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We propose a two-sample test for high-dimensional means that requires
neither distributional nor correlational assumptions, besides some weak con-
ditions on the moments and tail properties of the elements in the random vec-
tors. This two-sample test based on a nontrivial extension of the one-sample
central limit theorem (Ann. Probab. 45 (2017) 2309–2352) provides a prac-
tically useful procedure with rigorous theoretical guarantees on its size and
power assessment. In particular, the proposed test is easy to compute and does
not require the independently and identically distributed assumption, which
is allowed to have different distributions and arbitrary correlation structures.
Further desired features include weaker moments and tail conditions than ex-
isting methods, allowance for highly unequal sample sizes, consistent power
behavior under fairly general alternative, data dimension allowed to be expo-
nentially high under the umbrella of such general conditions. Simulated and
real data examples have demonstrated favorable numerical performance over
existing methods.

1. Introduction. Two-sample test of high dimensional means as one of the key issues
has attracted a great deal of attention due to its importance in various applications, including
[2–5, 10–12, 19, 24–26, 29] and [21], among others. In this article, we tackle this problem
with the theoretical advance brought by a high-dimensional two-sample central limit the-
orem. Based on this, we propose a new type of testing procedure, called distribution and
correlation-free (DCF) two-sample mean test, which requires neither distributional nor cor-
relational assumptions and greatly enhances its generality in practice.

We denote two samples by Xn = {X1, . . . ,Xn} and Ym = {Y1, . . . , Ym} respectively, where
Xn is a collection of mutually independent (not necessarily identically distributed) random
vectors in R

p with Xi = (Xi1, . . . ,Xip)′ and E(Xi) = μX = (μX
1 , . . . ,μX

p )′, i = 1, . . . , n,
and Ym is defined in a similar fashion with E(Yi) = μY = (μY

1 , . . . ,μY
p)′ for all i = 1, . . . ,m.

The normalized sums SX
n and SY

m are denoted by SX
n = n−1/2 ∑n

i=1 Xi = (SX
n1, . . . , S

X
np)′ and

SY
m = m−1/2 ∑m

i=1 Yi = (SY
m1, . . . , S

Y
mp)′, respectively. Note that we only assume independent

observations, and each sample with a common mean. The hypothesis of interest is

H0 : μX = μY v.s. Ha : μX �= μY ,

and the proposed two-sample DCF mean test is such that we reject H0 : μX = μY at signifi-
cance level α ∈ (0,1), provided that

Tn = ∥∥SX
n − n1/2m−1/2SY

m

∥∥∞ ≥ cB(α),

where Tn = ‖SX
n − n1/2m−1/2SY

m‖∞ is the test statistic that only depends on the infinity
norm of the sample mean difference, and cB(α) that plays a central role in this test is a data-
driven critical value defined in (5) of Theorem 3. It is worth mentioning that cB(α) is easy to
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compute via a multiplier bootstrap based on a set of independently and identically distributed
(i.i.d.) standard normal random variables that are independent of the data, where the explicit
calculation is described after (6). Note that the computation of the proposed test is of an order
O{n(p +N)}, more efficient than O(Nnp) that is usually demanded by a general resampling
method. In spite of the simple structure of Tn, we shall illustrate its desirable theoretical
properties and superior numerical performance in the rest of the article.

We emphasize that our main contributions reside on developing a practically useful test
that is computationally efficient with rigorous theoretical guarantees given in Theorem 3–
5. We begin with deriving nontrivial two-sample extensions of the one-sample central limit
theorems and its corresponding bootstrap approximation theorems in high dimensions [9],
where we do not require the ratio between sample sizes n/(n + m) to converge but merely
reside within any open interval (c1, c2), 0 < c1 ≤ c2 < 1, as n,m → ∞. Further, Theorem 3
lays down a foundation for conducting the two-sample DCF mean test uniformly over all
α ∈ (0,1). The power of the proposed test is assessed in Theorem 4 that establishes the
asymptotic equivalence between the estimated and true versions. Moreover, the asymptotic
power is shown consistent in Theorem 5 under some general alternatives with no sparsity or
correlation constraints.

The proposed test sets itself apart from existing methods by allowing for non-i.i.d. ran-
dom vectors in both samples. The distribution-free feature is in the sense that, under the
umbrella of some mild assumptions on the moments and tail properties of the coordinates,
there is no other restriction on the distributions of those random vectors. In contrast, exist-
ing literature require the random vectors within sample to be i.i.d. [3–6], and some methods
further restrict the coordinates to follow a certain type of distribution, such as Gaussian or
sub-Gaussian [26, 29]. This feature sets the proposed test free of making assumptions such as
i.i.d. or sub-Gaussianity, which is desirable as distributions of real data are often confounded
by numerous factors unknown to researchers. Another key feature is correlation-free in the
sense that individual random vectors may have different and arbitrary correlation structures.
By contrast, most previous works assume not only a common within-sample correlation ma-
trix, but also some structural conditions, such as those on trace [5], mixing conditions [21]
or bounded eigenvalues from below [3]. It is worth noting that our assumptions on the mo-
ments and tail properties of the coordinates in random vectors are also weaker than those
adopted in literature, for example, [3, 11] and [21] assumed a common fixed upper bound to
those moments, [5] and [19] allowed a portion of those moments to grow but paid a price on
correlation assumptions.

We also stress that the proposed test possesses consistent power behavior under fairly gen-
eral alternative (a mild separation lower bound on μX − μY in Theorem 5) with neither spar-
sity nor correlation conditions, while previous work requiring either sparsity [26] or structural
assumption on signal strength [5, 11] or correlation [21], or both [3]. Lastly, we point out that
the data dimension p can be exponentially high relative to the sample size under the umbrella
of such mild assumptions. This is also favorable compared to previous work, as [3, 5] and
[21] allowed such ultrahigh dimensions under nontrivial conditions on either the distribution
type (e.g., sub-Gaussian) or the correlation structure (or both) as a tradeoff.

We conclude the Introduction by noting relevant work on one-sample high-dimensional
mean test, such as [14–18, 20, 23, 27, 28] and [1], among others. It is relatively easier to
develop a one-sample DCF mean test with similar advantages based on results in [9], thus is
not pursued here. The rest of the article is organized as follows. In Section 2, we present the
two-sample high-dimensional central limit theorem, and the result on multiplier bootstrap for
evaluating the Gaussian approximation. In Section 3, we establish the main result Theorem 3
for conducting the proposed test, and Theorem 4 to approximate its power function, followed
by Theorem 5 to analyze its asymptotic power under alternatives. Simulation study is carried
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out in Section 4 to compare with existing methods, and an application to a real data example
is presented in Section 5. We collect the auxiliary lemmas and the proofs of the main results,
Theorems 3–5 in the Appendix, and delegate the proofs of Theorems 1–2, Corollary 1 and
the auxiliary lemmas to an online Supplementary Material [22] for space economy.

2. Two-sample central limit theorem and multiplier bootstrap in high dimensions.
In this section, we first present an intelligible two-sample central limit theorem in high di-
mensions, which is derived from its more abstract version in Lemma 4 in the Appendix. Then
the result on the asymptotic equivalence between the Gaussian approximation appeared in the
two-sample central limit theorem and its multiplier bootstrap term is also elaborated, whose
abstract version can be referred to Lemma 5.

We first list some notation used throughout the paper. For two vectors x = (x1, . . . , xp) ∈
R

p and y = (y1, . . . , yp)′ ∈ R
p , write x ≤ y if xj ≤ yj for all j = 1, . . . , p. For any x =

(x1, . . . , xp)′ ∈ R
p and a ∈ R, denote x + a = (x1 + a, . . . , xp + a)′. For any a, b ∈ R, use

the notation a ∨ b = max{a, b} and a ∧ b = min{a, b}. For any two sequences of constants
an and bn, write an � bn if an ≤ Cbn up to a universal constant C > 0, and an ∼ bn if
an � bn and bn � an. For any matrix A = (aij ), define ‖A‖∞ = maxi,j |aij |. For any function
f : R → R, write ‖f ‖∞ = supz∈R |f (z)|. For a smooth function g : Rp → R, we adopt
indices to represent the partial derivatives for brevity, for example, ∂j ∂k∂lg = gjkl . For any
α > 0, define the function ψα(x) = exp(xα)− 1 for x ∈ [0,∞), then for any random variable
X, define

(1) ‖X‖ψα = inf
{
λ > 0 : E{

ψα

(|X|/λ)} ≤ 1
}
,

which is an Orlicz norm for α ∈ [1,∞) and a quasi-norm for α ∈ (0,1).
Denote Fn = {F1, . . . ,Fn} as a set of mutually independent random vectors in R

p such
that Fi = (Fi1, . . . ,Fip)′ and Fi ∼ Np(μX,E{(Xi − μX)(Xi − μX)′}) for all i = 1, . . . , n,
which denotes a Gaussian approximation to Xn. Likewise, define a set of mutually inde-
pendent random vectors Gm = {G1, . . . ,Gm} in R

p such that Gi = (Gi1, . . . ,Gip)′ and
Gi ∼ Np(μY ,E{(Yi − μY )(Yi − μY )′}) for all i = 1, . . . ,m to approximate Ym. The sets
Xn, Ym, Fn and Gm are assumed to be independent of each other. To this end, de-
note the normalized sums SX

n , SF
n , SY

m and SG
m by SX

n = n−1/2 ∑n
i=1 Xi = (SX

n1, . . . , S
X
np)′,

SF
n = n−1/2 ∑n

i=1 Fi = (SF
n1, . . . , S

F
np)′, SY

m = m−1/2 ∑m
i=1 Yi = (SY

m1, . . . , S
Y
mp)′ and SG

m =
m−1/2 ∑m

i=1 Gi = (SG
m1, . . . , S

G
mp)′, where SF

n and SG
m serve as the Gaussian approximations

for SX
n and SY

m, respectively. Lastly, denote a set of independent standard normal random
variables en+m = {e1, . . . , en+m} that is independent of any of Xn, Fn, Ym and Gm.

