\} \le \frac{1/2 + \epsilon}{1/2 - \epsilon} \le 1 + 5\epsilon$$

Consequently, the assertion of this proposition holds.

Appendix E: Proof of Lemmas A.1-A.2

Note that both the candidate change-points set $\widehat{\mathcal{T}}_{p_n}$ and the statistics W_j are dependent with \mathcal{Z}_O . In fact, we derive the following two lemmas on the basis of conditional probability on \mathcal{Z}_O . To be specific, conditional on \mathcal{Z}_O , $\widehat{\mathcal{T}}_{p_n}$ is fixed as well as $(\bar{\mathbf{S}}_j^O - \bar{\mathbf{S}}_{j+1}^O)^{\top} \Omega_n$. Due to the independence between \mathcal{Z}_E and \mathcal{Z}_O , the standard results for independent sum such as Lemmas S.2-S.3 can be applied for $\bar{\mathbf{S}}_j^E - \bar{\mathbf{S}}_{j+1}^E$ in the following arguments.

Proof of Lemma A.1

Define $\nu_n = \{C(\log n + \omega_n^{-1}\delta_n^2)\}^{1/2}$ for a large C > 0 specified in Lemma S.5. Let $\mathcal{A}_n = \{\mathbf{u} \in \mathbb{R}^d : \|\mathbf{u}\| \ge t/\nu_n\}$. Then, we observe that

$$\frac{G(t)}{G_{-}(t)} - 1 = \frac{\sum_{j \in \mathcal{I}_0} \{ \Pr(\mathbf{T}_{1j}^{\top} \mathbf{T}_{2j} \ge t \mid \mathcal{Z}_O) - \Pr(\mathbf{T}_{1j}^{\top} \mathbf{T}_{2j} \le -t \mid \mathcal{Z}_O) \}}{p_0 G_{-}(t)}$$

Conditional on \mathcal{Z}_O , we have two cases. Firstly, for the case $\mathbf{T}_{1j} \in \mathcal{A}_n^c$, by Lemma S.5 we obtain that

$$\frac{G(t)}{G_{-}(t)} - 1 \le \frac{\sum_{j \in \mathcal{I}_0} \Pr(\mathbf{T}_{1j}^{\top} \mathbf{T}_{2j} \ge t \mid \mathcal{Z}_O)}{p_0 G_{-}(t)} \le \frac{\sum_{j \in \mathcal{I}_0} \Pr(\|\mathbf{T}_{2j}\| > \nu_n \mid \mathcal{Z}_O)}{p_0/p_n} = O_p(n^{1 - \frac{\theta}{\theta - \kappa}} p_n),$$

where the first inequality is due to $t \leq G_{-}^{-1}(1/p_n)$, and thus we claim that $\frac{G(t)}{G_{-}(t)} - 1 = O_p(n^{1-\frac{\theta}{\theta-\kappa}}p_n)$.

Next, we consider the case $\mathbf{T}_{1j} \in \mathcal{A}_n$. We introduce a new sequence of independent random variables $\{\mathbf{B}_i\}$ defined as follows:

$$\mathbf{B}_{i} = \begin{cases} \frac{\sqrt{n_{j}n_{j+1}}}{n_{j}\sqrt{n_{j}+n_{j+1}}} \mathbf{V}_{i}, & \widehat{\tau}_{j-1} < i \leq \widehat{\tau}_{j}, \\ -\frac{\sqrt{n_{j}n_{j+1}}}{n_{j+1}\sqrt{n_{j}+n_{j+1}}} \mathbf{V}_{i}, & \widehat{\tau}_{j} < i \leq \widehat{\tau}_{j+1}. \end{cases}$$

By Lemma S.3, we firstly verify that for any given $\mathbf{u} \in \mathcal{A}_n$,

$$\frac{\Pr\left\{\sum_{i=\hat{\tau}_{j-1}+1}^{\hat{\tau}_{j+1}} \mathbf{u}^{\top} \mathbf{B}_{i} \geq t \mid \mathcal{Z}_{O}\right\}}{1 - \Phi(t/\sqrt{\mathbf{u}^{\top} \mathbf{\Sigma} \mathbf{u}})} \to 1,$$

where $\Sigma = \{a_j \Sigma_k^* + (n_j + n_{j+1} - a_j) \Sigma_{k+1}^* \} / (n_j + n_{j+1})$ and $a_j = (\tau_k^* - \hat{\tau}_{j-1}) n_{j+1} / n_j$. Note that

$$B_n = \sum_{i=\hat{\tau}_{j-1}+1}^{\hat{\tau}_{j+1}} \mathbb{E}\{(\mathbf{u}^\top \mathbf{B}_i)^2 \mid \mathcal{Z}_O\} = \mathbf{u}^\top \left(\sum_{i=\hat{\tau}_{j-1}+1}^{\hat{\tau}_{j+1}} \operatorname{Cov}(\mathbf{B}_i \mid \mathcal{Z}_O)\right) \mathbf{u}$$
$$= \mathbf{u}^\top \Sigma \mathbf{u} \gtrsim \underline{\varpi} \|\mathbf{u}\|^2,$$

and

$$L_n = B_n^{-\theta/2} \sum_{i=\hat{\tau}_{j-1}+1}^{\hat{\tau}_{j+1}} \mathbb{E}(|\mathbf{u}^\top \mathbf{B}_i|^{\theta} \mid \mathcal{Z}_O)$$
$$\leq B_n^{-\theta/2} \|\mathbf{u}\|^{\theta} \sum_{i=\hat{\tau}_{j-1}+1}^{\hat{\tau}_{j+1}} \mathbb{E}(\|\mathbf{B}_i\|^{\theta} \mid \mathcal{Z}_O) \lesssim \omega_n^{1-\theta/2}$$

Hence, we have $\{2\log(1/L_n)\}^{1/2} \gtrsim \sqrt{\log n}$ due to Assumption 1. Combing with $t/||\mathbf{u}|| \leq \nu_n$, Lemma S.3 can be used.

