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1. Additional Simulation

It is of interest to inspect the performance of recovering new observations that are inde-
pendent of the sample used for calculating the Stein weights. Since blocking and soft-
thresholding methods are not applicable in this context, we compare only to the ora-
cle strategy cross two settings in which new data {θ∗

i }i≤n of moderate/large sizes with
n = 100, 1000 and m = 500, 5000 are independently generated in each of 1000 Monte Carlo
runs, results shown in Table S1 The first setting draws new θ∗

i from the same GSM (25) with
λk = 2αk−(2α+1), k = 1, . . . ,m, which attains comparable recovery errors to the in-sample
results in Table 1 in the paper. The second setting is designed to violate the distributional

assumption such that θ∗ik ∼ U
(
−
√
2λk log(mn),

√
2λk log(mn)

)
are independent across

k = 1, . . . ,m with λk = 2αk−(2α+1). The increased recovery errors are seen to be bounded
within a factor log(mn) of those from the corresponding Gaussian experiments, supporting
the finding in Theorem 4 in the paper.

2. Useful Auxiliary Results

The following Results 1–5 are collected from various references, which are used repeatedly
in the proofs of the main lemmas, theorems and propositions. Result 1 below follows from
a union bound and the probability assessments of standard normal random variables.

Result 1. Suppose that z1, . . . , zN are N(0, 1) but not necessarily independent. Then
for N ≥ 2 and γ >

√
2,

P

{
max

i=1,...,N
|zi| > γ(logN)1/2

}
≤ N1−γ2/2. (S1)

Results 2 and 3 are borrowed from Freedman (1999). The first provides integral approxi-
mations and the second gives a concentration for bounding individual and maximal risks.
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Table S1. Average and maximal ℓ2 errors (×102) over n recov-

eries of new observations {θ∗
i }i≤n independently drawn from

Gaussian and uniform distributions, respectively, when the de-

cay parameter α = 2/3, the sampling rate m = 500, 5000
and the descending decay sequence λk = 2αk−(2α+1), k =
1, , . . . ,m. In the distribution-violated scenario with the uniform

distribution, it is notable that, when scaled down by a factor of

log(mn), the errors are bounded by those from the correspond-

ing Gaussian experiments.

Gaussian, θik ∼ N(0, λk)
n = 100 n = 1000

Avg Max Avg Max

Oracle θ̂
o,a

i 4.36 7.45 4.36 8.60

m = 500 θ̂
RS

i (σ2) 6.49 11.5 4.98 9.62

θ̂
RS

i (σ̂2
min) 5.93 10.3 5.03 9.74

Oracle θ̂
o,a

i 1.19 1.66 1.19 1.83

m = 5000 θ̂
RS

i (σ2) 1.86 2.69 1.39 2.10

θ̂
RS

i (σ̂2
min) 1.62 2.28 1.39 2.11

Uniform, θik ∼ U
(

−
√

2λk log(mn),
√

2λk log(mn)
)

n = 100 n = 1000
Avg Max Avg Max

Oracle θ̂
o,a

i 16.2 22.1 19.0 27.9

m = 500 θ̂
RS

i (σ2) 39.3 56.5 30.4 44.7

θ̂
RS

i (σ̂2
min) 34.5 48.8 31.1 45.9

Oracle θ̂
o,a

i 5.17 6.23 5.96 7.52

m = 5000 θ̂
RS

i (σ2) 13.7 17.4 10.1 12.9

θ̂
RS

i (σ̂2
min) 11.2 13.9 10.1 13.0
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Result 2. Let 1 < a, b < ∞ and 0 ≤ c ≤ ∞. Suppose that ab > c + 1 and γn → ∞.

Take sk ∝ ka, tk ∝ kc and let gn = γ
b−(1+c)/a
n . Then for any integer q, it follows that

lim
n→∞

gn

∞∑

k=q

tk
(γn + sk)b

= lim
n→∞

gn

∞∑

k=q

kc

(γn + ka)b
=

∫ ∞

0

uc

(1 + ua)b
du

and

max
k

tk
(γn + sk)b

∝ γ−b+c/a
n .

Result 3. Suppose that zi
i.i.d.∼ N(0, 1) and δ > 0 satisfies δ||c||∞/||c||22 < 1 for any

c = (c1, c2, . . .) ∈ ℓ2. Define V =
∑∞

k=1 ck(z
2
i − 1), then

P(|V | > δ) < 2 exp
(
−δ2/12||c||22

)
.

Further, if Vi
i.i.d.∼ V , for δ satisfying δ||c||1||c||∞/||c||22 < 1,

P( max
1≤i≤n

|Vi| > δ||c||1) ≤ 2 exp
(
−||c||21δ2/12||c||22 + logn

)
.

Result 4 relates the expectation of a random variable to its expectation taken over a
subset. The proof is a simple application of Cauchy-Schwarz inequality, thus is omitted.

Result 4. Suppose g is squared integrable and f is bounded by B on a set Aδ. Then
we have that

|Efg −Efg1Ac
δ
| ≤ BP1/2(Aδ)(Eg

2)1/2.

The following provides a general result on lower and upper bounds for the “ideal” risk of
any block B ⊂ {1, . . . ,m}. The upper bound follows from Jeson’s inequality and the lower
bound is achieved by conditioning and the facts that EX−1 ≥ (EX)−1 for positive random
variable X and Eg(χ2

n) = nE{g(χ2
n+2)/χ

2
n+2} for Chi-square random variables. The proof

is omitted for brevity.

Result 5. For any block B (including singleton), denote the “ideal” block risk by R(B) =
E
{
(||θB||22|B|/m)/(||θB||22 + |B|/m)

}
, then

||λB||1|B|/m
2||λB ||∞ + ||λB ||1 + |B|/m ≤ R(B) ≤ ||λB ||1|B|/m

||λB ||1 + |B|/m.

3. Relation to Weak ℓp Spaces

The following result allows us to establish upper bounds on weak ℓp norms in terms of
simpler maxima of independent variables.

Result 6. Suppose that x, y ∈ R
n satisfy x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and 0 ≤ y1 ≤ y2 ≤

· · · ≤ yn. Then for any permutation σ : [n] → [n], it holds that

max
i≤n

xiyi ≤ max
i≤n

xσ(i)yi.
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Proof. Given that any permutation may be written as a composition of disjoint cycles,
it suffices to show that the maximum value of xσ(i)yi dominates the maximum value of xiyi
on any cycle. Now a cycle of σ of length r is a collection of points i1, . . . , ir satisfying
σ(ij) = ij+1 for j = 1, . . . , r − 1 and σ(ir) = i1. Now let S = {i1, . . . , ir} and note that S
has minimum and maximum elements, say m,M . Further, set

D = {(i, j) ∈ S : σ(i) = j < i}

and observe that we must have (i,m), (M, j) ∈ D for some i, j ∈ S. This seems obvious,
but suppose not. Then there is no j ∈ S for which σ(M) = j < M , contradicting that S
is a cycle of σ as we may not cycle back from M . Similarly, there is no i ∈ S for which
σ(i) = m < i, again contradicting that S is a cycle of σ as we may not cycle back to m.
Nevertheless, this doesn’t come nearly as cleanly as above.

Now notice that since x is decreasing while y is increasing, for any (i, j) ∈ D we have
that

xσ(i)yi ≥ max{xjyj , xj+1yj+1, . . . , xiyi}.
Now we just need to show that D ‘covers’ {m,m+ 1, . . . ,M} to get that

max
i∈S

xσ(i)yi ≥ max
m≤i≤M

xiyi.