2.1. Two-sample central limit theorem in high dimensions. To introduce Theorem 1, a
list of useful notation are given as follows. Denote

LX
n = max

1≤j≤p

n∑
i=1

E
(∣∣Xij − μX

j

∣∣3)
/n, LY

m = max
1≤j≤p

m∑
i=1

E
(∣∣Yij − μY

j

∣∣3)
/m.

We denote the key quantity ρ∗∗
n,m by

ρ∗∗
n,m = sup

A∈ARe

∣∣P (
SX

n − n1/2μX + δn,mSY
m − δn,mm1/2μY ∈ A

)

− P
(
SF

n − n1/2μX + δn,mSG
m − δn,mm1/2μY ∈ A

)∣∣,
(2)

where P(SX
n − n1/2μX + δn,mSY

m − δn,mm1/2μY ∈ A) represents the unknown probability of
interest, and P(SF

n − n1/2μX + δn,mSG
m − δn,mm1/2μY ∈ A) serves as a Gaussian approxi-

mation to this probability of interest, and ρ∗∗
n,m measures the error of approximation over all
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hyperrectangles A ∈ ARe. Note that ARe is the class of all hyperrectangles in R
p of the form

{w ∈ R
p : aj ≤ wj ≤ bj for allj = 1, . . . , p} with −∞ ≤ aj ≤ bj ≤ ∞ for all j = 1, . . . , p.

By assuming more specific conditions, Theorem 1 gives a more explicit bound on ρ∗∗
n,m com-

pared to Lemma 4.

THEOREM 1. For any sequence of constants δn,m, assume we have the following condi-
tions (a)–(e):

(a) There exist universal constants δ1 > δ2 > 0 such that δ2 < |δn,m| < δ1.
(b) There exists a universal constant b > 0 such that

min
1≤j≤p

E
{(

SX
nj − n1/2μX

j + δn,mSY
mj − δn,mm1/2μY

j

)2} ≥ b.

(c) There exists a sequence of constants Bn,m ≥ 1 such that LX
n ≤ Bn,m and LY

m ≤ Bn,m.
(d) The sequence of constants Bn,m defined in (c) also satisfies

max
1≤i≤n

max
1≤j≤p

E
{
exp

(∣∣Xij − μX
j

∣∣/Bn,m

)} ≤ 2,

max
1≤i≤m

max
1≤j≤p

E
{
exp

(∣∣Yij − μY
j

∣∣/Bn,m

)} ≤ 2.

(e) There exists a universal constant c1 > 0 such that

(Bn,m)2{
log(pn)

}7
/n ≤ c1, (Bn,m)2{

log(pm)
}7

/m ≤ c1.

Then we have the following property, where ρ∗∗
m,n is defined in (2):

ρ∗∗
n,m ≤ K3

([
(Bn,m)2{

log(pn)
}7

/n
]1/6 + [

(Bn,m)2{
log(pm)

}7
/m

]1/6)
,

for a universal constant K3 > 0.

Conditions (a)–(c) correspond to the moment properties of the coordinates, and (d) con-
cerns the tail properties. It follows from (a) and (b) that the moments on average are bounded
below away from zero, hence allowing certain proportion of these moments to converge to
zero. This is weaker than previous work that usually require a uniform lower bound on all
moments [3, 11, 21]. Condition (c) implies that the moments on average has an upper bound
Bn,m that can diverge to infinity without restriction on correlation, thus offers more flexibil-
ity than those in literature that demands either a fixed upper bound or a certain correlation
structure or both. To appreciate this, letting Bn,m ∼ n1/3, one notes that all the variances of
the coordinates are allowed to be uniformly as large as B

2/3
n,m ∼ n2/9 → ∞ under condition

(c), while no restriction on correlation is needed. As a comparison, if we assign a common
covariance to two samples, say � = (�jk)1≤j,k≤p with each �jk = n2/9ρ1{j �=k} for some
constant ρ ∈ (0,1), then the trace condition in [5] implies that p = o(1). Compared with a
fixed upper bound on the tails of the coordinates [3, 21], condition (d) allows for uniformly
diverging tails as long as Bn,m → ∞. Condition (e) indicates that the data dimension p can
grow exponentially in n, provided that Bn,m is of some appropriate order. These conditions
as a whole set the basis for the so-called “distribution and correlation-free” features.

2.2. Two-sample multiplier bootstrap in high dimensions. Due to the unknown probabil-
ity in ρ∗∗

n,m (2) denoting the Gaussian approximation, it limits the applicability of the central
limit theorem for inference. The idea is to adopt a multiplier bootstrap to approximate its
Gaussian approximation, and quantify its approximation error bound. Denote

�X = n−1
n∑

i=1

E
{(

Xi − μX)(
Xi − μX)′}

, �̂X = n−1
n∑

i=1

(Xi − X̄)(Xi − X̄)′,



1308 K. XUE AND F. YAO

where X̄ = n−1 ∑n
i=1 Xi = (X̄1, . . . , X̄p)′. Analogously, denote �Y , �̂Y and Ȳ . Now we

introduce the multiplier bootstrap approximation in this context. Let en+m = {e1, . . . , en+m}
be a set of i.i.d. standard normal random variables independent of the data, we further denote

(3) SeX
n = n−1/2

n∑
i=1

ei(Xi − X̄), SeY
m = m−1/2

m∑
i=1

ei+n(Yi − Ȳ ),

and it is obvious that Ee(S
eX
n SeX

n
′
) = �̂X and Ee(S

eY
n SeY

n
′
) = �̂Y , where Ee(·) means the

expectation with respect to en+m only. Then, for any sequence of constants δn,m that depends
on both n and m, we denote the quantity of interest ρMB

n,m by

ρMB
n,m = sup

A∈ARe

∣∣Pe

(
SeX

n + δn,mSeY
m ∈ A

)

− P
(
SF

n − n1/2μX + δn,mSG
m − δn,mm1/2μY ∈ A

)∣∣,
(4)

where Pe(·) means the probability with respect to en+m only, and Pe(S
eX
n +δn,mSeY

m ∈ A) acts
as the multiplier bootstrap approximation for the Gaussian approximation P(SF

n −n1/2μX +
δn,mSG

m − δn,mm1/2μY ∈ A). In particular, ρMB
n,m can be understood as a measure of error

between the two approximations over all hyperrectangles A ∈ ARe. The following theorem
provides a more explicit bound on ρMB

n,m in contrast to its abstract version stated in Lemma 5
in the Appendix.

THEOREM 2. For any sequence of constants δn,m, assume we have the following condi-
tions (a)–(e),

(a) There exists a universal constant δ1 > 0 such that |δn,m| < δ1.
(b) There exists a universal constant b > 0 such that

min
1≤j≤p

E
{(

SX
nj − n1/2μX

j + δn,mSY
mj − δn,mm1/2μY

j

)2} ≥ b.

(c) There exists a sequence of constants Bn,m ≥ 1 such that

max
1≤j≤p

n∑
i=1

E
{(

Xij − μX
j

)4}
/n ≤ B2

n,m,

max
1≤j≤p

m∑
i=1

E
{(

Yij − μY
j

)4}
/m ≤ B2

n,m.

(d) The sequence of constants Bn,m defined in (c) also satisfies

max
1≤i≤n

max
1≤j≤p

E
{
exp

(∣∣Xij − μX
j

∣∣/Bn,m

)} ≤ 2,

max
1≤i≤m

max
1≤j≤p

E
{
exp

(∣∣Yij − μY
j

∣∣/Bn,m

)} ≤ 2.

(e) There exists a sequence of constants αn,m ∈ (0, e−1) such that

B2
n,m log5(pn) log2(1/αn,m)/n ≤ 1,

B2
n,m log5(pm) log2(1/αn,m)/m ≤ 1.

Then there exists a universal constant c∗ > 0 such that with probability at least 1 − γn,m

where

γn,m = (αn,m)log(pn)/3 + 3(αn,m)log1/2(pn)/c∗ + (αn,m)log(pm)/3

+ 3(αn,m)log1/2(pm)/c∗ + (αn,m)log3(pn)/6 + 3(αn,m)log3(pn)/c∗

+ (αn,m)log3(pm)/6 + 3(αn,m)log3(pm)/c∗,
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we have the following property, where ρMB
n,m is defined in (4),

ρMB
n,m �

{
B2

n,m log5(pn) log2(1/αn,m)/n
}1/6

+ {
B2

n,m log5(pm) log2(1/αn,m)/m
}1/6

.

Conditions (a)–(c) pertain to the moment properties of the coordinates, condition (d) con-
cerns the tail properties and condition (e) characterizes the order of p. These conditions
have the desirable features as those in Theorem 1, such as allowing for uniformly diverging
moments and tails and so on. Moreover, by combining Theorem 2 with a two-sample Borel–
Cantelli lemma (i.e., Lemma 6), where condition (f) is needed for Lemma 6, one can deduce
Corollary 1 below, which facilitates the derivation of our main result in Theorem 3.