Further, denote $\mathbf{T}_{1j} = \mathbf{u}$ given \mathcal{Z}_O , then by Lemma S.3, we can observe

$$\Pr(\mathbf{u}^{\top}\mathbf{T}_{2j} \ge t \mid \mathcal{Z}_O) = \tilde{\Phi}\left(\frac{t - \mathbb{E}(\mathbf{u}^{\top}\mathbf{T}_{2j} \mid \mathcal{Z}_O)}{\sqrt{\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}}}\right) \{1 + o_p(1)\}$$
$$= \tilde{\Phi}(t/\sqrt{\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}}) \{1 + o_p(1)\} + O_p(\delta_n n^{-\eta/2}),$$

where $\tilde{\Phi}(x) = 1 - \Phi(x)$, $|\mathbb{E}(\mathbf{u}^{\top}\mathbf{T}_{2j} \mid \mathcal{Z}_O)| \lesssim n^{-\eta/2}\delta_n |\mathbf{u}^{\top}(\boldsymbol{\mu}_k^* - \boldsymbol{\mu}_{k+1}^*)|$ and the last equality is due to Taylor's expansion.

Similarly,

$$\Pr(\mathbf{T}_{1j}^{\top}\mathbf{T}_{2j} \leq -t \mid \mathcal{Z}_{O}) = \Pr(\mathbf{u}^{\top}\mathbf{T}_{2j} \leq -t \mid \mathcal{Z}_{O}) = \Phi(-t/\sqrt{\mathbf{u}^{\top}\mathbf{\Sigma}\mathbf{u}}) \{1 + o_{p}(1)\} + O_{p}(\delta_{n}n^{-\eta/2}).$$
Thus, $\frac{G(t)}{G_{-}(t)} - 1 = O_{p}(\delta_{n}n^{-\eta/2}p_{n})$ under this case. By the condition that $\eta > 2/(\theta - 1)$, we can take $\kappa = \eta\theta/(2+\eta)$ which results in $n^{1-\frac{\theta}{\theta-\kappa}} = O(n^{-\eta/2})$ so that $\frac{G(t)}{G_{-}(t)} - 1 = o_{p}(1)$. Also, note that the above convergence does not depend on \mathbf{u} , and thus the assertion holds uniformly for \mathcal{Z}_{O} .

Proof of Lemma A.2

We only show the validity of the first formula and the second one hold similarly. Note that the G(t) is a deceasing and continuous function. Let $z_0 < z_1 < \cdots < z_{d_n} \leq 1$ and $t_i = G^{-1}(z_i)$, where $z_0 = a_n/p_n, z_i = a_n/p_n + a_n i^{\delta}/p_n, d_n = [\{(p_n - a_n)/a_n\}^{1/\delta}]$ with $\delta > 1$. Note that $G(t_i)/G(t_{i+1}) = 1 + o(1)$ uniformly in *i*. It is therefore enough to obtain the convergence rate of

$$D_n = \sup_{0 \le i \le d_n} \left| \frac{\sum_{j \in \mathcal{I}_0} \left\{ \mathbb{I}(W_j \ge t_i) - \Pr(W_j \ge t_i \mid \mathcal{Z}_O) \right\}}{p_0 G(t_i)} \right|.$$

Define $S_j = \{k \in \mathcal{I}_0 : W_k \text{ is dependent with } W_j\}$ and further

$$D(t) = \mathbb{E}\left[\left\{\sum_{j\in\mathcal{I}_0} \mathbb{I}(W_j \ge t) - \Pr(W_j \ge t \mid \mathcal{Z}_O)\right\}^2 \mid \mathcal{Z}_O\right].$$

It is noted that

$$D(t) = \sum_{j \in \mathcal{I}_0} \sum_{k \in \mathcal{S}_j} \mathbb{E} \left[\left\{ \mathbb{I}(W_j \ge t) - \Pr(W_j \ge t \mid \mathcal{Z}_O) \right\} \left\{ \mathbb{I}(W_k \ge t) - \Pr(W_k \ge t \mid \mathcal{Z}_O) \right\} \mid \mathcal{Z}_O \right] \le 2p_0 G(t)$$

Note that conditional on $\mathcal{Z}_O, W_1, \ldots, W_{p_n}$ is a 1-dependent sequence and so is $\mathbb{I}(W_j \ge t_i)$. We can get

$$\Pr(D_n \ge \epsilon) \le \sum_{i=0}^{d_n} \Pr\left(\left|\frac{\sum_{j \in \mathcal{I}_0} \{\mathbb{I}(W_j \ge t_i) - \Pr(W_j \ge t_i \mid \mathcal{Z}_O)\}}{p_0 G(t_i)}\right| \ge \epsilon\right)$$
$$\le \frac{1}{\epsilon^2} \sum_{i=0}^{d_n} \frac{1}{p_0^2 G^2(t_i)} D(t_i) \le \frac{2}{\epsilon^2} \sum_{i=0}^{d_n} \frac{1}{p_0 G(t_i)}.$$

Moreover, observe that

$$\sum_{i=0}^{d_n} \frac{1}{p_0 G(t_i)} = \frac{p_n}{p_0} \left(\frac{1}{a_n} + \sum_{i=1}^{d_n} \frac{1}{a_n + a_n i^{\delta}} \right)$$

$$\leq c \left(\frac{1}{a_n} + a_n^{-1} \sum_{i=1}^{d_n} \frac{1}{1 + i^{\delta}} \right) \leq c a_n^{-1} \{ 1 + O(1) \}.$$

In sum, we can have $\Pr(D_n \ge \epsilon) \to 0$ provided that $a_n \to \infty$.