But this is trivial, as we must return from M to m in order for the cycle property to be
maintained. Thus there must be a sequence (ik, jk) ∈ D, k = 1, . . . ,K satisfying i1 = M ,
jK = m and jk+1 ≥ ik for k = 1, . . . ,K − 1. If this were not the case, we would not be able
to cycle back from some value. This in turn shows that each disjoint cycle of a permutation
increases the maximum and establishes the result. ✷

Next result establishes a precise connection of the decaying condition to the weak ℓp
spaces. Our model is θj ∼ N(0, λj) with λ(j) . j−(2α+1) for j ∈ [m] and λj . j−(2α+1) for
j > m. Thus there is some permutation σ : [m] → [m] so that λ(j) = λσ(j) for j ∈ [m], and
we find that

Result 7. Let σ : [m] → [m] be the permutation taking λ(j) = λσ(j) for j ∈ [m]. Then
for γ ≥ 1/2 (relaxable) we have that

max
i≤m

iγ |θ|(i)√
log(1 + i)

≤ max
i≤m

iγ |θσ(i)|√
log(1 + i)

∼ max
i≤m

iγλ
1/2
(i) zi√

log(1 + i)
,

with zi
i.i.d.∼ N(0, 1). Consequently we find that for γ ≤ α+ 1/2 we have

sup
i∈N

iγ |θ|(i)√
log(1 + i)

a.s.
< ∞

and so the random element θ lies just outside of the weak ℓp space γ = α+1/2 and in every
one for γ < α+ 1/2.

Proof. The first claim follows as an application of the previous theorem combined
with the fact that yi(γ) = iγ/

√
( log(1 + i)) is positive and increasing for γ ≥ 1/2 while, by

definition, |θ|(1) ≥ |θ|(2) ≥ · · · ≥ |θ|(m) ≥ 0.
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Now, from the first fact, we have that

sup
i∈N

iγ |θ|(i)√
log(1 + i)

≤ sup
i∈N

iγλ
1/2
(i) |zi|√

log(1 + i)
.

The final claim of the theorem is now standard. See e.g. result of Durrett p 63 ex 2.3.13:
For X1, X2, . . . independent, supnXn <∞ a.s. if and only if

∑
n P(Xn > A) <∞ for some

A. ✷

4. Proofs of Main Lemmas

We provide the proofs of Lemma 1–3 presented in the paper.

Proof of Lemma 1. Denote Pi(·) = P(·|θi) and Ei = E(·|θi), let

A−
k,δ = {||Y k||2 < (1− δ)n(λk + 1/m)}
A+

k,δ = {||Y k||2 > (1 + δ)n(λk + 1/m)}.

Since Y·k is Gaussian with independent elements, for any s > 0,

Pi(A
+
k,δ) ≤ exp{−s(1 + δ)n(λk + 1/m)}Ei exp(s||Y·k||2)

= exp{−s(1 + δ)n(λk + 1/m)}
× exp(sθ2i,k)(1− 2s/m)−1/2{1− 2s(λk + 1/m)}−(n−1)/2

≤ exp{−s(1 + δ)n(λk + 1/m)}
× exp(sθ2i,k){1− 2s(λk + 1/m)}−n/2.

On choosing s to satisfy δ = 2(1 + δ)(λk + 1/m)s and s ≤ δ/2λk, we find

Pi(A
+
k,δ) ≤ exp(δθ2i,k/2λk){(1 + δ) exp(−δ)}n/2.

Taylor approximation to log(1 + δ) gives {(1 + δ) exp(−δ)}n/2 ≤ exp(−nδ2/6),

Pi(A
+
k,δ) ≤ exp(δθ2i,k/2λk) exp(−nδ2/6).

Similarly, we calculate that

Pi(A
−
k,δ) ≤ exp{s(1− δ)n(λk + 1/m)}Ei exp(−s||Y·k||2)

≤ exp{s(1− δ)n(λk + 1/m)}{1 + 2s(λk + 1/m)}−(n−1)/2

≤ (1− δ)−1/2{(1− δ) exp(δ)}n/2,

by choosing s to satisfy δ = 2(1 − δ)(λk + 1/m)s. Since δ ∈ (0, 1/2), (1 − δ)−1/2 ≤√
2, while Taylor approximation to log(1 − δ) gives {(1 − δ) exp(δ)}n/2 ≤ exp(−nδ2/4) ≤

exp(δθ2i,k/2λk) exp(−nδ2/6). Combining Pi(A
−
k,δ) and Pi(A

+
k,δ) gives the first result and

application of a union bound gives the second. ✷

To present the proofs for results on equivalence for fixed and random design we need to
setup some background and notations on piecewise constant approximations. For a given
integer k, let Ik,j = [j/k, (j + 1)/k) for j = 0, . . . , k − 2 and Ik,k−1 = [1 − 1/k, 1] so that
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the Ik,j form a partition of [0, 1] with the measure of each interval, |Ik,j |, constant at k−1.
Let φk,j = k1/21Ik,j

so that for a given k these functions form an orthonormal basis for the
subspace Sk of L2[0, 1] consisting of functions constant on each of the Ik,j . Any f ∈ L2[0, 1]
has a projection Pkf onto Sk given by

Pkf =

k−1∑

j=0

θk,jφk,j ,

where k1/2θk,l = k1/2〈f, φk,j〉 = |Ik,j |−1
∫
Ik,j

f is the average of f over Ik,j . Thus Pkf has

the interpretation of using the average of f on each Ik,j to represent f on that interval and
intuition suggests that for a given k this approximation improves as f becomes smoother.
Further, for any J ∈ N we may expand f in the Haar wavelet expansion

f = P2Jf +
∑

l≥J

(P2l+1f − P2lf) = P2J f +
∑

l≥J

2l−1∑

j=0

wl,j(f)Hl,j

where the Hl,j = 2−1/2(φ2l+1,2j − φ2l+1,2j+1) form the orthonormal Haar wavelet basis and

wl,j(f) = 〈f,Hl,j〉. Setting w0,0(f) = 〈f, φ1,0〉 =
∫ 1

0
f , these representations lead to a useful

scale of norms which can be used to characterize equivalence for both fixed and random
design. For a given α ≥ 1/2 we define the scale of norms

||f ||(α) =





∞∑

k=0

22kα
2k−1∑

l=0

w2
k,l(f)





1/2

,

which are closely related to a specific instance of Besov norms and are easily seen to provide
a generalization of various types of smoothness, e.g. Hölder continuity, Sobolev smoothness,
in that the norms charachterizing these types of smoothness, for a given α > 1/2, may be
seen to bound the corresponding ||f ||(α) norm.

Proof of Lemma 2. From Theorem 2 of Brown et al. (2002) we have the bound

∆(Rm,Wm)) ≤ 2 sup
f∈Θm

Dm(f)

where

Dm(f) ≤ 3

2
||f − P2J f ||2(1/2) +

22J+1

m
.

Given the assumption that for α > 1/2, ||f ||2(α) < B2
m we calculate that

||f − P2J f ||2(1/2) =
∑

l≥J

2l
2l−1∑

j=0

w2
l,j(f) ≤ 2−J(2α−1)B2

m.

This gives

Dm(f) ≤ 2B2
m

{
2−J(2α−1) +

22J

m

}
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and choosing a sequence J = J(m) to satisfy 2J ∝ m1/(2α+1) balances terms and yields the
bound for ∆(Rm,Wm)).

In Reiß (2008) a bound on Le Cam’s distance between fixed design and the white noise
model is derived which relies on the distance

||f − Imf ||22 where Imf =
m−1∑

j=0

f((j + 1)/m)1Im,j
.

Here Imf is a projection onto a design dependent interpolation space.
In what follows, we choose a sequence J = J(m) to satisfy m/2 ≤ 2J < m. First notice

that if |x− y| < 2−J lie in the same dyadic interval at scale J , i.e. x, y ∈ [k2−J , (k+1)2−J)
for some k = 0, . . . , 2J − 1 then we have that P2J f(x) = P2J f(y) and so

f(x)− f(y) =
∑

k≥J

2k−1∑

l=0

wk,l(f)(Hk,l(x)−Hk,l(y)),

since ||f ||(α) < ∞ for α > 1/2 guarantees that the wavelet representation converges uni-
formly. At each scale k, for each x ∈ [0, 1], Hk,l(x) is non-zero for only one index l = lk(x).
Further, noting that ||Hk,l||∞ ≤ 2k/2 gives the bound

|f(x)− f(y)| ≤
∑

k≥J

2k/2(|wk,lk(x)(f)|+ |wk,lk(y)(f)|).