COROLLARY 1. For any sequence of constants δn,m, assume the conditions (a)–(e) in
Theorem 2 hold. Also suppose that the condition (f) holds as follows:

(f) The sequence of constants γn,m defined in Theorem 2 also satisfies∑
n

∑
m

γn,m < ∞.

Then with probability one, we have the following property, where ρMB
n,m is defined in (4),

ρMB
n,m �

{
B2

n,m log5(pn) log2(1/αn,m)/n
}1/6

+ {
B2

n,m log5(pm) log2(1/αn,m)/m
}1/6

.

3. Two-sample mean test in high dimensions. In this section, based on the theoretical
results from the preceding section, we first establish the main result, Theorem 3, which gives
a confidence region for the mean difference (μX − μY ) and, equivalently, the DCF test pro-
cedure. We note that the theoretical guarantee is uniform for all α ∈ (0,1) with probability
one.

THEOREM 3. Assume we have the following conditions (a)–(e):

(a) n/(n + m) ∈ (c1, c2), for some universal constants 0 < c1 < c2 < 1.
(b) There exists a universal constant b > 0 such that

min
1≤j≤p

[
E

{(
SX

nj − n1/2μX
j

)2} + E
{(

SY
mj − m1/2μY

j

)2}] ≥ b.

(c) There exists a sequence of constants Bn,m ≥ 1 such that

max
1≤j≤p

n∑
i=1

E
(∣∣Xij − μX

j

∣∣k+2)
/n ≤ Bk

n,m,

max
1≤j≤p

m∑
i=1

E
(∣∣Yij − μY

j

∣∣k+2)
/m ≤ Bk

n,m,

for all k = 1,2.
(d) The sequence of constants Bn,m defined in (c) also satisfies

max
1≤i≤n

max
1≤j≤p

E
{
exp

(∣∣Xij − μX
j

∣∣/Bn,m

)} ≤ 2,

max
1≤i≤m

max
1≤j≤p

E
{
exp

(∣∣Yij − μY
j

∣∣/Bn,m

)} ≤ 2.

(e) B2
n,m log7(pn)/n → 0 as n → ∞.
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Then with probability one, the Kolmogorov distance between the distributions of the quantity
‖SX

n −n1/2m−1/2SY
m −n1/2(μX −μY )‖∞ and the quantity ‖SeX

n −n1/2m−1/2SeY
m ‖∞ satisfies

sup
t≥0

∣∣P (∥∥SX
n − n1/2m−1/2SY

m − n1/2(
μX − μY )∥∥∞ ≤ t

)

− Pe

(∥∥SeX
n − n1/2m−1/2SeY

m

∥∥∞ ≤ t
)∣∣ � {

B2
n,m log7(pn)/n

}1/6
,

where SeX
n and SeY

m are as in (3), and Pe(·) means the probability with respect to en+m only.
Consequently,

sup
α∈(0,1)

∣∣P {∥∥SX
n − n1/2m−1/2SY

m − n1/2(
μX − μY )∥∥∞ ≤ cB(α)

} − (1 − α)
∣∣

�
{
B2

n,m log7(pn)/n
}1/6

,

where

(5) cB(α) = inf
{
t ∈ R : Pe

(∥∥SeX
n − n1/2m−1/2SeY

m

∥∥∞ ≤ t
) ≥ 1 − α

}
,

for α ∈ (0,1), where SeX
n and SeY

m are as in (3), and Pe(·) denotes the probability with respect
to en+m only.

Note that condition (a) is on the relative sample sizes that allows the ratio n/(n + m) to
diverge within any open interval (c1, c2) for 0 < c1 < c2 < 1, rather than demanding conver-
gence as in existing work. Conditions (b) and (c) concern the moment properties of the coor-
dinates, while condition (d) is associated with the tail properties, and condition (e) quantifies
the order of p. By inspection, these conditions are slightly stronger than those in Theorems
1 and 2, but still maintain all desired advantages. To appreciate such benefits, consider the
following example:

n/(n + m) ∈ (0.1,0.9), Bn,m ∼ n1/9, logp ∼ nα, α ∈ (0,1/9),

X1, . . . ,X�n/2�
i.i.d.∼ N(0p,�), X�n/2�+1, . . . ,Xn

i.i.d.∼ N(0p,2�),

Y1, . . . , Y�m/3�
i.i.d.∼ N(1p,3�), Y�m/3�+1, . . . , Ym

i.i.d.∼ N(1p,4�),

where 1p is the vector of ones, and the covariance matrix � = (�jk) ∈ R
p×p with each

�jk = n2/27ρ1{j �=k} for some constant ρ ∈ (0,1). Then one can verify that this example ful-
fills all conditions in Theorem 3, but violates the assumptions in most existing articles which
requires i.i.d. samples or trace conditions [5].

From Theorem 3, the 100(1 − α)% confidence region for (μX − μY ) can be expressed as

CR1−α = {
μX − μY : ∥∥SX

n − n1/2m−1/2SY
m − n1/2(

μX − μY )∥∥∞ ≤ cB(α)
}
.

Equivalently, the proposed test procedure in (6) is such that, we reject H0 : μX = μY at
significance level α ∈ (0,1), if

(6) Tn = ∥∥SX
n − n1/2m−1/2SY

m

∥∥∞ ≥ cB(α),

where the data-driven critical value cB(α) in (5) admits fast computation via the multiplier
bootstrap using independent set of i.i.d. standard normal random variables, which is imple-
mented as follows:

• Generate N sets of standard normal random variables, each of size (n + m), denoted by
en+m

1 , . . ., en+m
N as random copies of en+m = {e1, . . . , en+m}. Then calculate N times of

T e
n = ‖SeX

n − n1/2m−1/2SeY
m ‖∞ while keeping Xn and Ym fixed, where SeX

n and SeY
m are

in (3). These values are denoted as {T e1
n , . . . , T eN

n } whose 100(1 − α)th quantile is used to
approximate cB(α).
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It is easy to see that the computation of the DCF test is of the order O{n(p + N)}, compared
with O(Nnp) that is usually demanded by a general resampling method.

According to (6), the true power function for the test can be formulated as

(7) Power
(
μX − μY ) = P

{∥∥SX
n − n1/2m−1/2SY

m

∥∥∞ ≥ cB(α) | μX − μY }
.

To quantify the power of the DCF test, the expression (7) is not directly applicable since
the distribution of (SX

n − n1/2m−1/2SY
m) is unknown. Motivated by Theorem 3, we propose

another multiplier bootstrap approximation for Power(μX − μY ), based on a different set of
standard normal random variables e∗n+m = {e∗

1, . . . , e
∗
n+m} independent of en+m that are used

to calculate cB(α),

(8)
Power∗

(
μX − μY )

= Pe∗
{∥∥Se∗X

n − n1/2m−1/2Se∗Y
m + n1/2(

μX − μY )∥∥∞ ≥ cB(α)
}
,

where Se∗X
n and Se∗Y

m are as defined in (3) with e∗n+m instead of en+m, and Pe∗(·) means the
probability with respect to e∗n+m only. The following theorem is devoted to establishing the
asymptotic equivalence between Power(μX − μY ) and Power∗(μX − μY ) under the same
conditions as those in Theorem 3.

THEOREM 4. Assume the conditions (a)–(e) in Theorem 3 hold, then for any μX −μY ∈
R

p , we have with probability one,
∣∣Power∗

(
μX − μY ) − Power

(
μX − μY )∣∣ � {

B2
n,m log7(pn)/n

}1/6
.

By inspection of the conditions in Theorem 4, it is worth mentioning that neither sparsity
nor correlation restriction is required, as opposed to previous work requiring sparsity [3]
for instance. To appreciate this point, the asymptotic power under fairly general alternatives
specified by condition (f) is analyzed in the theorem below.

THEOREM 5. Assume the conditions (a)–(e) in Theorem 3 and that

(f) Fn,m,p = {μX ∈ R
p,μY ∈ R

p : ‖μX − μY ‖∞ ≥ Ks{Bn,m log(pn)/n}1/2}, for a suffi-
ciently large universal constant Ks > 0.

Then for any μX − μY ∈Fn,m,p , we have with probability tending to one,

Power∗
(
μX − μY ) → 1 as n → ∞.