Appendix F: Proof of Theorems 1-3 and Corollaries 1-2

Proof of Corollary 1

(i) By Assumption 2, we know that the event that $|\mathcal{I}_1| = K_n$ and for each $\hat{\tau}_j \in \mathcal{I}_1$, $|\hat{\tau}_j - \tau_j^*| \leq \delta_n$ occur with probability approaching one as $n \to \infty$. Therefore, in what follows we always implicitly work with the occurrence of this event. From the proof of Theorem 1, we know that $L \leq \nu_n^2$. Hence

$$\begin{aligned} &\Pr\left(W_{j} < L, \text{ for some } \widehat{\tau}_{j} \in \mathcal{I}_{1} \mid \mathcal{Z}_{O}\right) \\ &\leq K_{n} \Pr\left(\frac{n_{j}n_{j+1}}{n_{j} + n_{j+1}} (\bar{\mathbf{S}}_{j}^{O} - \bar{\mathbf{S}}_{j+1}^{O})^{\top} \mathbf{\Omega}_{n} (\bar{\mathbf{S}}_{j}^{E} - \bar{\mathbf{S}}_{j+1}^{E}) < L \mid \mathcal{Z}_{O}\right) \\ &\leq K_{n} \Pr\left(\frac{n_{j}n_{j+1}}{n_{j} + n_{j+1}} (\bar{\mathbf{U}}_{j} - \bar{\mathbf{U}}_{j+1})^{\top} \mathbf{\Omega}_{n} (\bar{\mathbf{V}}_{j} - \bar{\mathbf{V}}_{j+1}) + O_{p}^{+} (\omega_{n} \min_{1 \le k \le K_{n}} \|\boldsymbol{\mu}_{k+1}^{*} - \boldsymbol{\mu}_{k}^{*}\|^{2}) < L \mid \mathcal{Z}_{O}\right) \\ &\leq K_{n} \Pr\left(O_{p}^{+} (\omega_{n} \min_{1 \le k \le K_{n}} \|\boldsymbol{\mu}_{k+1}^{*} - \boldsymbol{\mu}_{k}^{*}\|^{2}) \le L\right) \\ &+ K_{n} \Pr\left(\frac{n_{j}n_{j+1}}{n_{j} + n_{j+1}} (\bar{\mathbf{U}}_{j} - \bar{\mathbf{U}}_{j+1})^{\top} \mathbf{\Omega}_{n} (\bar{\mathbf{V}}_{j} - \bar{\mathbf{V}}_{j+1}) > O_{p}^{+} (\omega_{n} \min_{1 \le k \le K_{n}} \|\boldsymbol{\mu}_{k+1}^{*} - \boldsymbol{\mu}_{k}^{*}\|^{2}) \mid \mathcal{Z}_{O}\right) \rightarrow 0 \end{aligned}$$

in probability, where we use Lemma S.4. The result immediately holds.

(ii) From (i), we have $\lim_{n\to\infty} \Pr(\mathcal{M} \supseteq \mathcal{I}_1) = 1$. Here, we only need to prove $\lim_{n\to\infty} \Pr(\mathcal{M} \subseteq \mathcal{I}_1) = 1$, which is equivalent to show that $\lim_{n\to\infty} \Pr(\mathcal{M} \cap \mathcal{I}_0 = \emptyset) = 1$.

It is noted that

$$\Pr(W_j \ge L, \text{ for some } j \in \mathcal{I}_0 \mid \mathcal{Z}_O) \le \sum_{j \in \mathcal{I}_0} \Pr(W_j \ge L \mid \mathcal{Z}_O) \sim p_0 \frac{\alpha \psi_n}{p_n} \lesssim K_n \alpha,$$

By using the condition $K_n \alpha \to 0$, the corollary is proved.

Proof of Theorem 1

Following the notations in Section 2, assume $\hat{\tau}_j \in \mathcal{M}$ is an informative point and $\tau_{j'}^*$ is its corresponding true change-point such that $|\hat{\tau}_j - \tau_{j'}^*| \leq \delta_n$ by Assumption 2. Note that $\tilde{\tau}_k \in \widetilde{\mathcal{M}}$ is the selected one such that $|\tilde{\tau}_k - \hat{\tau}_j| = \min_{\tilde{\tau}_l \in \tilde{\mathcal{T}}_{p_n}} |\tilde{\tau}_l - \hat{\tau}_j|$. Because \mathcal{M} and $\widetilde{\mathcal{M}}$ have the same cardinality, we only need to show that $\widetilde{\tau}_k \in \mathcal{I}_1(\widetilde{\mathcal{T}}_{p_n})$, say

$$|\tilde{\tau}_k - \tau_{j'}^*| = \min_{\tilde{\tau}_l \in \tilde{\mathcal{T}}_{p_n}} |\tilde{\tau}_l - \tau_{j'}^*|$$
(S.2)

by the definition (4).