Applying Cauchy-Schwarz to the summand, we calculate that

|f(x)− f(y)| ≤
√
2
∑

k≥J

2k/2(w2
k,lk(x)

(f) + w2
k,lk(y)

(f))1/2

=
√
2
∑

k≥J

2−(α−1/2)k2αk(w2
k,lk(x)

(f) + w2
k,lk(y)

(f))1/2

≤
√
22−(α−1/2)J



∑

l≥J

22αk(w2
k,lk(x)

(f) + w2
k,lk(y)

(f))




1/2

.

Now the condition m/2 ≤ 2J < m guarantees that at most one dyadic k2−J lies in any
interval [i/m, (i+ 1)/m]. Let Imk,i denote the set of indices l = 0, . . . , 2k − 1 so that l2−k ∈
[i/m, (i+1)/m]. Then, by splitting the bound above where needed, for all x in this interval
we arrive at the bound

(f(x)− f((i+ 1)/m))2 ≤ 4 · 2−(2α−1)J
∑

k≥J

22αk
∑

l∈Im
k,i

w2
k,l(f).

This gives

∫ (i+1)/m

i/m

(f(x)− f((i+ 1)/m))2dx ≤ 4 · 2−(2α−1)J

m

∑

k≥J

22αk
∑

l∈Im
k,i

w2
k,l(f)

≤ 8 · 22α ·m−2α
∑

l≥J

22αk
∑

l∈Im
k,i

w2
k,l(f).
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Noting that ∪m−1
i=0 I

m
k,i = {0, . . . , 2k − 1} and summing these integral bounds gives

||f − Imf ||22 ≤ C ·m−2α
∑

k≥J

22αk
2k−1∑

l=0

w2
k,l(f) . m−2α||f ||2(α).

From this the bounds of Reiß (2008) yield

∆(Fm,Wm) . m1/2−α sup
f∈Θm

||f ||(α) ≤ m−(2α−1)/2Bm

and noting that for α > 1/2, 2α + 1 > 2 and it is assumed that we take 1 ≤ Bm → ∞
concludes proof of the theorem. ✷

Proof of Lemma 3. We calculate that

wk,l(f) = 2k/2

(∫

Ik+1,2l

f(x)dx −
∫

Ik+1,2l+1

f(y)dy

)

= 21+3k/2

∫

Ik+1,2l

∫

Ik+1,2l+1

(f(x)− f(y))dxdy

= 21+3k/2

∫

Ik,l

∫

Ik,l

(f(x) − f(y))1Ik+1,2l
(x)1Ik+1,2l+1

(y)dxdy.

Now if f has a generalized derivative, we may write

f(x)− f(y) =

∫ y

x

f ′(s)ds.

Then Cauchy-Schwarz gives that

w2
k,l(f) ≤ 2k

∫

Ik,l

∫

Ik,l

(∫ y

x

f ′(s)ds

)2

1Ik+1,2l
(x)1Ik+1,2l+1

(y)dxdy,

Another application of Cauchy-Schwarz leads to the bound

w2
k,l(f) ≤ 2k

∫

Ik,l

|f ′(s)|2ds
∫

Ik,l

∫

Ik,l

(y − x)1Ik+1,2l
(x)1Ik+1,2l+1

(y)dxdy,

which gives

w2
k,l(f) ≤ 2−2k

∫

Ik,l

|f ′(s)|2ds.

From this, we find that at each scale k,

2k−1∑

l=0

w2
k,l(f) ≤ 2−2k||f ′||22

which, for α ∈ [1/2, 1) leads to the bound ||f ||2(α) ≤ 22(1−α)||f ′||22/(22(1−α)−1) and concludes
the proof of the lemma. ✷
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5. Proofs of Main Theorems and Propositions

In this section, we present the proofs of Theorem 1–7 and Preposition 1–3 presented in the
paper.

Proof of Theorem 1. For notational convenience, we replace 1/m with τ2, and

suppress the superscript in θ̂RS
ik when no confusion arises. We first establish the inequality

in the case of λk > δτ2. Write

θ̂ik = αnm,kYik =
λk

λk + τ2
Yik +

(
αnm,k −

λk
λk + τ2

)
Yik.

Using Yik = θik + τzik with zik ∼ N(0, 1) allows us to write λkYik/(λk + τ2) − θik =
(λkτzik − τ2θik)/(λk + τ2), then

Ei(θ̂ik − θik)
2 = R∗

i,m(k) +Ei

(
αnm,k −

λk
λk + τ2

)2

Y 2
ik

︸ ︷︷ ︸
I

+2Ei

(
λkτzik − τ2θik

λk + τ2

)(
αnm,k −

λk
λk + τ2

)
Yik

︸ ︷︷ ︸
II

.

We proceed by bounding the terms I and II. For δ ∈ (0, 1/2), on the event Am,c
δ , the norm

||Y·k|| satisfies the bounds (1− δ)n(λk + τ2) ≤ ||Y·k||2 ≤ (1 + δ)n(λk + τ2) and
∣∣∣∣αnm,k −

λk
λk + τ2

∣∣∣∣ ≤
3δ

1− δ

τ2

λk + τ2
= Cδ

δτ2

λk + τ2
,

where Cδ = 3/(1 − δ). Since both αn,k and λk/(λk + τ2) lie in the interval (0, 1), this
quantity is always bounded by 2. The fact τ2/(λk + τ2) ≤ 1 gives

Ei

(
αnm,k −

λk
λk + τ2

)2

Y 2
ik1Ac

δ
≤ C2

δ δ
2τ2

(
θ2ik + τ2

λk + τ2

)

≤ C2
δ δ

2τ2 max(1, θ2ik/λk).

Further, Y 4
ik ≤ 8(θ4ik + τ4z4ik) gives (EiY

4
ik)

1/2 ≤ {8(θ4ik + 3τ4)}1/2 ≤
√
24(θ2ik + τ2), while

writing θ2ik + τ2 = (θ2ik/λk)λk + τ2 yields θ2ik + τ2 ≤ (λk + τ2)max(1, θ2ik/λk). In the range
under consideration, δτ2 = min(λk, δτ

2), thus an application of Lemma 4 leads to

I ≤ max
(
1, θ2ik/λk

){
Cδδmin(λk, δτ

2) +
√
24P

1/2
i (Am

δ )(λk + τ2)
}
.

It remains to bound the term II. We begin by writing (λkτzik − τ2θik)Yik = (λkτzik −
τ2θik)(θik+τzik) and expand to have (λkτzik−τ2θik)Yik = λkτ

2z2ik−τ2θ2ik+(λkτ−τ3)zikθik.
Hence

II = Ei

(
αnm,k −

λk
λk + τ2

){
λkτ

2z2ik − τ2θ2ik + (λkτ − τ3)zikθik
λk + τ2

}
.

Pass the expectation through and bound this quantity term by term. For the first term,
noting that Eiz

2
i 1Am

δ
≤ Eiz

2
i = 1,

Ei

(
αnm,k −

λk
λk + τ2

)
λkτ

2z2ik
λk + τ2

1Am
δ
≤ Cδ

δλkτ
4

(λk + τ2)2
≤ Cδ

δλkτ
2

λk + τ2
.
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Similarly, for the second term,

− τ2θ2ik
λk + τ2

Ei

(
αnm,k −

λk
λk + τ2

)
1Am

δ
≤ Cδ

δθ2ikτ
4

(λk + τ2)2
≤ Cδ

(
θ2ik
λk

)
δλkτ

2

λk + τ2
.