The set Fn,m,p in (f) imposes a lower bound on the separation between μX and μY , which

is comparable to the assumption maxi |δi/σ
1/2
i,i | ≥ {2β log(p)/n}1/2 in Theorem 2 in [3]. The

latter is in fact a special case of condition (f) when the sequence Bn,m is constant. It is worth
mentioning that the asymptotic power converges to 1 under neither sparsity nor correlation as-
sumptions in the context of our theorem. In contrast, Theorem 2 in [3] requires not only sparse
alternatives, but also restrictions on the correlation structure, for example, condition 1 in that
theorem such that the eigenvalues of the correlation matrix diag (�)−1/2� diag (�)−1/2 is
lower bounded by a positive universal constant. These comparisons reveal that the proposed
DCF is powerful for a broader range of alternatives. We conclude this section by noting that
the theory for the DCF-type test based on L2-norm can also be of interest but is not yet
established, which needs further investigation.
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4. Simulation studies. In the two-sample test for high-dimensional means, methods that
are frequently used and/or recently proposed include those proposed by [5] (abbreviated as
CQ, an L2 norm test), [3] (abbreviated as CL, an L∞ norm test) and [21] (abbreviated as XL,
a test combining L2 and L∞ norms) tests. We conduct comprehensive simulation studies to
compare our DCF test with these existing methods in terms of size and power under various
settings. The two samples Xn = {Xi}ni=1 and Ym = {Yi}mi=1 have sizes (n,m), while the data
dimension is chosen to be p = 1000. Without loss of generality, we let μX = 0 ∈ R

p . The
structure of μY ∈ R

p is controlled by a signal strength parameter δ > 0 and a sparsity level
parameter β ∈ [0,1]. To construct μY , in each scenario, we first generate a sequence of i.i.d.
random variables θk ∼ U(−δ, δ) for k = 1, . . . , p and keep them fixed in the simulation
under that scenario. We set δ(r) = {2r log(p)/(n ∨ m)}1/2 that gives appropriate scale of
signal strength [3, 5, 28]. We take μY = (θ1, . . . , θ�βp�,0′

p−�βp�)′ ∈ R
p , where �a� denotes

the nearest integer no more than a, and 0q is the q-dimensional vector of 0’s. Thus the signal
becomes sparser for a smaller value of β , with β = 0 corresponding to the null hypothesis
and β = 1 representing the fully dense alternative. The covariance matrices of the random
vectors are denoted by cov(Xi) = �Xi , cov(Yi′) = �Yi′ for all i = 1, . . . , n, i ′ = 1, . . . ,m.
The nominal significance level is α = 0.05, and the DCF test is conducted based on the
multiplier bootstrap of size N = 104.

To have comprehensive comparison, we first consider the following six different set-
tings. The first setting is standard with (n,m,p) = (200,300,1000), where the elements
in each sample are i.i.d. Gaussian, and the two samples share a common covariance ma-
trix � = (�jk)1≤j,k≤p . The matrix � is specified by a dependence structure such that
�jk = (1 + |j − k|)−1/4. Beginning with δ = 0.1, where the implicit chosen value r = 0.217
corresponds to quite weak signal according to [3, 28], we calculate the rejection proportions
of the four tests based on 1000 Monte Carlo runs over a full range of sparsity levels from
β = 0 (corresponding to null hypothesis) to β = 1 (corresponding to fully dense alternative).
Then the the signals are gradually strengthened to δ = 0.15,0.2,0.25,0.3. The second set-
ting is similar to the first, except for �Yi = 2�Xi′ = 2� for all i = 1, . . . , n, i ′ = 1, . . . ,m,
where � is defined in the first setting. These two settings are denoted by “i.i.d. equal (resp.,
unequal) covariance setting.”

In the third setting, the random vectors in each sample have completely different distribu-
tions and covariance matrices from one another. The procedure to generate the two samples
is as follows. First, a set of parameters {φij : i = 1, . . . ,m, j = 1, . . . , p} are generated from
the uniform distribution U(1,2) independently, and are kept fixed for all Monte Carlo runs.
In a similar fashion, {φ∗

ij : i = 1, . . . ,m, j = 1, . . . , p} are generated from U(1,3) indepen-
dently. Then, for every i = 1, . . . , n, we define a p × p matrix �i = (ωijk)1≤j,k≤p with each
ωijk = (φijφik)

1/2(1 + |j − k|)−1/4. Likewise, for every i = 1, . . . ,m, define a p × p matrix
�∗

i = (ω∗
ijk)1≤j,k≤p with each ω∗

ijk = (φ∗
ij φ

∗
ik)

1/2(1 + |j − k|)−1/4. Subsequently, we gener-

ate a set of i.i.d. random vectors X̆n = {X̆i}ni=1 with each X̆i = (X̆i1, . . . , X̆ip)′ ∈ R
p , such

that {X̆i1, . . . , X̆i,2p/5} are i.i.d. standard normal random variables, {X̆i,2p/5+1, . . . , X̆i,p} are
i.i.d. centered Gamma(16,1/4) random variables, and they are independent of each other. Ac-
cordingly, we construct each Xi by letting Xi = μX +�

1/2
i X̆i for all i = 1, . . . , n. It is worth

noting that �Xi = �i for all i = 1, . . . , n, that is, Xi ’s have different covariance matrices and
distributions. The other sample Ym = {Yi}mi=1 is constructed in the same way with �Yi = �∗

i

for all i = 1, . . . ,m. Then we obtained the results for various signal strength levels of δ over
a full range of sparsity levels of β , and we denote this setting as “completely relaxed.” The
fourth setting is analogous to the third, except that we set (n,m,p) = (100,400,1000), where
two sample sizes deviates substantially from each other. Since this setting is concerned with
highly unequal sample sizes, and is therefore denoted as “completely relaxed and highly un-
equal setting.” The fifth setting is similar to the third, except that we replace the standard



DISTRIBUTION AND CORRELATION-FREE TWO-SAMPLE MEAN TEST 1313

normal innovations in X̆i and Y̆i′ by independent and heavy-tailed innovations (5/3)−1/2t (5)

with mean zero and unit variances, referred to as “completely relaxed and heavy-tailed set-
ting.” The sixth setting is also analogous to the third, while independent and skewed innova-
tions 8−1/2{χ2(4) − 4} with mean zero and unit variances are used, denoted by “completely
relaxed and skewed setting.”

We conduct the four tests and calculate the rejection proportions to assess the empirical
power at different signal levels δ and sparsity levels β in each setting as described above,
based on 1000 Monte Carlo runs. The numerical results of these six settings are shown in
Tables 1–2. For visualization, we depict the empirical power plots of all settings in Figure 1.
We also display the multiplier bootstrap approximation based on another independent set of
size N = 104, which agrees well with the empirical size/power of the DCF test and justifies
the theoretical assessment in Theorem 4. We see that the empirical sizes of proposed DCF
test agree well with the nominal level 0.05 in all six settings. By comparison, the CQ test is
not as stable, and the CL and XL tests show underestimation of type I error in all settings.

Regarding power performance under alternatives in these six settings, despite all tests suf-
fering low power for the weak signals δ = 0.1 and δ = 0.15, the DCF test still dominates the
other tests at all levels of β . When the signal strength rises to δ = 0.2, the results in Setting I
indicate that the DCF test outperforms the other tests, except for the CQ test when β ≥ 80%
(a very dense alternative). Although the power of CQ test increases above that of DCF test
at β = 80%, the gains are not substantial when both tests have high power. Similar patterns
are observed in Settings II, III, V, VI with δ = 0.25 for β ranging between 80% and 83%,
and Settings III, IV with δ = 0.3 for β at 80% and 90%, respectively. This phenomenon is
visually shown in the power plot in Figure 1. It is also noted the DCF test dominates the CL
(L∞ type) and XL (combined type) uniformly in these settings over all levels of δ and β .
To summarize, except for the rapidly increased power of CQ test in very dense alternatives,
the DCF test outperforms the other tests over various signal levels of δ in a broad range of
sparsity levels β , for alternatives with varied magnitudes and signs. Moreover, the gains are
sustainable in the situations that the data structures get more complex, for example, highly
unbalanced sizes, heavy-tailed or skewed distributions.

We further examine alternatives with common/fixed signal upon reviewer’s request
under the “completely relaxed setting,” denoted by Setting VII, where we let μY =
δ(1, . . . ,1�βp�,0′

p−�βp�)′. Note that the empirical sizes of four tests in Setting VII are the
same as those in Setting III (thus not reported), while the power patterns appear to favor
the CQ test when increasing for dense alternatives (DCF still dominates in the range of less
dense levels). Here, numerical power values are not tabulated for conciseness, given that the
visualization in Figure 1 suffices. We conclude this section by pointing out that, compared
to Settings I–VI in which nonzero signals θk ∼ U(−δ, δ), the alternatives in Setting VII with
common/fixed signal are more stringent and easy to be violated in practice.

5. Real data example. We analyze a dataset obtained from the UCI Machine Learning
Repository, https://archive.ics.uci.edu/ml/datasets/eeg+database. The data consist of 122 in-
dividuals, out of which n = 45 participants belong to the control group, while the remaining
m = 77 are in the alcoholic group. In the experiment, each subject was shown to a single
stimulis (e.g., picture of object) selected from the 1980 Snodgrass and Vanderwart picture
set. Then, for each individual, the researchers recorded the EEG measurements which were
sampled at 256 Hz (3.9-msec epoch) for one second from 64 electrodes on that person’s
scalps, respectively. As a common practice of data reduction, for each electrode, we pool the
256 records to form 64 measurements by taking the average of the original records on four
proximal grid points. Likewise, we also pool the 64 electrodes by taking the average on ev-
ery four proximal electrodes, resulting 16 combined electrodes. For the control group, we let

https://archive.ics.uci.edu/ml/datasets/eeg+database
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TABLE 1
Rejection proportions (%) calculated for four testing methods at different signal strength levels of δ and sparsity levels of β based on 1000 Monte Carlo runs, where β = 0

corresponds to the null hypothesis β = 1 to the fully dense alternative, and (n,m,p) = (200,300,1000)