If there exists another $\tilde{\tau}_{k'} \in \tilde{\mathcal{T}}_{p_n}$ such that $|\tilde{\tau}_{k'} - \tau_{j'}^*| \leq \delta_n$ but $k' \neq k$, we have

$$\omega_n \le |\widetilde{\tau}_k - \widetilde{\tau}_{k'}| \le |\widetilde{\tau}_k - \widehat{\tau}_j| + |\widehat{\tau}_j - \widetilde{\tau}_{k'}| < 2|\widehat{\tau}_j - \widetilde{\tau}_{k'}| \le 4\delta_n$$

due to $|\tilde{\tau}_k - \hat{\tau}_j| < |\tilde{\tau}_{k'} - \hat{\tau}_j|$ and $|\tilde{\tau}_{k'} - \hat{\tau}_j| \leq |\tilde{\tau}_{k'} - \tau_{j'}^*| + |\hat{\tau}_j - \tau_{j'}^*|$. This conflicts with the fact $\delta_n = o(\omega_n)$, from which the result (S.2) is valid.

In Theorem 1, we have shown that the FDP of MOPS is asymptotically controlled at the level α . Thus, with probability tending to one, \mathcal{M} contains more than $|\mathcal{M}|(1 - \alpha)$ informative points, and so does the $\widetilde{\mathcal{M}}$. Consequently, $FDP(\widetilde{\mathcal{M}}) \leq \alpha + o_p(1)$ and thus the part (i) holds.

The part (ii) is a direct consequence of Corollary 1.

Proof of Corollary 2

We only need to observe that

$$\mathbb{E}\left\{\sum_{j\in\mathcal{I}_{0}}\mathbb{I}(W_{j}\geq L')\right\}\leq\mathbb{E}\left\{\sum_{j}\mathbb{I}(W_{j}\leq -L')\frac{\sum_{j\in\mathcal{I}_{0}}\mathbb{I}(W_{j}\geq L')}{\sum_{j\in\mathcal{I}_{0}}\mathbb{I}(W_{j}\leq -L')}\right\}\\\leq k_{0}\times\mathbb{E}\left\{\frac{\sum_{j\in\mathcal{I}_{0}}\mathbb{I}(W_{j}\geq L')}{\sum_{j\in\mathcal{I}_{0}}\mathbb{I}(W_{j}\leq -L')}\right\}.$$

Thus, the result holds by using (A.2).

Also, notice that $|\mathcal{U}| = |\widetilde{\mathcal{U}}|$ and $|\mathcal{U} \cap \mathcal{I}_1(\widehat{\mathcal{T}}_{p_n})| \le |\widetilde{\mathcal{U}} \cap \mathcal{I}_1(\widetilde{\mathcal{T}}_{p_n})|$ which is verified in the proof of Theorem 1. It follows that $\operatorname{PFER}(\widetilde{\mathcal{U}}) \le \operatorname{PFER}(\mathcal{U})$.

Proof of Theorem 3

(i) By the definition and assumption, the \tilde{W}_j 's are symmetrically distributed and independent, $\Delta_j = 0$ for all $\hat{\tau}_j \in \mathcal{I}_0$, and we can obtain the FDR-control result by letting $\epsilon = 0$.

(ii) Let $a_n = (C \log n)^{1/2}$, where C > 0 is specified in Lemma S.5. Define $\mathcal{B}_n = \{\mathbf{u} \in \mathbb{R}^d : \|\mathbf{u}\| \ge t/a_n\}$. Let $\mathcal{C} = \bigcap_{j \in \mathcal{I}_0} \{|\tilde{W}_j| \le \lambda_j\}$, where λ_j satisfies $\Pr(|\tilde{W}_j| > \lambda_j | \mathcal{Z}_O) = b_n$ and b_n be a sequence satisfies the conditions that $b_n \to 0$, $p_n b_n \to 0$ and $n^{\eta/2} b_n \to \infty$. According to the condition $p_n n^{-\eta/2} \to 0$ in the theorem, such b_n is well defined. By the definition of \tilde{W}_j , we know that $\mathbb{E}(\tilde{W}_j) = 0$ for all $\hat{\tau}_j \in \mathcal{I}_0$. Moreover, by Lemma S.5, we have $\lambda_j \lesssim a_n^2$ uniformly in j.

According to Proposition 1, we have

$$\Pr\left(\max_{j\in\mathcal{I}_{0}}\Delta_{j}>\epsilon\mid\mathcal{Z}_{O}\right)=\Pr\left(\max_{j\in\mathcal{I}_{0}}\Delta_{j}>\epsilon\mid\mathcal{C},\mathcal{Z}_{O}\right)\Pr(\mathcal{C}\mid\mathcal{Z}_{O})+\Pr\left(\max_{j\in\mathcal{I}_{0}}\Delta_{j}>\epsilon,\mathcal{C}^{c}\mid\mathcal{Z}_{O}\right)$$
$$\leq\Pr\left(\max_{j\in\mathcal{I}_{0}}\Delta_{j}>\epsilon\mid\mathcal{C},\mathcal{Z}_{O}\right)+\Pr(\mathcal{C}^{c}\mid\mathcal{Z}_{O}):=A_{1}+A_{2}.$$

By the definition of b_n , $A_2 = o_p(1)$. It remains to handle A_1 .

Notice that conditional on \mathcal{C} ,

$$\max_{j \in \mathcal{I}_0} \Delta_j \le \max_{j \in \mathcal{I}_0} \sup_{0 \le t \le \lambda_j} \left| f_j(-t) / f_j(t) - 1 \right|, \tag{S.3}$$

where $f_j(\cdot)$ is the density of \tilde{W}_j conditional on \mathcal{Z}_O . It remains to prove that the right-hand side of (S.3) goes to zero as $n \to \infty$.