Finally we write

Ei

(
αnm,k −

λk
λk + τ2

)
zik1Am

δ
= Ei

(
αnm,k −

λk
λk + τ2

)
zik(1zik<0 + 1zik≥0)1Aδ

,

and use the fact thatEizik1zik≥01Am
δ
and−Eizik1zik<01Am

δ
are both bounded byEizik1zik≥0 =

(2π)−1/2 while 2(2π)−1/2 ≤ 1 to arrive at

Ei

(
αnm,k −

λk
λk + τ2

)
zik1Am

δ
≤ Cδ

δτ2

λk + τ2
.

By analogous argument, we can reach a lower bound of −3δτ2/(λk + τ2). Noting the
fact, if a, b are arbitrary numbers with |b| ≤ B and c and d are positive numbers, then
|a · b · (c− d)| = |a| · |b| · {max(c, d)−min(c, d)} ≤ |a| ·B ·max(c, d). Using this, we find that

(λkτ − τ3)θik
λk + τ2

Ei

(
αnm,k −

λk
λk + τ2

)
zik1Am

δ
≤ Cδ

δ|θik|τ3 max(λk, τ
2)

(λk + τ2)2
.

For any α ∈ (0, 2), since ab ≤ (a2 + b2)/2, we have

2δ1−α/2τ · δ
α/2|θik|τ2
λk + τ2

≤ δ2−ατ2 + δα
θ2ikτ

4

(λk + τ2)2
≤ δ2−ατ2 + δα

(
θ2ik
λk

)
λkτ

2

λk + τ2
.

We observe that (λkτzik − τ2θik)
2 ≤ 2(λ2kτ

2z2ik + τ4θ2ik) and Y
2
ik ≤ 2(τ2z2ik + θ2ik). Then ex-

panding (λkτzik−τ2θik)2Y 2
ik and noting that Eiz

4
ik = 3, we arrive at the bound Ei(λkτzik−

τ2θik)
2Y 2

ik ≤ 12(λ2kτ
2 + τ4θ2ik)(τ

2 + θ2ik) ≤ 12λkτ
2{max(1, θ2ik/λk)(λk + τ2)}2, which gives

the bound

Ei

(
λkτzii − τ2θik

λk + τ2

)2

Y 2
ik ≤ 12{max(1, θ2ik/λk)(λk + τ2)}2.

Applying Theorem 1 yields

2II ≤ max
(
1, θ2ik/λk

)
{
Cδ(4δ + δα)

λkτ
2

λk + τ2

+Cδδ
2−ατ2 + 4

√
12P

1/2
i (Am

δ )(λk + τ2)

}

For δ ∈ (0, 1/2), λkδτ
2/(λk + τ2) ≤ λkδτ

2/(λk + δτ2) ≤ min(λk, δτ
2), while in the range

under consideration, δτ2 = min(λk, δτ
2). Taking α = 1 and using that min(λk, τ

2) ≤ τ2,
this reduces to

2II ≤ max
(
1, θ2ik/λk

){
6Cδ min(λk, δτ

2) + 4
√
12P

1/2
i (Am

δ )τ2(λk + τ2)
}
.

Combining bounds for terms I and II gives the bound

Ei(θ̂ik − θik)
2 ≤ R∗

i,m(k) + max
(
1, θ2ik/λk

){
C′

δ min(λk, δτ
2)

+CP
1/2
i (Am

δ )(λk + τ2),
}
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where C′
δ = (6 + δ)Cδ and C = (

√
24 + 4

√
12), which provides the bound in (15) for the

case of λk > δτ2.
For the case of λk ≤ δτ2, min(λk, δτ

2) = λk, we have αnm,k = 0 on the event Am
δ which

implies that Ei(θ̂ik − θik)
21Am

δ
≤ θ2ik. We also have Ei(θ̂ik − θik)

4 ≤ 4Ei(θ
2
ik + τ2z2ik)

2 ≤
24(θ4ik + τ4), together with Lemma 4,

Ei(θ̂ik − θik)
2 ≤ θ2ik +

√
24P

1/2
i (Am

δ )(θ2ik + τ2)

≤ max
(
1, θ2ik/λk

){
min(λk, δτ

2) +
√
24P

1/2
i (Am

δ )(λk + τ2)
}

which implies the bound in the second range and completes the proof. ✷

We state and prove an expanded version of Theorem 2, then Theorem 2 in the paper
follows immediately.

Expanded Theorem 2. Consider multiple GSMs (4) with the decay assumption (6),
and suppose that n,m → ∞ with mγ1 . n . mγ2 for any γ2 ≥ γ1 > 0. Then the

terms bounding the conditional risks Ri,m(θ̂
RS

i ) = Eθi
||θi − θ̂

RS

i ||2ℓ2 satisfy the following
inequalities for

δ =
√
4(κ+ 1) logm/n (S2)

on a set of probability at least {1−O(n−2)}, where Cδ and C are constants as in Theorem
1, and R∗

i,m are the conditional oracle risk.

(i)

max
i≤n

R∗
i,m = {1 + o(1)}

∞∑

k=1

λk/m

λk + 1/m
∝ m−2α/(2α+1).

(ii)

max
i≤n

P
1/2
i (Am

δ ) ≤ exp{o(1)}m−κ/2.

(iii)

max
i≤n

ei ≤ log(nm)

{
Cδ

∞∑

k=1

min(λk, δ/m)

+C(1 + ||λ||2ℓ2)max
i≤n

P
1/2
i (Am

δ )

}

∝ log(mn)
{
δ2α/(2α+1)m−2α/(2α+1) +m−κ/2

}
.

(iv)

max
i≤n

∑

k>m

θ2ik = {1 + o(1)}
∑

k>m

λk ∝ m−2α.

It follows that m−κ/2 log(mn) = o{m−2α/(2α+1)} for κ ≥ 2, and

max
i≤n

Eθi
||θi − θ̂

RS

i ||2ℓ2 = {1 + oa.s.(1)}
∞∑

k=1

λk/m

λk + 1/m
∝ m−2α/(2α+1),

which achieves the optimal oracle risk.
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Proof of Expanded Theorem 2. In the sequel, denote ‖ · ‖1 ∆
= ‖ · ‖ℓ1 =

∑
k |xk| for

x ∈ ℓ1 and ‖ · ‖2 ∆
= ‖ · ‖ℓ2 . Define ζi,m and ηi,m as

ζi,m =

∞∑

k=1

(
1/m

λk + 1/m

)2

(θ2ik − λk), ηi,m =
∑

k>m

(θ2ik − λk)

and introduce sequences qζ = (qζ,1, qζ,2, . . .), qη = (qη,1, qη,2, . . .) ∈ ℓ2 with

qζ,k =
λk/m

2

(λk + 1/m)2
, qη,k = λk1(k > m).

Set γ(q·) = ‖q·‖2ℓ1/‖q·‖2ℓ2 , where ‖x‖ℓ1 =
∑

k |xk| for x ∈ ℓ1, the decay condition (6)

together with Lemma 2 guarantees γ(qζ) ∝ m1/(2α+1) and γ(qη) ∝ m. Further, Lemma 2

gives ||qζ ||1 ∝ m−2α/(2α+1) and ||qη||1 ∝ m−2α. Then, for sets Dδζ and Eδη defined by

Dδζ =

{
max
i≤n

|ζi,m| > δζ · ||qζ ||1
}
, Eδη =

{
max
i≤n

|ηi,m| > δη · ||qη||1
}
,

we apply the concentration results of Lemma 3 to conclude that, for δζ ∝ m−1/(2α+1) log n
and δη ∝ m−1 log n, by adjusting constants, we have P(Dδζ ) ≤ 2n−p and P(Eδη ) ≤ 2n−p

for any p > 0. Further, for γ >
√
2, we have

P

(
max

i≤n, k≤m
|λ−1/2

k θik| > γ{log(nm)}1/2
}

≤ (nm)1−γ2/2.