Setting I: i.i.d. equal cov

δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3

Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ

β = 0 4.20 2.40 3.90 5.80 4.30 2.30 2.40 3.60 4.50 2.80 3.70 6.00 4.60 2.70 2.20 3.80 5.00 3.10 3.80 6.10
β = 0.02 5.00 3.20 2.50 3.40 7.50 4.80 3.70 3.50 15.4 10.5 6.50 3.90 31.7 23.3 14.6 4.40 59.0 47.9 32.6 4.90
β = 0.04 5.80 3.70 2.80 3.60 10.0 6.20 4.30 3.90 20.6 14.2 8.80 4.70 40.6 30.8 20.0 5.10 72.0 58.9 41.5 5.30
β = 0.2 9.90 6.50 3.90 4.50 22.7 15.9 9.10 5.30 48.7 37.3 23.7 7.40 84.5 72.4 52.0 11.6 99.3 97.1 87.2 23.4
β = 0.4 13.9 9.40 5.30 5.20 35.3 25.4 14.4 7.80 68.8 57.1 37.9 16.5 96.8 91.1 72.7 42.5 100 100 97.7 96.9
β = 0.6 17.8 11.8 6.70 5.60 45.8 33.7 20.3 12.8 82.7 71.8 51.1 39.9 99.6 97.2 86.8 99.1 100 100 100 100
β = 0.8 22.4 13.8 9.00 8.30 55.5 40.1 24.4 23.1 91.3 81.7 61.5 91.7 100 99.2 95.7 100 100 100 100 100
β = 1 26.5 17.9 10.9 10.7 64.5 48.1 30.6 39.5 95.0 88.5 70.1 100 100 99.6 100 100 100 100 100 100

Setting II: i.i.d. unequal cov

δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3

Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ

β = 0 4.90 1.80 3.70 6.10 5.20 1.30 2.20 3.80 5.00 1.60 3.60 6.00 4.80 1.20 3.50 6.30 5.00 1.90 3.90 6.20
β = 0.02 4.70 1.00 2.40 3.80 6.60 1.40 2.70 4.10 10.7 2.60 2.90 4.10 19.1 6.70 4.80 4.40 33.3 14.4 8.80 4.50
β = 0.04 5.80 1.30 2.50 4.10 7.90 1.80 2.80 4.30 12.5 3.50 3.40 4.50 24.7 9.30 6.00 4.60 42.5 20.3 12.2 5.00
β = 0.2 8.10 1.90 2.70 4.60 15.0 4.40 3.80 4.90 30.9 11.2 7.20 6.40 57.6 26.5 16.3 8.40 86.8 52.1 33.9 11.8
β = 0.4 10.6 2.80 3.10 5.70 22.4 7.20 5.70 6.50 47.3 19.6 11.6 10.0 78.7 43.2 26.6 19.1 97.5 74.1 53.2 45.7
β = 0.6 13.5 3.30 3.80 6.70 29.2 9.60 6.70 8.40 59.0 26.5 17.1 18.7 90.5 56.2 36.7 54.4 99.8 88.1 70.1 99.6
β = 0.8 16.4 4.60 4.50 7.40 37.4 11.9 8.60 12.6 70.9 32.9 21.4 39.6 95.6 67.0 47.0 98.9 100 94.2 90.5 100
β = 1 19.2 5.20 5.00 8.10 43.5 14.4 10.7 18.3 79.4 39.9 28.1 79.8 98.2 76.2 67.8 100 100 97.7 99.9 100
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TABLE 1
(Continued)

Setting III: completely relaxed

δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3

Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ

β = 0 4.70 2.00 3.90 6.30 4.50 1.70 2.30 3.50 4.80 1.90 3.70 6.10 4.60 2.20 2.80 3.90 5.10 2.10 3.80 6.20
β = 0.02 4.90 2.10 3.20 4.40 6.50 2.70 3.50 5.30 9.40 4.30 4.00 5.60 13.6 7.80 6.20 5.70 24.9 12.9 10.1 5.90
β = 0.04 5.60 2.40 3.50 4.70 7.60 3.40 4.20 5.40 12.1 6.00 5.00 5.80 19.1 10.8 8.80 6.00 32.8 19.1 13.8 6.50
β = 0.2 7.50 3.80 4.30 5.80 12.1 6.00 5.60 6.60 23.9 12.5 8.90 7.50 44.2 26.3 16.6 9.30 71.6 50.2 32.1 14.1
β = 0.4 9.40 3.90 4.50 6.30 18.4 9.00 8.00 7.60 35.8 19.9 12.7 11.7 62.3 40.8 26.4 18.5 89.3 69.9 48.6 31.5
β = 0.6 11.5 4.90 6.20 6.80 24.0 10.8 8.90 9.50 48.0 28.2 18.2 17.8 76.8 55.3 37.0 35.7 96.5 83.8 64.6 83.1
β = 0.8 13.6 6.40 6.60 7.00 30.3 13.5 11.7 12.7 57.3 36.4 23.4 28.5 86.7 65.0 45.1 81.2 98.5 91.6 77.4 100
β = 0.83 14.3 7.10 6.80 7.50 31.0 14.6 11.8 13.1 58.0 37.6 23.9 30.8 87.6 66.1 46.1 88.0 98.9 92.6 79.2 100
β = 1 16.6 8.50 7.40 8.00 35.0 17.2 13.9 17.3 65.6 42.8 28.3 48.2 90.8 75.7 56.0 99.9 99.2 95.5 95.7 100
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TABLE 2
Rejection proportions (%) calculated for four testing methods at different signal strength levels of δ and sparsity levels of β based on 1000 Monte Carlo runs, where β = 0
corresponds to the null hypothesis β = 1 to the fully dense alternative, (n,m,p) = (100,400,1000) for Setting IV, and (n,m,p) = (200,300,1000) for Settings V and VI

Setting IV: completely relaxed and highly unequal sample sizes

δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3

Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ

β = 0 4.70 0.800 3.90 6.80 4.90 0.900 3.80 6.30 5.20 0.700 3.90 6.10 4.50 0.600 3.50 6.00 4.90 0.500 3.40 6.10
β = 0.02 5.20 1.10 2.90 4.70 5.90 1.00 3.60 5.60 6.70 1.40 4.60 5.80 8.90 2.40 5.00 5.80 13.2 4.20 6.20 5.90
β = 0.04 5.40 1.20 3.00 4.80 6.30 1.30 4.50 5.70 7.80 1.90 5.00 6.00 11.2 3.30 5.60 6.10 17.6 5.70 7.10 6.20
β = 0.2 6.60 1.30 3.30 5.40 9.20 2.20 5.10 5.80 14.9 3.90 5.70 6.20 25.3 8.70 7.00 7.50 42.8 16.5 11.8 8.80
β = 0.4 7.80 2.00 4.30 5.50 12.4 3.40 5.20 6.10 22.3 6.60 7.10 8.60 38.2 13.0 9.70 10.7 61.3 24.8 17.0 15.8
β = 0.6 9.10 2.40 4.60 5.80 16.1 3.80 5.50 7.90 29.5 10.0 9.20 10.8 49.9 19.3 14.3 17.6 75.3 33.7 21.9 34.2
β = 0.8 10.5 2.50 4.70 6.10 19.9 5.20 6.70 9.20 36.9 12.7 10.9 14.5 60.1 24.0 19.3 32.2 84.9 46.6 33.6 78.2
β = 0.9 11.3 2.80 4.80 6.40 21.9 5.40 7.10 9.90 39.5 13.3 12.6 17.7 64.6 26.6 21.6 43.8 88.0 48.6 35.3 94.0
β = 1 12.1 2.90 5.30 7.30 23.4 5.90 7.30 11.0 42.0 14.6 12.8 21.7 68.6 29.6 24.5 59.0 90.9 53.1 41.9 99.4

Setting V: completely relaxed and heavy-tailed

δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3

Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ

β = 0 4.20 2.20 3.80 6.20 5.20 2.50 3.90 6.10 4.70 1.90 2.90 6.00 4.30 2.00 1.70 3.90 4.50 2.30 2.00 3.70
β = 0.02 5.50 2.10 3.70 5.40 6.40 2.50 3.90 5.50 9.50 4.40 4.60 6.10 15.3 7.40 6.30 6.10 25.5 15.0 10.3 6.20
β = 0.04 6.20 2.30 3.80 5.50 7.20 3.60 4.20 6.00 12.6 6.60 5.80 6.20 18.9 9.80 7.00 6.50 33.3 20.7 13.0 7.10
β = 0.2 7.50 3.60 4.00 5.80 12.4 6.80 6.50 7.30 23.5 13.0 9.60 8.90 45.6 27.6 17.9 11.3 71.7 52.6 33.8 14.1
β = 0.4 9.50 4.20 4.40 5.90 18.1 9.00 8.30 8.90 35.9 21.3 14.0 12.7 64.4 43.2 26.9 18.5 90.3 73.4 52.0 33.7
β = 0.6 11.5 5.10 4.50 6.00 23.8 12.6 10.1 11.7 46.7 29.2 19.4 17.8 77.5 55.9 37.4 38.9 97.4 86.5 65.6 88.2
β = 0.8 13.7 7.30 6.20 8.80 29.4 16.0 12.3 14.1 56.5 36.9 24.9 28.9 87.4 69.1 48.3 81.4 99.2 93.6 80.0 100
β = 0.83 14.1 7.50 6.30 9.20 30.6 17.3 13.0 15.2 58.1 38.1 26.0 32.0 88.1 70.1 49.5 87.5 99.3 94.1 82.1 100
β = 1 16.1 8.90 7.40 9.40 34.9 18.9 15.0 17.2 64.5 44.6 30.5 52.2 91.6 75.1 56.6 99.8 99.7 96.5 96.0 100
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TABLE 2
(Continued)