Denote $\tilde{\mathbf{T}}_{1j} = \sqrt{\frac{n_j n_{j+1}}{n_j + n_{j+1}}} \mathbf{\Omega}_n (\tilde{\mathbf{S}}_{Lj}^O - \tilde{\mathbf{S}}_{Rj}^O) = \mathbf{u}$ given \mathcal{Z}_O . In a similar way to the proof of Lemma A.1, we consider two cases for \mathbf{u} . As to the case $\mathbf{u} \in \mathcal{B}_n^c$, $\max_{j \in \mathcal{I}_0} \Delta_j = O_p\{(n^{\eta/2}b_n)^{-1}\}$ by the definition of λ_j and $0 \leq t \leq \lambda_j$. On the other hand, we consider the case $\mathbf{u} \in \mathcal{B}_n$. Then, for $j \in \mathcal{I}_0$ by Lemma S.3, we have

$$f_j(t) = \{\tilde{\Phi}(t/s) - \tilde{\Phi}(t/s-)\}\{1 + o_p(1)\} = \frac{1}{s}\phi(t/s)\{1 + o_p(1)\},\$$

where $s = \sqrt{\mathbf{u}^{\top} \mathbf{\Sigma} \mathbf{u}}$. Similarly, we also have $f_j(-t) = \frac{1}{s} \phi(-t/s) \{1 + o_p(1)\}$, which yields that the right-hand side of (S.3) goes to zero since $\phi(-t/s) = \phi(t/s)$ and $\phi(t/s)$ is bounded. Then, the result (ii) in the theorem holds.

Appendix G: Additional simulation results

Selection of p_n and ω_n

Table S1 reports the FDR, TPR and \hat{K} of MOPS in conjunction with OP, PELT and WBS detection algorithms with different p_n and ω_n under Example I. We consider the error from N(0,1) and fix n = 4096, $K_n = 15$ and SNR=0.5. We observe that different values of $c \in (1,2]$ for $p_n = \lfloor cn^{2/5} \rfloor$ and $\eta \in [0.3, 0.5]$ for $\omega_n = n^{\eta}$ present similar results and their FDRs are not significantly different. Thus we recommend $p_n = \lfloor 2n^{2/5} \rfloor$ and $\omega_n = \min(\lfloor n^{0.5} \rfloor, 60)$ in the simulation studies.

Table S1: FDR(%), TPR(%) and \hat{K} of MOPS in conjunction with OP, PELT and WBS detection algorithms when error follows N(0,1), n = 4096, $K_n = 15$ and SNR=0.5 under Example I. The p_n is chosen as $p_n = \lfloor cn^{2/5} \rfloor$ with c = 1.2, 1.5, 2 and $\omega_n = n^{\eta}$ with $\eta = 0.3, 0.4, 0.5$.

		$\eta = 0.3$				$\eta = 0.4$			$\eta = 0.5$			
p_n	Method	FDR	TPR	\widehat{K}	FDR	TPR	\widehat{K}	FDR	TPR	\widehat{K}		
	M-OP	19.8	91.3	17.7	19.1	92.7	17.9	18.9	95.2	18.3		
$1.2n^{2/5}$	M-PELT	19.5	91.2	17.5	19.4	93.1	18.0	19.9	95.7	18.8		
	M-WBS	16.9	91.8	17.3	17.2	92.3	17.5	19.5	95.3	18.5		
	M-OP	18.6	90.0	17.2	21.0	92.9	18.6	20.5	93.7	18.4		
$1.5n^{2/5}$	M-PELT	16.6	89.3	16.7	20.8	93.1	18.6	21.2	94.1	18.9		
	M-WBS	17.3	85.9	16.3	18.3	86.3	16.6	16.4	90.9	17.0		
	M-OP	20.5	79.5	17.4	19.5	82.1	16.5	20.4	85.3	17.0		
$2n^{2/5}$	M-PELT	20.2	80.3	17.1	20.0	82.7	16.7	19.7	85.5	17.0		
	M-WBS	19.6	76.7	15.9	17.8	77.8	15.8	18.1	83.1	16.5		

Next, we investigate the performance of our methods in the case that $p_n > 2n^{2/5}$. Figure S1 presents the FDR and TPR curves of MOPS, R-MOPS and M-MOPS when p_n varies in $(2n^{2/5}, n/10)$ and the WBS algorithm is employed under Example I. Here we fix $\omega_n = 10$ and the true change-point number $K_n = 30$ and consider the error comes from N(0, 1) and standardized $\chi^2(3)$. The FDR values of MOPS vary in an acceptable range of the target level

no matter the choice of p_n under normal error, but are slightly distorted under standardized $\chi^2(3)$ error. The R-MOPS is able to improve TPR and yield smaller FDR levels than MOPS due to the use of full sample information. We also observe that the M-MOPS leads to more conservative FDR levels and smaller TPR than R-MOPS because of only using half of the observations around each candidate point. That is consistent with our theoretical analysis in Proposition 1 and Theorem 3. Similar results can also be found in Figure S2.

Method - MOPS - R-MOPS · M-MOPS

Figure S1: FDR and TPR curves against $p_n \in (2n^{2/5}, n/10)$ of MOPS, R-MOPS and M-MOPS in conjunction with WBS algorithm when n = 4096, $K_n = 30$ and SNR=1 under Example I. The ω_n is fixed as 10.

Figure S2 shows the FDR and TPR curves against ω_n of the MOPS, R-MOPS and M-MOPS in conjunction with WBS algorithm when n = 4096, $K_n = 10$ and p_n is fixed as $\lfloor 2n^{2/5} \rfloor$ under Example I. It implies that all the procedures are not sensitive to the choice of ω_n in terms of FDR control. Meanwhile, a large ω_n could improve the detection power due

to more observations in each segment.

Method - MOPS - R-MOPS · · M-MOPS

Figure S2: FDR and TPR curves against ω_n of MOPS, R-MOPS and M-MOPS in conjunction with WBS algorithm when n = 4096, $K_n = 10$ and SNR=0.7 under Example I. The p_n is fixed as $\lfloor 2n^{2/5} \rfloor$.