Employing a union bound and choosing constants so that p ≥ 2, then we have the the
following bounds hold simultaneously, with probability at least {1 − 4n−2 − (nm)1−γ2/2}
that reduces to {1−O(n−2)} when γ ≥

√
6,

max
i≤n

|ζi,m| ≤ δζ · ||qζ ||1, max
i≤n

|ηi,m| ≤ δη · ||qη||1 (S3)

and max
i≤n,k≤m

|λ−1/2
k θik| ≤ γ{log(nm)}1/2.

From Lemma 2,
∑∞

k=1 λk/m/(λk + 1/m) ∝ ||qζ ||1 ∝ m−2α/(2α+1) and the conditions on

m,n→ ∞ implies δζ ∝ m−1/(2α+1) logn = o(1), which yields the assertion (i).
One can show that, with the sets Ac

k,δ (respectively, Am,c
δ ) amended to

Ac
k,δ = {(1− δ)n(λk + 1/m) ≤ ||Y·k||2 ≤ n(λk + 1/m)/(1− δ)},

the concentration factor in Theorem 1 can be improved to exp(−nδ2/4), and this change
affects only constants in the proof of Theorem 1, as (1 + δ) and 1/(1 − δ) are of the same
order as δ → 0. Further, with this concentration factor and δ = (12 logm/n)1/2, we have
exp(−nδ2/4+logm) = m−2. Then, on the set considered, maxi≤n ||θ2

i /λ||m,∞ ≤ γ2 log(nm)
and δ log(nm) = o(1), which proves the assertion (ii).

Assertion (iii) follows from applying the bounds in (S3) to Theorem 1 and assertion
(iv) holds due to (S3) together with ‖qη‖1 ∝ m−2α. Combining (i)–(iv) leads to an upper
bound for the final conclusion. To show the lower bound, we see from the proof of Theorem
1 that |eik| satisfy the bound in the theorem in the range λk ≥ δτ2. Adding risks over
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this range leads to Eθi
||θi − θ̂

RS

i ||2ℓ2 ≥∑k:λk≥δτ2 R∗
i,m(k)−maxi≤n |ei|. By what has been

shown, the lower bound now follows by noting that

∑

k:λk≥δτ2

R∗
i,m(k) ≥

∑

k:λk≥δτ2

λk/m

λk + 1/m
−max

i≤n
|ζi,m|,

combined with the fact that for δ = o(1),

∑

k:λk≥δτ2

λk/m

λk/m+ 1/m
= {1 + o(1)}

∞∑

k=1

λk/m

λk + 1/m
. ✷

Proof of Theorem 3. The seminal paper Beran and Dümbgen (1998) has shown

that, for any blocking estimator θ̂i,B (18), the risk satisfies

Ri(θ̂i,B)
∆
= Eθi

||θi − θ̂i,B||22 =

Km∑

k=1

||θi,Bk
||22|Bk|/m

||θi,Bk
||22 + |Bk|/m

︸ ︷︷ ︸
I

+O

(
K

1/2
m ||θi||2
m

)

︸ ︷︷ ︸
II

.

Lemma 3 entails that

P(|||θi||22 − ||λ||1| > δ||λ||1) ≤ 2 exp(−cδ2)

where c = ||λ||21/||λ||22 ∝ (4α + 1)/4α2 is constant and bounded, given the assumption
on λk. This in turn implies that, under the condition that n grows polynomially in m,
maxi≤n ||θi||2 = Oa.s.(

√
||λ||1 logm). Then, under the conditionKm = o{m1/(α+1/2)/ logm},

the second term of the block risk satisfies II = oa.s.{m−2α/(2α+1)}.
For now we drop the subscript i and control the first term for a single realization. Let

B denote the collection of blocks. First we discard O(logm) blocks are of size < logm to
retain the collection of blocks GB composed of the remaining blocks. Notice that, with
slight abuse of notation,

R(B) ∆
=
∑

B∈B

||θB||22|B|/m
||θB||22 + |B|/m ≥

∑

B∈GB

||θB||22|B|/m
||θB ||22 + |B|/m = R(GB),

and all blocks B ∈ GB satisfy |B| ≥ logm. Thus we can split each B ∈ GB into a collection
of blocks of size {logm, logm + 1, . . . , 2 logm} to form a refinement of GB, say GB∗. We
see that these risks are decreasing over refinements, since they correspond to solutions of
the same minimization problem with an increasing number of parameters (Tsybakov, 2009;
Johnstone, 2015), i.e., R(GB) ≥ R(GB∗).

Define Z = mR(GB∗)/2 logm, and we can show that it is a self-bounded function,
meaning that it does not change much if we vary the individual inputs, so that it satisfies
desirable concentration properties. Precisely, for k ∈ B, where B ∈ GB∗, set

Zk = Z − m

2 logm

θ2k|B|/m
||θB||22 + |B|/m.

Then, given the condition on the block sizes in GB∗, |B|/2 logm ≤ 1 and consequently
0 ≤ Z − Zk ≤ θ2k/(||θB||22 + |B|/m) ≤ 1. Similarly, taking summation, we find the identity
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Z =
∑

B∈GB∗

∑
k∈B(Z − Zk), which verifies that Z is self-bounded (see Theorem 6.12 and

the following discussion in Boucheron et al., 2013). Then, for δ ∈ (0, 1),

P{|R(GB∗)−ER(GB∗)| > δER(GB∗)} ≤ 2 exp

{
−mER(GB∗)

2 logm

δ2

2 + 2δ/3

}
.

From decreasing error under refinement, and Lemma 5,

ER(GB∗) ≥ E
∑

B∈GB

∑

k∈B

θ2k/m

θ2k +m
≥ 1

3

∑

B∈GB

∑

k∈B

λk/m

λk +m
.

Given that at most O(logm) blocks are of size ≤ logm, we have

ER(GB∗) ≥ 6−1[Cm1/(2α+1) −O{(logm)2}]/m & m−2α/(2α+1),

since (λk/m)/(λk +1/m) ≥ min(λk, 1/m)/2 and the decay assumption guarantees that the
remaining λk satisfying λk > 1/m are on the order of

[
m1/(2α+1) − O{(logm)2}

]
. This

establishes that there exists C > 0 such that

P{|R(GB∗)−ER(GB∗)| > δER(GB∗)} ≤ 2 exp

{
−Cm

1/(2α+1)δ2

logm

}
,

which in turn guarantees that R(GB∗) = {1 + oa.s.(1)}ER(GB∗). Further, a union bound

based on δ
∆
= δm → 0 such that the r.h.s. is summable yields that this holds simultaneously

for n independent risks satisfying the growth constraints inm. Thus, lettingRi(GB∗) denote
the corresponding risk of the refinement of the i observation, eventually for i = 1, . . . , n, we
have |Ri(GB∗)−ERi(GB∗)| ≤ δERi(GB∗). Hence

min
i≤n

Ri(G) ≥ min
i≤n

Ri(GB∗) ≥ {1 + oa.s.(1)}ER(GB∗).

We consider the lower bounds of Lemma 5 for a given block B. First consider that when
(we assume throughout w.l.o.g. that λ1 = ||λB ||∞, for simplicity)

λ1 ≤ |B|1/2 max


 1

|B|
∑

j>1

λj , 1/m




we have that

2λ1 +
∑

j∈B

λj + |B|/m ≤ (1 + 2|B|−1/2)



∑

j∈B

λj + |B|/m


 .

This shows that for λ1 in this range,

||λB||1|B|/m
2||λB||∞ + ||λB ||1 + |B|/m ≥ |B|1/2

2 + |B|1/2
||λB ||1|B|/m

||λB||1 + |B|/m ≥ |B|1/2
2 + |B|1/2

∑

j∈B

λi/m

λi + 1/m
.