Setting VI: completely relaxed and skewed

δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3

Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ

β = 0 4.20 2.10 2.40 3.60 4.90 1.40 2.70 3.80 5.00 1.60 2.50 3.90 4.90 2.40 3.70 5.80 4.70 1.90 2.70 3.90
β = 0.02 4.80 1.30 2.70 4.40 6.20 1.70 3.10 4.70 7.50 2.70 3.80 4.90 12.9 5.80 5.00 5.00 24.3 11.8 8.30 5.00
β = 0.04 5.30 1.40 3.00 4.60 7.00 2.30 3.30 4.90 11.3 5.20 4.50 5.10 17.1 8.70 7.00 5.10 32.2 17.3 12.0 5.30
β = 0.2 7.40 3.00 3.30 4.80 12.8 5.80 5.00 5.80 23.0 12.9 9.20 6.40 42.4 25.6 17.7 8.40 71.3 48.6 32.5 12.4
β = 0.4 9.40 4.50 4.00 5.10 18.7 9.30 6.80 7.20 37.3 21.9 13.4 10.6 62.9 43.3 28.6 17.3 89.4 70.9 51.8 30.7
β = 0.6 11.5 5.70 4.50 6.20 24.7 12.3 9.60 9.50 48.1 29.8 18.1 16.5 75.7 55.0 37.6 34.8 95.9 83.7 64.5 86.4
β = 0.8 14.2 6.30 5.80 6.60 30.5 14.9 10.5 12.5 58.0 37.6 23.4 27.1 86.7 65.4 44.9 80.2 98.7 92.0 77.5 100
β = 0.83 14.3 7.50 6.30 6.70 31.6 15.3 10.8 13.2 60.1 39.3 24.2 29.8 87.9 66.5 46.2 87.4 98.9 92.8 81.0 100
β = 1 16.3 8.90 6.70 7.40 35.9 19.3 14.6 16.4 67.0 44.7 29.4 49.3 91.0 74.6 57.2 99.9 99.3 96.1 97.2 100
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FIG. 1. Shown are the bootstrap approximated power curve of the DCF test (crosses), and the empirical power
curves of four methods: the DCF test (squares), the CL test (triangles point down), the XL test (circles) and the
CQ test (triangles point up) based on 1000 Monte Carlo runs under Settings I–VII across different signal levels
of δ and sparsity levels of β .

μc,j = (μc,j,1, . . . ,μc,j,64)
′ ∈ R

64 be the common mean vector of the EEG measurements
on j ’th electrode for j = 1, . . . ,16. For convenience, we write μc = (μ′

c,1, . . . ,μ
′
c,16)

′ ∈ R
p

with p = 64×16 = 1024 that is much larger than n and m. Similarly, for the alcoholic group,
let μa,j = (μa,j,1, . . . ,μa,j,64)

′ ∈ R
64 be the common mean vector of EEG measurements on

j ’th electrode for j = 1, . . . ,16, and denote μa = (μ′
a,1, . . . ,μ

′
a,16)

′ ∈ R
p . We are interested

in the hypothesis test

H0 : μc = μa versus Ha : μc �= μa

to determine whether there is any difference in means of EEG between two groups. We first
carry out the DCF, CL, XL and CQ tests, whose p-values are given by 0.006, 0.1708, 0.093
and 0.0955, shown in Table 3. In literature, [13] provided evidence for the mean difference
between two groups, the proposed DCF test indeed detected the difference with statistical
significance while the other tests failed to.

For further verification, we carry out random bootstrap with replacement separately within
each sample, and repeat for 500 times. The rejection proportions for the four tests over the
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TABLE 3
Shown are the results of four tests based the original dataset, the

bootstrapped samples and the random permutations

p-values of the four tests based on the
dataset

Test DCF CL XL CQ
p-value 0.006 0.1708 0.093 0.0955

Rejection proportions (%) of the four tests
over 500 bootstrapped datasets

Test DCF CL XL CQ
Rejection proportion 82 65.8 65 58

Rejection proportions (%) of the four tests
over 500 random permutations

Test DCF CL XL CQ
Rejection proportion 4.6 1.8 3.4 7.4

500 bootstrapped datasets are given in Table 3, which shows that the highest rejection pro-
portion among the four tests is achieved by DCF at 82%. This is in line with the smallest
and significant p-value given by the DCF test based on the dataset itself. We also perform
500 random permutations of the whole dataset (i.e., mixing up two groups that eliminate the
group difference) and conduct four tests over each permuted dataset. From Table 3, we see
that the rejection proportion of the DCF test (0.046) is close to the nominal level α = 0.05,
while those of the other tests differ considerably.

APPENDIX

We first present some auxiliary lemmas that are key for deriving the main theorems. To
introduce Lemma 1, for any β > 0 and y ∈ R

p , we define a function Fβ(w) as

Fβ(w) = β−1 log

[ p∑
j=1

exp
{
β(wj − yj )

}]
, w ∈ R

p,

which satisfies the property

0 ≤ Fβ(w) − max
1≤j≤p

(wj − yj ) ≤ β−1 logp,

for every w ∈ R
p by (1) in [8]. In addition, we let ϕ0 : R → [0,1] be a real valued function

such that ϕ0 is thrice continuously differentiable and ϕ0(z) = 1 for z ≤ 0 and ϕ0(z) = 0 for
z ≥ 1. For any φ ≥ 1, define a function ϕ(z) = ϕ0(φz), z ∈ R. Then, for any φ ≥ 1 and
y ∈ R

p , denote β = φ logp and define a function κ : Rp → [0,1] as

(9) κ(w) = ϕ0
(
φFφ logp(w)

) = ϕ
(
Fβ(w)

)
, w ∈R

p.

Lemma 1 is devoted to characterize the properties of the function κ defined in (9), which can
be also referred to Lemmas A.5 and A.6 in [7].

LEMMA 1. For any φ ≥ 1 and y ∈ R
p , we denote β = φ logp, then the function κ defined

in (9) has the following properties, where κjkl denotes ∂j ∂k∂lκ . For any j, k, l = 1, . . . , p,
there exists a nonnegative function Qjkl such that:
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(1) |κjkl(w)| ≤ Qjkl(w) for all w ∈ R
p ,

(2)
∑p

j=1
∑p

k=1
∑p

l=1 Qjkl(w) � (φ3 + φ2β + φβ2)� φβ2 for all w ∈ R
p ,

(3) Qjkl(w) � Qjkl(w + w̃) � Qjkl(w) for all w ∈ R
p and w̃ ∈ {w∗ ∈ R

p :
max1≤j≤p |w∗

j |β ≤ 1}.

To state Lemma 2, a two-sample extension of Lemma 5.1 in [9], for any sequence of
constants δn,m that depends on both n and m, we denote the quantity ρn,m by

ρn,m = sup
v∈[0,1]

sup
y∈Rp

∣∣P {
v1/2(

SX
n − n1/2μX + δn,mSY

m − δn,mm1/2μY )

+ (1 − v)1/2(
SF

n − n1/2μX + δn,mSG
m − δn,mm1/2μY ) ≤ y

}
− P

(
SF

n − n1/2μX + δn,mSG
m − δn,mm1/2μY ≤ y

)∣∣.
(10)

Lemma 2 provides a bound on ρn,m under some general conditions.

LEMMA 2. For any φ1, φ2 ≥ 1 and any sequence of constants δn,m, assume the following
condition (a) holds,

(a) There exists a universal constant b > 0 such that

min
1≤j≤p

E
{(

SX
nj − n1/2μX

j + δn,mSY
mj − δn,mm1/2μY

j

)2} ≥ b.

Then we have

ρn,m � n−1/2φ2
1(logp)2{

φ1L
X
n ρn,m + LX

n (logp)1/2 + φ1Mn(φ1)
}

+ m−1/2φ2
2(logp)2|δn,m|3{

φ2L
Y
mρn,m + LY

m(logp)1/2 + φ2M
∗
m(φ2)

}
+ (

min{φ1, φ2})−1
(logp)1/2,

up to a positive universal constant that depends only on b, where ρn,m is defined in (10).

To state Lemma 3 that is a two-sample version of Corollary 5.1 in [9], for any sequence of
constants δn,m that depends on both n and m, we denote the quantity ρ∗

n,m by

ρ∗
n,m = sup

v∈[0,1]
sup

A∈ARe

∣∣P {
v1/2(

SX
n − n1/2μX + δn,mSY

m − δn,mm1/2μY )

+ (1 − v)1/2(
SF

n − n1/2μX + δn,mSG
m − δn,mm1/2μY ) ∈ A

}
− P

(
SF

n − n1/2μX + δn,mSG
m − δn,mm1/2μY ∈ A

)∣∣,
(11)

which has a similar form to the key quantity ρ∗∗
n,m in Theorems 1 and 2. Lemma 3 gives a

bound on ρ∗
n,m under some general conditions, and it is important for deriving Lemma 4 and

Theorem 1.

LEMMA 3. For any φ1, φ2 ≥ 1 and any sequence of constants δn,m, assume the following
condition (a) holds,

(a) There exists a universal constant b > 0 such that

min
1≤j≤p

E
{(

SX
nj − n1/2μX

j + δn,mSY
mj − δn,mm1/2μY

j

)2} ≥ b.
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Then we have

ρ∗
n,m ≤ K∗[

n−1/2φ2
1(logp)2{

φ1L
X
n ρ∗

n,m + LX
n (logp)1/2 + φ1Mn(φ1)

}
+ m−1/2φ2

2(logp)2|δn,m|3{
φ2L

Y
mρ∗

n,m + LY
m(logp)1/2 + φ2M

∗
m(φ2)

}
+ (

min{φ1, φ2})−1
(logp)1/2]

,

up to a universal constant K∗ > 0 that depends only on b, where ρ∗
n,m is defined in (11).