Comparison under other models

Three other MCP models are considered, reflecting changes in different aspects such as the location and scale. Table S2 gives a summary of all three simulated models along with the associated statistics $\bar{\mathbf{S}}_{j}^{O}$ in constructing W_{j} .

Under multivariate mean change model (Example III), we examine the performance of the refined MOPS in conjunction with the OP and PELT algorithms. For simplicity, each dimension of the signals μ_i 's is set as the same as the signals μ_i 's in Example I. Two scenarios for the error distribution are considered: (i) $\boldsymbol{\varepsilon}_i \stackrel{\text{iid}}{\sim} N(\mathbf{0}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} = (0.5^{|i-j|})_{d \times d}$;

Table S2: Preview of simulated models and the sample mean $\bar{\mathbf{S}}_{j}^{O}$ of the *j*-th segment for the odd part. Change-points $\hat{\tau}_{j}$'s are estimated on the basis of \mathcal{Z}_{O} .

NO.	Model	$ar{\mathbf{S}}^O_j$
III	$\mathbf{X}_i = oldsymbol{\mu}_i + \sigma oldsymbol{arepsilon}_i$	$ar{\mathbf{X}}^{O}_{\widehat{ au}_{j-1},\widehat{ au}_{j}}$
IV	$\mathbf{X}_i \sim \operatorname{Multinomial}(m, \mathbf{q}_i)$	$ar{\mathbf{X}}^{O}_{\widehat{ au}_{j-1},\widehat{ au}_{j}}$
V	$X_i = \sigma_i \varepsilon_i$	$\bar{V}^O_{\hat{\tau}_{j-1},\hat{\tau}_j}, V_i = \log X_i^2$

(ii) $\boldsymbol{\varepsilon}_i = (\varepsilon_{i1}, \ldots, \varepsilon_{id})^{\top}$, where $\varepsilon_{i1}, \ldots, \varepsilon_{id} \stackrel{\text{iid}}{\sim} (\chi_5^2 - 5)/\sqrt{10}$. We consider the dimension d = 5, 10 and adjust the scale parameter to $\sigma = 9\sqrt{d}$. Table S3 presents the results when the sample size n = 3072 and the number of change-points $K_n = 27$. The R-MOPS-based methods perform reasonably well in terms of FDR control and reliable TPR. In contrast, the CV-PELT results in overly conservative FDR levels across all the settings and its P_a 's are much smaller than those of R-MOPS.

Table S3: Comparison results of FDR(%), TPR(%), $P_a(\%)$ and \hat{K} when $K_n = 27$ and n = 3072under Example III (multivariate mean shift).

		d = 5					d = 10					
errors	Method	FDR	TPR	P_a	\widehat{K}	_	FDR	TPR	P_a	\widehat{K}		
	RM-OP	18.5	97.1	53.5	32.9		18.9	92.9	35.0	32.1		
$\boldsymbol{\varepsilon}_i \sim N(0, \boldsymbol{\Sigma})$	RM-PELT	18.7	97.5	54.0	32.8		18.5	92.5	33.5	31.9		
	CV-PELT	0.9	91.3	18.0	24.9		0.6	86.7	4.0	23.6		
	RM-OP	19.7	99.1	87.0	33.0		20.3	95.9	68.5	33.1		
$\varepsilon_{ij} \sim \frac{\chi_5^2 - 5}{\sqrt{10}}$	RM-PELT	19.5	99.0	85.5	32.7		20.8	96.2	69.5	33.3		
¥ 10	CV-PELT	0.8	85.9	4.5	23.4		1.7	84.1	0.0	23.1		

Further, we consider the MCP problem for multinomial distributions (Example IV), i.e. $\mathbf{X}_i \sim \text{Multinom}(n_0, \mathbf{q}_i)$, where the variance of the observation relies on their mean. Braun et al. (2000) integrated the problem into quasi-likelihood framework in combination with BIC to determine the number of change-points. In particular, they aimed to identify the

breaks in the probability vectors \mathbf{q}_i 's and recommended the BIC with a penalty $\zeta_n = 0.5n^{0.23}$, which will be seen as a benchmark for comparison in this example. To implement MOPS, we apply their algorithm in our training step, i.e., given a candidate model size p_n , we obtain the estimated change-points by constructing the statistics W_j in (5). We follow the same mechanism in Braun et al. (2000) to generate \mathbf{q}_i 's. To be specific, the initial mean vector $\mathbf{q} = (q_1, \ldots, q_d)^{\top}$ is given as $q_j = U_j / \sum_{l=1}^d U_l$ for $j = 1, \ldots, d$ where $U_j \sim \text{Uniform}(0, 1)$. The jump mean vector $\mathbf{q}_k^* = (q_1^*, \ldots, q_d^*)^{\top}$ for change point k is obtained by normalizing expit(logit $q_l^* + U_l^*$) for $l = 1, \ldots, d$ where $U_l^* \sim \text{Uniform}(-J, J)$ with $J = 0.8/\sqrt{d}$. Table S4 reports the simulation results when n = 2048, $K_n = 20$, $n_0 \in (80, 100, 120)$ and d is chosen as 5 or 10. Again, our R-MOPS can successfully control the FDR at the nominal level in most cases. The BIC method delivers conservative FDR levels and it may miss some change-points due to relatively low P_a .

			d =	5			d =	10	
n_0	Method	FDR	TPR	P_a	\widehat{K}	FDR	TPR	P_a	\widehat{K}
80	R-MOPS	20.2	98.1	85.5	25.2	17.1	92.8	45.0	23.1
	BIC	1.8	92.2	41.0	19.4	1.9	89.2	32.0	19.3
100	R-MOPS	21.1	99.2	92.0	26.0	20.1	98.3	75.5	25.2
	BIC	1.6	94.7	62.5	19.6	1.5	93.2	55.5	19.5
120	R-MOPS	21.5	99.8	97.5	26.2	21.2	99.0	85.0	26.0
	BIC	1.3	97.2	73.5	19.7	1.1	96.4	69.0	19.6

Table S4: Comparison results of FDR(%), TPR(%), $P_a(\%)$ and \hat{K} between R-MOPS and BIC in conjunction with Braun et al. (2000)'s algorithm when $K_n = 20$ and n = 2048 under Example IV.