Now noting that for positive ai, bi

a1 + · · ·+ an
b1 + · · ·+ bn

≥ min
i≤n

ai
bi
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shows that

||λB ||1|B|/m
2||λB||∞ + ||λB ||1 +B/m

≥ min


 ||λB ||∞|B|/m
3||λB||∞ + 1/m

,
∑

j>1

λj/m

λj + 1/m


 .

Further, when

λ1 > |B|1/2 max


 1

|B|
∑

j>1

λj , 1/m




we have

||λB ||∞|B|/m
3||λB||∞ + 1/m

≥ |B|3/2
3

1
|B|

∑
j>1 λj/m

1
|B|−1

∑
j>1 λj + 1/m

=
|B|1/2

3

(|B| − 1)
∑

j>1 λj/m∑
j>1 λj + (|B| − 1)/m

.

Then given that
(|B| − 1)

∑
j>1 λj/m∑

j>1 λj + (|B| − 1)/m
≥
∑

j>1

λj/m

λj + 1/m
,

we find that in this range we have

||λB||1|B|/m
2||λB||∞ + ||λB||1 +B/m

≥ min

(
1,

|B|1/2
3

)∑

j>1

λj/m

λj + 1/m
.

Now note that the decay assumptions imply there are at most ∼ (m/|B|1/2)1/(2α+1) blocks

for which it holds that λ1 > |B|1/2 max
(

1
|B|

∑
j>1 λj , 1/m

)
. From this, it follows that the

risk ER(GB∗) has a lower bound of

min
B∈GB∗

min

( |B|1/2
|B|1/2 + 2

,min

(
1,

|B|1/2
3

)) ∑

B∈GB∗

∑

j∈B

λj/m

λj + 1/m
− C

(m/|B|1/2)1/(2α+1)

m
.

Here the term we subtract off comes from the at most ∼ (m/|B|1/2)1/(2α+1) blocks for which
||λB||∞/m(||λB||∞ + 1/m) ≤ 1/m was both added and subtracted to arrive at the factor

of
∑

B

∑
j∈B

λj/m
λj+1/m . Now note that (m/|B|1/2)1/(2α+1)/m = m−2α/(2α+1)/|B|1/(4α+2) =

o(m−2α/(2α+1)) since |B| ≍ logm. Then as the decay m−2α/(2α+1) = O(
∑

B

∑
j∈B λj/(1 +

mλj)) while for block sizes |B| ≥ logm,

min

( |B|1/2
|B|1/2 + 2

,min

(
1,

|B|1/2
3

))
≥ min

(
(logm)1/2

(logm)1/2 + 2
,min

(
1,

(logm)1/2

3

))
∼ 1,

we see that

ER(GB∗) ≥ (1 + o(1))
∑

B∈GB∗

∑

j∈B

λj/m

λj + 1/m
.

As we throw away at most O(logm) blocks of size . logm to arrive at GB∗, the risk
unaccounted for in GB∗ is at most O((logm)2/m) so that

∑

B∈GB∗

∑

j∈B

λj/m

λj + 1/m
= (1 + o(1))

m∑

j=1

λj/m

λj + 1/m
= (1 + o(1))

∞∑

j=1

λj/m

λj + 1/m
.
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Thus combining the above, we arrive at

min
i≤n

Ri(G) ≥ (1 + oa.s.(1))

∞∑

j=1

λj/m

λj + 1/m
.

To show that the risk can be much worse for any realization θi, the condition Km =
o{m1/(2α+1)/ logm} implies that there must be some block of size |B| & m2α/(α+1) logm,
otherwise we would have o(m) effects. Fix γ > 0 such that P(|Z| ≤ γ) = exp(−1) for
Z ∼ N(0, 1). Drop the subscript i,

P

{
max

k≤logKm

θ2(k)/λ(k) ≤ γ

}
= exp(− logKm) = 1/Km.

Thus, with probability (1− 1/Km), at least one of these coefficients satisfies

θ2(k) > γλ(k) > Ck−(2α+1) & (logKm)−(2α+1) ≥ (logm)−(2α+1).

Now suppose the permutation places the coefficients corresponding to the largest logKm

coefficients in |B|. Eventually, for the block under consideration, we have |B|/m ≤ θ2(k) and
when this happens,

min(θ2(k), |B|/m) & min(θ2(k),m
−1/(2α+1) logm) ≥ m−1/(2α+1) logm.

Using the characterization of R(θ̂B) from the first part of the proof, we have that, on the
event under consideration,

R(θ̂B) + oa.s.{m−2α/(2α+1)} ≥ ||θB||22|B|/m
||θB||22 + |B|/m ≥ min(θ2(k), |B|/m)/2.

Given the constraint on α, 1 ≤ 2α. This establishes that, with probability at least (1 −
1/Km),

R(θ̂B) ≥ {1 + oa.s.(1)}m−1/(α+1) logm≫ m−2α/(2α+1). ✷

Proof of Theorem 4. (i) A standard argument using Borel-Cantelli Lemma leads
to maxi≤n ‖θ2

i /λ‖m,∞ = {1 + oa.s.(1)}2 log(nm). Recall the definitions of hyper-rectangles
Amn,k(λk), Bmn,k(λk), Amn(λ), Bmn(λ) and Θmn(λ) from the paper. Lemma 1 entails
that P

(
∪i≤n {θi /∈ Amn,k(λ)}

)
≤ (nm)1−a/2 and P

(
∪i≤n {θi /∈ Bmn,k(λk)}

)
≤ n(nk)1−b/2.

When a > (γ1 + 2)/(γ1 + 1) and b > (2γ1 + 3)/(γ1 + 1), these events are summable, and
Borel-Cantelli Lemma implies they occur only finitely often. As a consequence, eventually
θ1, . . . , θn ∈ Θmn(λ).

Next we prove the robustness guarantee (19) for recovering a new fixed θ∗. We first look
at risk for a single frequency component, dropping the subscript k, and then lift the results.
As in the proof of Theorem 1, replace 1/m by τ2, i.e., θ̂∗ = αY , where Y ∼ N(θ∗, τ2),
|θ∗| ≤ {Cλ log(mn)}1/2 and α is the Stein coefficient formed from the data. Further, α is
independent of Y and enjoys the concentration results used in the proof of Theorem 1. We
are interested in the risk R(θ̂∗) = Eθ∗(αY − θ∗)2 that can be expanded as

R(θ̂∗) = Eθ∗(αY − θ∗)2 = Eθ∗ {(α− 1) θ∗ + αz}2

= θ∗2E (α− 1)
2
+ τ2Eα2.
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Consider the regime where λ > δτ2. Using the probability inequalities in Lemma 1 and
Theorem 1, we have

Eα2 ≤
(

λ

λ+ τ2

)2

+P(Am
δ )

E(α− 1)2 ≤
(
1 + 2δ

1− δ

)2(
τ2

λ+ τ2

)2

+P(Am
δ ).

Combining these inequalities and employing some algebra yield, for λ ≥ δτ2,

R(θ̂∗) ≤
(
1 + 2δ

1− δ

)2
{

λτ2

λ+ τ2
+

(
τ2

λ+ τ2

)2

(θ∗2 − λ)

}
+P(Am

δ )(θ∗2 + τ2).

Similarly, when λ < δτ2, we find that

R(θ̂∗) ≤ {1 +P(Am
δ )}θ∗2 +P(Am

δ )τ2.

For q ∈ N and x ∈ ℓ2 let Pq denote the projection, Pqx = (x1, . . . , xq, 0, 0, . . . ), and I the
identity Ix = x. Reintroducing indices k and taking summation, these inequalities provide

an upper bound on Rm(θ̂
∗RS

) as follows, substituting τ2 = 1/m,

(
1 + 2δ

1− δ

)2
{

∞∑

k=1

λk/m

λk + 1/m
+

m∑

k=1

(
1/m

λk + 1/m

)2

(θ∗2k − λk)

}

+(1 + ||θ∗||22)P(Am
δ ) + ||(I − Pm)θ∗||22.