Before stating the next lemma, for any φ ≥ 1, we denote Mn(φ) = MX
n (φ) + MF

n (φ),
where MX

n (φ) and MF
n (φ) are given as follows, respectively,

n−1
n∑

i=1

E
[

max
1≤j≤p

∣∣Xij − μX
j

∣∣31
{

max
1≤j≤p

∣∣Xij − μX
j

∣∣ > n1/2/
(4φ logp)

}]
,

n−1
n∑

i=1

E
[

max
1≤j≤p

∣∣Fij − μF
j

∣∣31
{

max
1≤j≤p

∣∣Fij − μF
j

∣∣ > n1/2/
(4φ logp)

}]
,

similar to those adopted in [9]. Likewise, for any φ ≥ 1 and any sequence of constants δn,m

that depends on both n and m, we denote M∗
m(φ) = MY

m(φ) + MG
m(φ) with MY

m(φ) and
MG

m(φ) as follows, respectively,

m−1
m∑

i=1

E
[

max
1≤j≤p

∣∣Yij − μY
j

∣∣31
{

max
1≤j≤p

∣∣Yij − μY
j

∣∣ > m1/2/(
4|δn,m|φ logp

)}]
,

m−1
m∑

i=1

E
[

max
1≤j≤p

∣∣Gij − μG
j

∣∣31
{

max
1≤j≤p

∣∣Gij − μG
j

∣∣ > m1/2/(
4|δn,m|φ logp

)}]
.

Recalling the definition of ρ∗∗
n,m in (2), Lemma 4 gives an abstract upper bound on ρ∗∗

n,m under
mild conditions as follows.

LEMMA 4. For any sequence of constants δn,m, assume we have the following conditions
(a)–(b):

(a) There exists a universal constant b > 0 such that

min
1≤j≤p

E
{(

SX
nj − n1/2μX

j + δn,mSY
mj − δn,mm1/2μY

j

)2} ≥ b.

(b) There exist two sequences of constants L̄∗
n and L̄∗∗

m such that we have L̄∗
n ≥ LX

n and
L̄∗∗

m ≥ LY
m, respectively. Moreover, we also have

φ∗
n = K1

{(
L̄∗

n

)2
(logp)4/n

}−1/6 ≥ 2,

φ∗∗
m = K1

{(
L̄∗∗

m

)2
(logp)4|δn,m|6/m

}−1/6 ≥ 2,

for a universal constant K1 ∈ (0, (K∗ ∨ 2)−1], where the positive constant K∗ that depends
on n as defined in Lemma 3 in the Appendix.

Then we have the following property, where ρ∗∗
n,m is defined in (2),

ρ∗∗
n,m ≤ K2

[{(
L̄∗

n

)2
(logp)7/n

}1/6 + {
Mn

(
φ∗

n

)
/L̄∗

n

}
+ {(

L̄∗∗
m

)2
(logp)7|δn,m|6/m

}1/6 + {
M∗

m

(
φ∗∗

m

)
/L̄∗∗

m

}]
,

for a universal constant K2 > 0 that depends only on b.
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To introduce Lemma 5, for any sequence of constants δn,m that depends on both n and m,
denote a useful quantity �̂n,m = ‖�̂X − �X + δ2

n,m(�̂Y − �Y )‖∞. Lemma 5 below gives an
abstract upper bound on ρMB

n,m defined in (4).

LEMMA 5. For any sequence of constants δn,m, assume we have the following condition
(a):

(a) There exists a universal constant b > 0 such that

min
1≤j≤p

E
{(

SX
nj − n1/2μX

j + δn,mSY
mj − δn,mm1/2μY

j

)2} ≥ b.

Then for any sequence of constants �̄n,m > 0, on the event {�̂n,m ≤ �̄n,m}, we have the
following property, where ρMB

n,m is defined in (4),

ρMB
n,m � (�̄n,m)1/3(logp)2/3.

Lastly, we present two-sample Borel–Cantelli lemma in Lemma 6.

LEMMA 6. Let {An,m : n ≥ 1,m ≥ 1, (n,m) ∈ A} be a sequence of events in the sample
space �, where A is the set of all possible combinations (n,m), which has the form A =
{(n,m) : n ≥ 1,m ∈ σ(n)} where σ(n) is a set of positive integers determined by n, possibly
the empty set. Assume the following condition (a):

(a)
∑∞

n=1
∑

m∈σ(n) P (An,m) < ∞.

Then we have the following property:

P

( ∞⋂
k1=1

∞⋂
k2=1

∞⋃
n=k1

⋃
m∈�(k2)∩σ(n)

An,m

)
= 0,

where �(k2) = {k : k ∈ Z, k ≥ k2}.

Note that if m ∈ σ(n) = ∅, we just delete the roles of those An,m and Ac
n,m during any

operations such as union and intersection, and the same applies to P(An,m) and P(Ac
n,m)

during summation and deduction.
Before preceding, we mention that the derivations of Theorems 1–2 essentially follow

those of their counterparts in [9], but need more technicality to employ the aforesaid Lemmas
4–5 to address the challenge arising from unequal sample sizes. The derivation of Corollary 1
is based on Theorem 1 as well as a two-sample Borel–Cantelli lemma (Lemma 6) that first
appears in this work as far as we know.

Theorems 3–5 regarding the DCF test are newly developed, while no comparable results
are present in literature. Thus we present the proofs of Theorems 3–5 below, while the proofs
of Theorems 1–2, Corollary 1 and the auxiliary lemmas are delegated to an online Supple-
mentary Material for space economy.

PROOF OF THEOREM 3. First of all, we define a sequence of constants δn,m by

(12) δn,m = −n1/2m−1/2.

Together with condition (a), it can deduced that

(13) δ2 < |δn,m| < δ1,
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with δ1 = {c2/(1 − c2)}1/2 > 0 and δ2 = {c1/(1 − c1)}1/2 > 0. Moreover, by combining (12),
(13) with condition (b), we have

(14) min
1≤j≤p

E
{(

SX
nj − n1/2μX

j + δn,mSY
mj − δn,mm1/2μY

j

)2} ≥ min
{
1, δ2

2
}
b.

In addition, based on condition (a) and condition (e), one has

(15) B2
n,m log7(pm)/m ∼ B2

n,m log7(pn)/n → 0.

To this end, by combining (12), (13), (14), (15), condition (c), condition (d) with Theorem 1,
it can be shown that

(16)

sup
t≥0

∣∣P (∥∥SX
n − n1/2m−1/2SY

m − n1/2(
μX − μY )∥∥∞ ≤ t

)

− P
(∥∥SF

n − n1/2m−1/2SG
m − n1/2(

μX − μY )∥∥∞ ≤ t
)∣∣

≤ ρ∗∗
n,m �

{
B2

n,m log7(pn)/n
}1/6

.

Next, we denote a sequence of constants αn,m by

(17) αn,m = (pn)−1,

and it is obvious that

(18) αn,m ∈ (
0, e−1)

.

Moreover, by combining condition (a), condition (e) with (17), we conclude that

(19) B2
n,m log5(pm) log2(1/αn,m)/m ∼ B2

n,m log5(pn) log2(1/αn,m)/n → 0.

To this end, by combining (12), (13), (14), (17), (18), (19), condition (c), condition (d) with
Theorem 2, it follows that there exists a universal constant c∗ > 0 such that with probabil-
ity at least 1 − γn,m, we have ρMB

n,m � {B2
n,m log7(pn)/n}1/6, where γn,m = (αn,m)log(pn)/3 +

3(αn,m)log1/2(pn)/c∗ + (αn,m)log(pm)/3 + 3(αn,m)log1/2(pm)/c∗ + (αn,m)log3(pn)/6 + 3 ×
(αn,m)log3(pn)/c∗ + (αn,m)log3(pm)/6 + 3(αn,m)log3(pm)/c∗ . Together with (a), (17) and (18),
it is not hard to prove that

(20)
∑
n

∑
m

γn,m < ∞.

Henceforth, by combining (12), (13), (14), (17), (18), (19), (20), condition (c), condition (d)
with Corollary 1, we reach a conclusion that with probability one,

(21)
sup
t≥0

∣∣Pe

(∥∥SeX
n − n1/2m−1/2SeY

m

∥∥∞ ≤ t
) − P

(∥∥SF
n − n1/2m−1/2SG

m

− n1/2(
μX − μY )∥∥∞ ≤ t

)∣∣ ≤ ρMB
n,m �

{
B2

n,m log7(pn)/n
}1/6

.