At last, we investigate the performance of R-MOPS in conjunction with PELT under Example V when the scale signal function of σ_i 's is chosen as a piecewise constant function with values alternating between 1 and 0.5. We fix n = 4096 and show the curves of FDR, TPR and P_a when $K_n \in [28, 35]$ in Figure S3. We observe that the FDRs of R-MOPS with PELT get closer to the target level as K_n increases, which is in accordance with the theoretical justification. Meanwhile, the CV-PELT method usually results in an underfitting model because some true change-points are not selected.

Figure S3: FDR, TPR and P_a curves against K_n between R-MOPS and CV criterion based on PELT when n = 4096 and errors are i.i.d from standardized t_5 under Example V.

Extension on controlling PFER

Table S5 reports some PFER results of the MOPS in conjunction with OP and PELT when the target PFER level $k_0 = 1, 5$ or 10. We fix the sample size n = 4096, the dimension d = 5for multivariate data and consider that all errors are distributed from N(0, 1). The validity of our MOPS approach in terms of PFER control is clear.

Others

Figure S4 displays the performance comparison under Example I with the same model setting as Section 5.1 when the target FDR level is $\alpha = 0.1$. The comparison results are analogous to those in nominal level $\alpha = 0.2$.

Table S6 presents the comparisons between our R-SaRa and dFDR-SaRa under Example I. Following the recommendation in Hao et al. (2013), we choose four thresholds $h_1 = \lfloor 3 \log n \rfloor$, $h_2 = \lfloor 5 \log n \rfloor$, $h_3 = \lfloor 7 \log n \rfloor$ and $h_4 = \lfloor 9 \log n \rfloor$ as simple competitors. It is

		$K_n = 5$				$K_n = 1$	10		$K_n = 15$		
Example	Method k ₀	1	5	10	1	5	10	1	5	10	
Ι	M-OP	1.08	5.07	9.83	0.98	5.13	9.73	0.92	4.96	10.56	
	M-PELT	0.86	4.94	9.86	0.91	5.23	10.18	1.06	5.07	10.90	
II	M-OP	0.79	4.86	10.03	0.69	4.72	10.25	0.89	4.97	10.04	
	M-PELT	0.74	4.14	9.57	0.77	4.93	10.36	0.66	5.05	8.58	
III	M-OP	0.65	5.04	10.05	1.06	5.10	10.13	0.94	5.01	10.72	
	M-PELT	0.67	4.78	9.83	0.83	4.87	10.27	0.72	4.91	10.60	
IV	M-OP	0.81	4.13	9.18	1.01	5.16	9.93	0.97	5.13	9.75	
	M-PELT	0.68	4.22	9.00	1.02	4.74	9.74	0.83	5.09	10.08	
V	M-OP	0.78	5.10	9.93	0.89	5.09	10.08	1.13	5.07	10.89	
	M-PELT	0.62	4.97	10.21	0.77	4.89	10.38	0.72	5.02	11.12	

Table S5: *PFER performance of MOPS in conjunction with OP and PELT when the target PFER* level $k_0 = 1, 5$ and 10 under Examples I-V.

Method - RM-PELT - CV-PELT · FDRSeg

Figure S4: FDR, P_a and the average number of estimated change-points \hat{K} curves against SNR among RM-PELT, CV-PELT and FDRseg when $K_n = 20$, n = 2048 and the target FDR level $\alpha = 0.1$ under Example I.

clear that the R-MOPS performs well in terms of FDR control, but the performance of dFDR-SaRa depends on the choice of h to a large extent.

For the frequent change-point setting, Fryzlewicz (2020) proposed WBS2 detection algo-

			K_n =	= 20			$K_n = 40$					
Errors	Method	FDR	TPR	P_a	\widehat{K}	FDR	TPR	P_a	\widehat{K}			
	RM-SaRa	19.5	99.2	84.0	25.4	22.2	99.8	92.0	52.2			
	dFDR-SaRa- h_1	17.1	78.2	6.5	19.2	10.7	83.9	1.0	37.8			
N(0,1)	dFDR-SaRa- h_2	10.2	94.3	44.0	21.0	3.0	95.9	29.0	39.6			
	dFDR-SaRa- h_3	9.6	97.3	70.5	21.6	0.2	98.3	49.5	39.4			
	dFDR-SaRa- h_4	3.4	99.1	90.0	20.5	0.0	95.8	1.0	38.3			
		10.0	00 7	045	05 0	20.0	00.0	00 F	F 1 1			
	RM-SaRa	18.6	99.7	94.5	25.3	20.9	99.9	96.5	51.1			
	dFDR-SaRa- h_1	16.8	89.2	18.5	21.6	11.0	92.8	13.5	41.9			
$\chi^2(3)$	dFDR-SaRa- h_2	12.8	98.1	74.0	22.7	2.0	99.3	81.0	40.5			
	dFDR-SaRa- h_3	7.2	99.7	96.5	21.6	0.3	99.8	92.0	40.0			
	dFDR-SaRa- h_4	2.6	100.0	100.0	20.6	0.0	95.3	0.0	39.0			