Distributing supθ∗∈Θmn(λ) through the above expression and using integral approximations,
we completes the proof by noting that all terms are o[Rm{Θmn(λ)}] with the exception of

sup
θ∗∈Θmn(λ)

m∑

k=1

(
1/m

λk + 1/m

)2

(θ∗2k − λk) . log(nm)
m∑

k=1

λk/m

λk + 1/m
.

To see that this is also a lower bound, note first that for x ∈ [0, 1] we have

|Ex−Ex1A| = Ex1Ac ≤ P(Ac),

which gives Ex ≥ Ex1Ac −P(Ac). In the situation where we apply our estimator to a given
frequency (suppressing k) the risk of estimating θ, R(θ), satisfies

R(θ) = θ2E(1− α)2 + τ2Eα2 ≥ θ2E(1− α)2.

We may choose δ = o(1) and set Aδ, with P(Ac
δ) ≤ Cm−2 (with C independent of k),

on which (1 − δ)n(λ + τ2) ≤ ||Y ||2 ≤ (1 + δ)n(λ + τ2). On Aδ we have 1 ≥ 1 − α ≥
(1− δ)/m/(λ+ 1/m) which gives that

E(1− α)2 ≥
(

1− δ

1 +mλ

)2

−P(Ac
δ) ≥

(
1− δ

1 +mλ

)2

− Cm−2.

Hence adding a subset of frequencies and taking superium over Θ we find that

sup
θ∈Θ

R(θ) &
∑

λk<1/m,k<m

{(
1− δ

1 +mλk

)2

−m−2

}
λk log(nm) & m−2α/(2α+1) log(nm).
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This follows since λk < 1/m happens when k > m1/(2α+1) and in this range mλk ≤ 1 so
that (1− δ)/(1 +mλk) ≥ (1− δ)/2. This establishes that the logarithmic factor cannot be
eliminated. ✷

Proof of Theorem 5. From the proof of Theorem 1, the derivation of the key oracle
inequality relies on sets Ac

k,δ containing most of the probability mass. In the case of unknown
variance these generalize to

Ac
k,δ = {(1− δ)(λk + σ2/m) ≤ ||Y k||2/n ≤ (1 + δ)(λk + σ2/m)}.

Theorem 1 continues to hold in this setting with

Pi(A
m
δ ) ≤ 3 exp(δmax

i≤n
||θ2

i /λ||m,∞) exp(−nδ2/6 + logm),

thus the conditional concentration of measure continues to guarantees that these sets cap-
ture “most” realizations. We now show that, for realizations in this range, a small amend-
ment as in (20) guarantees that they remain close to the optimal linear factors for estimation
of θik from Y·k.

Recall the amended formula of αnm,k(p) presented in the corresponding section of the
paper, and denote τ2 = 1/m and take qδ = (1+2δ)/(1− δ) & 1. After some algebra, on the
event Am,c

δ , we have αnm,k(p) = 0 when λk ≤ δτ2/(1 + δ) + κm, where κm ∝ Qm
p (λm) ∝

{(1− p)m}−(2α+1). This means that, as in the proof of Theorem 1, we have αnm,k(p) = 0
when λk ≤ δτ2/(1 + δ). Further, with this choice of qδ, it holds on A

m,c
δ that

∣∣∣∣αn,k(p)−
λk

λk + τ2

∣∣∣∣ ≤
{
qδ + 4 + (qδ + 2)δ

1− δ

}
δτ2 + κm
λk + τ2

= Cδ
δτ2 + κm
λk + τ2

.

Adjusting the constants in the proof of Theorem 1 appropriately and using (δ + τ−2κm) ≤
2(δ2 + τ−4κ2m), when λk > δτ2/(1 + δ), similar arguments give the bounds, with I and II
as in the proof of Theorem 1,

I ≤ max
(
1, θ2ik/λk

) [
2C2

δ

{
δ(1 + δ)min(λk, δτ

2) + τ−4κ2m
}

+2
√
24P

1/2
i (Aδ)(λk + τ2)

]
,

2II ≤ max
(
1, θ2ik/λk

) [
6Cδ(1 + δ){min(λk, δτ

2) + κm}
+4

√
12P

1/2
i (Aδ)(λk + τ2)

]
.

Therefore, with slightly larger constants, the conclusion of Theorem 1 continues to hold
with the eik adjusted up by an additive term

κm(1 + τ−4κm)max
(
1, θ2ik/λk

)
. κm max

(
1, θ2ik/λk

)
.

Since κm ∝ m−(2α+1), multiplying m entails the additional risks of the order m−2α log(mn)
that is negligible. Thus the results in Theorem 2 hold, similarly for the robustness guarantee
in minimax sense of Theorem 4.

Revisiting the arguments, we see that the oracle inequality continues to hold, and thus
the estimator will be adaptive for all p ≤ p∗, where p∗ is the largest value such that
the additive term mκm log(mn) ∝ m{(1 − p)m}−(2α+1) log(mn) = o{m−2α/(2α+1)}. In
other words, changing p below p∗ does not change the rest of the oracle inequality which
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has been shown to attain the proper rate. Thus we have an adaptive estimator of σ2,
σ̂2(p) = mQm

p (||Y m||2/n), when p ≤ p∗ and all estimators in this range are simultaneously
adaptive to the oracle. ✷

Proof of Theorem 6. The proof follows the method deriving the examples in the

paper. The condition on the norm guarantees that for a sample f1, . . . , fn
i.i.d.∼ f we have

max
i≤n

||f || . n1/β logn,

a.s. while the condition on β guarantees that m−(2α−1)/(2α+1)(n1/β logn)2 = o(1). Then
by theorem (2) we may form a parameter space, containing the fi a.s., over which we have
Le Cam equivalence in both the fixed and random design cases. This proves the theorem.
✷

Proof of Theorem 7. Part (iv) of the expanded Theorem 2, blown up by a log(n)
factor, follows from a crude bound on the Hanson-wright inequality (Rudelson and Ver-
shynin, 2013; Hanson and Wright, 1971). This is seen to control the tails of all quantities
in the proof of expanded Theorem 2, i.e., sums over terms > m. The following result then
extends the proof of the expanded Theorem 2 to the case where Conditions (A) in the paper
are satisfied, by controlling the sums over terms ≤ m, which implies Theorem 7. ✷

Supplementary Lemma 1. Suppose that ξ ∼ Nm(0,Σ) and Q = ξTDξ, where D is
m×m symmetric and both matrices are positive definite and non-degenerate. Then we have
that

P (|Q −Tr(DΣ)| > δTr(DΣ)) ≤ 2 exp

(
−cδ2 (Tr(DΣ))2

||Σ1/2DΣ1/2||2HS

)
.

In particular, setting D = diag(d1, . . . , dm) with dk = τ4/(λk + τ2)2, τ2 = m−1, where
λk = Σkk = Cov(θi, θi) and Σjk = Cov(θk, θk) satisfy the conditions (A), we find that

P (|Q−Tr(DΣ)| > δTr(DΣ)) ≤ 2 exp

(
−cm

1/(2r+2)δ2

B2
m

)
.

Proof of Supplementary Lemma 1. The proof of the first inequality is a basic ap-
plication of the Hanson-Wright inequality (see, e.g., Rudelson and Vershynin, 2013; Hanson
and Wright, 1971) and will be ommitted for brevity. Setting Σ1/2DΣ1/2 and using that A
is symmetric, we have Tr(A2) = ||A||2HS . Then owing to Tr(PQ) = Tr(QP ),

Tr(A2) = Tr(Σ1/2DΣDΣ1/2) = Tr(D1/2ΣDΣD1/2)

= Tr((D1/2ΣD1/2)2) = ||D1/2ΣD1/2||2HS ,

thus ||Σ1/2DΣ1/2||2HS = ||D1/2ΣD1/2||2HS . Now let ∆ = diag(Σ) be the diagonal matrix
formed from the diagonal elements of Σ. Then we may write

Tr(A2) = ||(∆D)1/2∆−1/2Σ∆−1/2(∆D)1/2||2HS .