Finally, according to (16) and (21), the assertion holds trivially. �
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PROOF OF THEOREM 4. Given any (μX − μY ), we have

(22)

Power∗
(
μX − μY )

= Pe∗
{∥∥Se∗X

n − n1/2m−1/2Se∗Y
m + n1/2(

μX − μY )∥∥∞ ≥ cB(α)
}

= 1 − Pe∗
{∥∥Se∗X

n − n1/2m−1/2Se∗Y
m + n1/2(

μX − μY )∥∥∞ < cB(α)
}

= 1 − Pe∗
{−n1/2(

μX − μY ) − cB(α) < Se∗X
n − n1/2m−1/2Se∗Y

m <

−n1/2(
μX − μY ) + cB(α)

}
= 1 − Pe∗

{−n1/2(
μX − μY ) − cB(α) < Se∗X

n − n1/2m−1/2Se∗Y
m <

−n1/2(
μX − μY ) + cB(α)

}
+ P

{−n1/2(
μX − μY ) − cB(α) < SX

n − n1/2m−1/2SY
m

− n1/2(
μX − μY )

< −n1/2(
μX − μY ) + cB(α)

}
− P

{−n1/2(
μX − μY ) − cB(α) < SX

n − n1/2m−1/2SY
m

− n1/2(
μX − μY )

< −n1/2(
μX − μY ) + cB(α)

}
≥ 1 − sup

A∈ARe

∣∣P (∥∥SX
n − n1/2m−1/2SY

m

− n1/2(
μX − μY )∥∥∞ ∈ A

) − Pe∗
(∥∥Se∗X

n − n1/2m−1/2Se∗Y
m

∥∥∞ ∈ A
)∣∣

− P
{∥∥SX

n − n1/2m−1/2SY
m

∥∥∞ < cB(α)
}

= Power
(
μX − μY )

− sup
A∈ARe

∣∣P (∥∥SX
n − n1/2m−1/2SY

m − n1/2(
μX − μY )∥∥∞ ∈ A

)

− Pe∗
(∥∥Se∗X

n − n1/2m−1/2Se∗Y
m

∥∥∞ ∈ A
)∣∣.

Likewise, given any (μX − μY ), we have

Power
(
μX − μY )

= P
{∥∥SX

n − n1/2m−1/2SY
m

∥∥∞ ≥ cB(α)
}

= 1 − P
{∥∥SX

n − n1/2m−1/2SY
m

∥∥∞ < cB(α)
}

= 1 − P
{−cB(α) < SX

n − n1/2m−1/2SY
m < cB(α)

}
= 1 + Pe∗

{−n1/2(
μX − μY ) − cB(α) < Se∗X

n − n1/2m−1/2Se∗Y
m <

−n1/2(
μX − μY ) + cB(α)

} − P
{−n1/2(

μX − μY ) − cB(α)

< SX
n − n1/2m−1/2SY

m − n1/2(
μX − μY )

< −n1/2(
μX − μY ) + cB(α)

}
(23)

− Pe∗
{−n1/2(

μX − μY ) − cB(α) < Se∗X
n − n1/2m−1/2Se∗Y

m

< −n1/2(
μX − μY ) + cB(α)

}
≥ 1 − sup

A∈ARe

∣∣P (∥∥SX
n − n1/2m−1/2SY

m − n1/2(
μX − μY )∥∥∞ ∈ A

)

− Pe∗
(∥∥Se∗X

n − n1/2m−1/2Se∗Y
m

∥∥∞ ∈ A
)∣∣
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− Pe∗
{∥∥Se∗X

n − n1/2m−1/2Se∗Y
m + n1/2(

μX − μY )∥∥∞ < cB(α)
}

= Power∗
(
μX − μY )

− sup
A∈ARe

∣∣P (∥∥SX
n − n1/2m−1/2SY

m − n1/2(
μX − μY )∥∥∞ ∈ A

)

− Pe∗
(∥∥Se∗X

n − n1/2m−1/2Se∗Y
m

∥∥∞ ∈ A
)∣∣.

Putting (22) and (23) together indicates that

(24)

∣∣Power∗
(
μX − μY ) − Power

(
μX − μY )∣∣

≤ sup
A∈ARe

∣∣P (∥∥SX
n − n1/2m−1/2SY

m − n1/2(
μX − μY )∥∥∞ ∈ A

)

− Pe∗
(∥∥Se∗X

n − n1/2m−1/2Se∗Y
m

∥∥∞ ∈ A
)∣∣.

Moreover, by similar argument as in the proof of Theorem 3, one can show that with proba-
bility one,

(25)

sup
A∈ARe

∣∣P (∥∥SX
n − n1/2m−1/2SY

m − n1/2(
μX − μY )∥∥∞ ∈ A

)

− Pe∗
(∥∥Se∗X

n − n1/2m−1/2Se∗Y
m

∥∥∞ ∈ A
)∣∣

�
{
B2

n,m log7(pn)/n
}1/6

.

Finally, by combining (24) with (25), for any μX − μY ∈ R
p , we have that with probability

one, ∣∣Power∗
(
μX − μY ) − Power

(
μX − μY )∣∣ � {

B2
n,m log7(pn)/n

}1/6
,

which completes the proof. �

PROOF OF THEOREM 5. First of all, on the basis of (8) and the triangle inequality, it is
clear that

(26)
Power∗

(
μX − μY ) ≥ Pe∗

{∥∥Se∗X
n − n1/2m−1/2Se∗Y

m

∥∥∞
≤ ∥∥n1/2(

μX − μY )∥∥∞ − cB(α)
}
.

At this point, with some abuse of notation, we denote {ej : j ≤ p} as the natural basis for Rp .
Then it follows from union bound inequality and concentration inequality that for any t ≥ 0,

(27)

Pe∗
{∥∥Se∗X

n − n1/2m−1/2Se∗Y
m

∥∥∞ ≥ t
}

≤
p∑

j=1

Pe∗
{∣∣Se∗X

nj − n1/2m−1/2Se∗Y
mj

∣∣ ≥ t
}

≤
p∑

j=1

2 exp
[−t2/

{
2e′

j

(
�̂X + nm−1�̂Y )

ej

}]

≤ 2p exp
(
−t2/[

2 max
j≤p

{
e′
j

(
�̂X + nm−1�̂Y )

ej

}])
.

By plugging t = cB(α) into (27), it follows from the definition of cB(α) that

(28)

cB(α) ≤
[
2 log(2p/α)max

j≤p

{
e′
j

(
�̂X + nm−1�̂Y )

ej

}]1/2

≤
[
4 log(pn)max

j≤p

{
e′
j

(
�̂X + nm−1�̂Y )

ej

}]1/2
,
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for sufficiently large n. To bound the quantity maxj≤p{e′
j (�̂

X + nm−1�̂Y )ej }, first notice
that

(29)

max
j≤p

{
e′
j

(
�̂X + nm−1�̂Y )

ej

}
= ∥∥�̂X + nm−1�̂Y

∥∥∞
≤ ∥∥�̂X − �X + nm−1(

�̂Y − �Y )∥∥∞ + ∥∥�X + nm−1�Y
∥∥∞.

For the term ‖�̂X − �X + nm−1(�̂Y − �Y )‖∞, inequalities (53) and (54) from the Supple-
mentary Material together with (12), (17) and condition (a) entails that there exists a universal
constant c1 > 0 such that

(30)
∥∥�̂X − �X + nm−1(

�̂Y − �Y )∥∥∞ ≤ c1
{
B2

n,m log3(pn)/n
}1/2

,

with probability tending to one. Regarding the term ‖�X + nm−1�Y ‖∞, one has∥∥�X + nm−1�Y
∥∥∞

≤ ∥∥�X
∥∥∞ + nm−1∥∥�Y

∥∥∞ ≤ ∥∥�X
∥∥∞ + c2

∥∥�Y
∥∥∞

= max
1≤j≤p

n∑
i=1

E
{(

Xij − μX
j

)2}
/n + c2 max

1≤j≤p

m∑
i=1

E
{(

Yij − μY
j

)2}
/m

≤ max
1≤j≤p

n∑
i=1

[
E

{(
Xij − μX

j

)4}]1/2
/n(31)

+ c2 max
1≤j≤p

m∑
i=1

[
E

{(
Yij − μY

j

)4}]1/2
/m

≤
[

max
1≤j≤p

n∑
i=1

E
{(

Xij − μX
j

)4}
/n

]1/2

+ c2

[
max

1≤j≤p

m∑
i=1

E
{(

Yij − μY
j

)4}
/m

]1/2

≤ c3Bn,m,

for some universal constants c2, c3 > 0, where the second inequality is by condition (a), the
third inequality is based on Jensen’s inequality, the fourth inequality holds from the Cauchy–
Schwarz inequality and the last inequality follows from condition (c). To this end, by com-
bining (30), (31), (e) with (29), it can be deduced that there exists a universal constant c4 > 0
such that

(32) max
j≤p

{
e′
j

(
�̂X + nm−1�̂Y )

ej

} ≤ c4Bn,m,

with probability tending to one. Together with (28), it can be verified that

(33) cB(α) ≤ {
4c4Bn,m log(pn)

}1/2
,

with probability tending to one. Now, we set the constant Ks in (f) as Ks = 4c
1/2
4 , and it then

follows from (f) and (33) that

(34)
∥∥n1/2(

μX − μY )∥∥∞ − cB(α) ≥ {
4c4Bn,m log(pn)

}1/2
,
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with probability tending to one. Hence, it can be deduced that with probability tending to
one,

Power∗
(
μX − μY )

≥ Pe∗
[∥∥Se∗X

n − n1/2m−1/2Se∗Y
m

∥∥∞ ≤ {
4c4Bn,m log(pn)

}1/2]
= 1 − Pe∗

[∥∥Se∗X
n − n1/2m−1/2Se∗Y

m

∥∥∞ ≥ {
4c4Bn,m log(pn)

}1/2]
≥ 1 − 2p exp

(
−4c4Bn,m log(pn)

/[
2 max

j≤p

{
e′
j

(
�̂X + nm−1�̂Y )

ej

}])

≥ 1 − 2n−2 → 1 as n → ∞,

where the first inequality is based on (26) and (34), the second inequality holds from (27),
and the last inequality is by (32). This completes the proof. �
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