Table S6: Comparison results of FDR(%), TPR(%), $P_a(\%)$ and \hat{K} between RM-Sara and dFDR-SaRa-h in Hao et al. (2013) when n = 10240 and SNR=0.7 under Example I.

rithm with threshold-based model selection criterion "Steepest Drop to Low Levels" (SDLL). We compare our procedure R-MOPS in conjunction with WBS2 to the WBS2.SDLL criterion when the "extreme.teeth" example of the univariate changes in Fryzlewicz (2020) is considered. Specially, in the "extreme.teeth" example, the mean μ_i 's for each observation are defined as follows: $\mu_i = 0$ if $1 \leq \text{mod}(i, 10) \leq 5$ and $\mu_i = 1$ if $\text{mod}(i, 10) \in \{0, 6, 7, 8, 9\}$, and the sample size n is 1000. Two values of SNR and three error distributions including N(0, 1), standardized t(3) and standardized $\chi^2(3)$ are considered. We fix $\omega_n = 4$ and $p_n = 250$ for the R-MOPS. From Table S7, we can see that the FDRs of R-MOPS with WBS2 are still controlled, though they appear to be overly conservative. The WBS2.SDLL generally has better performances in terms of \hat{K} estimation in the most settings.

Another real-data example: OPEC oil price

We analyze the daily Organisation of the Petroleum Exporting Countries (OPEC) Reference Basket oil prices from Jan. 6, 2003 to Dec. 16, 2020 with sample size n = 4610, which is available from https://www.quandl.com. As the raw oil price series tend to ex-

Table S7: Comparisons of \hat{K} , FDR(%) and TPR(%) between R-MOPS and SDLL in conjunction with WBS2 Fryzlewicz (2020)'s "extreme.teeth" example when n = 1000, $K_n = 199$ and three error distributions are considered. The target FDR level is $\alpha = 0.2$ and σ^2 is the error variance.

			$\sigma = 0.3$			$\sigma = 0.5$				
Error	Method	\widehat{K}	FDR	TPR	Î	Ŕ	FDR	TPR		
N(0,1)	RMOPS	193.7	7.1	90.4	16	0.6	10.0	72.6		
	SDLL	199.4	3.8	96.4	71	.6	9.0	29.3		
t(3)	RMOPS	193.9	7.1	90.5	17	6.5	8.0	81.6		
	SDLL	209.8	7.1	97.8	22	1.8	19.6	89.0		
$\chi^2(3)$	RMOPS	193.1	7.1	90.2	16	7.9	8.9	76.8		
	SDLL	211.0	8.1	97.2	20	0.5	22.8	77.3		

hibit strong autocorrelation (Baranowski et al., 2019), we consider analyzing the log-returns $100 \log(P_i/P_{i-1})$, where P_i is the daily oil price. Figure S5 presents the data sequence of log-returns and its autocorrelation, indicating the correlations of log-returns are relatively weak. As Baranowski et al. (2019) pointed out that both mean and scale changes exist in the sequence, we build $\mathbf{S}_i = (\mathbb{Z}_i, \log(\mathbb{Z}_i^2))^{\top}$ in W_j for the proposed MOPS procedure to detect changes in both the mean and variance when PELT algorithm is applied. In this study, we use the function cpt.meanvar() in R package changepoint to implement the PELT algorithm and also report change-points detected by the BIC for comparison.

The BIC results in 33 change-points, while the R-MOPS with PELT yields 36 and 55 change-points when the target FDR level is 0.05 and 0.1, respectively. The locations of the change-points identified by BIC and R-MOPS with $\alpha = 0.05$ are given in the left panel of Figure S5. The estimated change-points of both methods largely agree each other. However, the BIC does not indicate any changes in late 2004 and early 2005 and meanwhile R-MOPS has several estimated change-points in that period. This period could potentially be related to a noticeable expansion of the production volume in the late 2004, which leads to a significant change of oil price elasticity. Thus, Murray and King (2012) called the early

Figure S5: (a): Scatter plots of the log-returns of daily OPEC oil prices, where the blue dash and red solid lines represent the estimated change-points detected by BIC and R-MOPS with PELT algorithm under $\alpha = 0.05$; (b) Autocorrelation of log-returns.

2005 was oil's tipping point.

References

- Baranowski, R., Chen, Y., and Fryzlewicz, P. (2019), "Narrowest-over-threshold detection of multiple change points and change-point-like features," *Journal of the Royal Statistical Society: Series* B (Statistical Methodology), 81, 649–672.
- Barber, R. F., Candès, E. J., and Samworth, R. J. (2020), "Robust inference with knockoffs," The Annals of Statistics, 48, 1409–1431.
- Braun, J. V., Braun, R. K., and Müller, H. G. (2000), "Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation," *Biometrika*, 87, 301–314.
- Fryzlewicz, P. (2020), "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," *Journal of the Korean Statistical Society*, 1–44.
- Hao, N., Niu, Y. S., and Zhang, H. (2013), "Multiple change-point detection via a screening and ranking algorithm," *Statistica Sinica*, 23, 1553–1572.
- Murray, J. and King, D. (2012), "Oil's tipping point has passed," Nature, 481, 433–435.
- Petrov, V. (2002), "On probabilities of moderate deviations," Journal of Mathematical Sciences, 109, 2189–2191.
- Zou, C., Wang, G., and Li, R. (2020), "Consistent selection of the number of change-points via sample-splitting," The Annals of Statistics, 48, 413–439.