Now using that ||PQ||2HS ≤ ||P ||2op||Q||2HS , we find that

Tr(A2) ≤ ||(∆D)1/2||2op||(∆D)1/2||2HS ||∆−1/2Σ∆−1/2||2op.
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Now for the application under consideration, we have D = diag(d1, . . . , dm) with dk =
τ4/(λk + τ2)2 where λk = Σkk = 〈ψk, Cψk〉 and Σjk = 〈ψj , Cψk〉. Further, under Condi-
tions (A), λ(k) ∝ k−(2r+2), Lemma (2) gives that ||(∆D)1/2||2op . τ2 and ||(∆D)1/2||2HS .

τ2−1/(r+1) . Tr(DΣ). This implies that

(Tr(DΣ))2

||(∆D)1/2||2op||(∆D)1/2||2HS

. τ−1/(r+1) ∝ m1/(2r+2)

and this leads to the concentration

P (|Q−Tr(DΣ)| > δTr(DΣ)) ≤ 2 exp

(
−cm

1/(2r+2)δ2

||Γ||2op

)
,

with Γ = ∆−1/2Σ∆−1/2 denoting the correlation matrix, as in Condition (A). Now the
Gershgorin disk theorem, together with the condition from condition (A) implies that

||Γ||op ≤ max
i≤m

m∑

i=1

|Γij | ≤ Bm

and this gives that

P (|Q−Tr(DΣ)| > δTr(DΣ)) ≤ 2 exp

(
−cm

1/(2r+2)δ2

B2
m

)

which concludes the proof of this lemma and thus Theorem 7. ✷

Proof of Theorem 8. It suffices to show the following two supplementary lemmas
that extend the key concentration inequalities to the general situation

∑∞
k=1 λk <∞. These

are easily seen to extend the proof of Theorem 2 under the Conditions (B) listed in Section
3.3, and the Theorem 8 follows. ✷

As was done there, we take

R =

∞∑

k=1

λk/m

λk + 1/m
.

Supplementary Lemma 2. Suppose that ξ ∼ Nm(0,Σ) and Q = ξTDξ, where D is
m ×m symmetric and both matrices are positive definite and non-degenerate. Then it is
immediate from Hanson-Wright that for some c > 0

P (|Q−Tr(DΣ)| > δ) ≤ 2 exp

{
−cmin

(
δ2

||Σ1/2DΣ1/2||2HS

,
δ

||Σ1/2DΣ1/2||

)}
.

Set D = diag(d1, . . . , dm) with dk = τ4/(λk + τ2)2, τ2 = m−1 and λk = Σkk = Cov(θi, θi)
and Σjk = Cov(θk, θk). Further, let ∆ = diag(δ1, . . . , δm) where δj = λjdj . Then with R
as in the discussion above, this inequality yields

P (|Q −Tr(∆)| > δR) ≤ 2 exp

{
−c δR

||∆||∞||Γm|| min

(
1,

δ

||Γm||

)}
.

Thus, as long as δ ≤ ||Γm||, we have

P (|Q−Tr(∆)| > δR) ≤ 2 exp

(
−c Rδ2

||∆||∞||Γm||2
)
.

Noting that ||∆||∞ ≤ 1/m gives the useful result P (|Q −Tr(∆)| > δR) ≤ 2 exp
(
−c mRδ2

||Γm||2

)
.
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Proof of Supplementary Lemma 2. The first inequality is a direct application of
the Hanson-Wright (see, e.g., Rudelson and Vershynin, 2013; Hanson and Wright, 1971).
Setting A = Σ1/2DΣ1/2 and using that A is symmetric, we have Tr(A2) = ||A||2HS . Then
owing to Tr(PQ) = Tr(QP ),

Tr(A2) = Tr(Σ1/2DΣDΣ1/2) = Tr(D1/2ΣDΣD1/2)

= Tr((D1/2ΣD1/2)2) = ||D1/2ΣD1/2||2HS ,

thus ||Σ1/2DΣ1/2||2HS = ||D1/2ΣD1/2||2HS . Now using that ∆ = Ddiag(Σ) and Γ =
diag(Σ)−1/2Σdiag(Σ)−1/2 we arrive at

Tr(A2) = ||]∆1/2Γ∆1/2||2HS .

since for diagonal matrices U and V , (UV )1/2 = U1/2V 1/2. Now using that ||PQ||2HS ≤
||P ||2||Q||2HS , we find that

Tr(A2) ≤ ||∆1/2||2||∆1/2||2HS ||Γ||2.

Using that for a diagonal matrix U (with slight abuse of notation), ||U || = ||U ||∞ =
maxi |uii| and ||U1/2||2HS =

∑
i |uii| = ||U ||1 we arrive at Tr(A2) ≤ ||∆||∞||∆||1||Γ||2.

Similarly, setting B = D1/2Σ1/2 we have ||A|| = ||B′B||. Then using that for any
matrix C, ||C|| = ||C′|| and ||C′C|| = ||C||2 (which gives ||C′C|| = ||CC′||) together with
∆ = Ddiag(Σ) and Γ = diag(Σ)−1/2Σdiag(Σ)−1/2

||A|| = ||B′B|| = ||BB′|| = ||D1/2ΣD1/2|| = ||∆1/2Γ∆1/2|| ≤ ||∆1/2||2||Γ|| = ||∆||∞||Γ||.

Based on these two inequalities and the fact that ||∆||1 =
∑

i δi ≤ R, we find

min

(
δ2R2

||A||2HS

,
δR
||A||

)
≥ min

(
δ2R2

||∆||∞||∆||1||Γ||2
,

δR
||∆||∞||Γ||

)
≥ δR

||∆||∞||Γ|| min

(
1,

δ

||Γ||

)
.

Noting that for D diagonal (DΣ)ii =
∑

kDikΣki = DiiΣii gives Tr(DΣ) = Tr(∆) and we
see the two bounds for P (|Q−Tr(∆)| > δR) now follow on applying the fact that for c > 0

exp

{
−cmin

(
δ2R2

||A||2HS

,
δR
||A||

)}
≤ exp

{
−c δR

||∆||∞||Γ|| min

(
1,

δ

||Γ||

)}
.

to the initial Hanson-Wright based inequality of the theorem. ✷

For the next lemma and its proof, we take ξ> = ξ>(m) = (0, . . . , 0︸ ︷︷ ︸
m

, ξm+1, ξm+1, . . . )
′,

which corresponds to the tail bias of our estimators.

Supplementary Lemma 3. (Hanson-Wright for the tails) Let Q> = ξT>ξ> denote the
tail bias and Σ> the covariance matrix corresponding to ξ>. Then using ||Σ>|| ≤ ||Σ>||HS

we find

P (|Q> −Tr(Σ>)| > δR) ≤ 2 exp

{
−cmin

(
δ2R2

||Σ>||2HS

,
δR

||Σ>||HS

)}
.

From the final assumptions of the section, it follows that Q> = oa.s.(R).
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Proof of Supplementary Lemma 3. Noting that ||Σ>|| ≤ ||Σ>||HS , we see the
inequality is a direct application of the Hanson-Wright (see, e.g., Rudelson and Vershynin,
2013; Hanson and Wright, 1971), as above.

Further,

min

(
δ2R2

||Σ>||2HS

,
δR

||Σ>||HS

)
=

δR
||Σ>||HS

min

(
1,

δR
||Σ>||HS

)
.

Thus taking δ = 2||Σ>||HS logm/R, we find that

P (|Q> −Tr(Σ>)| > 2||Σ>||HS logm) ≤ 2m−2

and so with high probabilty (summable) we have |Q> − Tr(Σ>)| ≤ 2||Σ>||HS logm. Now
by Cauchy-Schwarz, Σ2

jk = (Eθjθk)
2 ≤ Eθ2jEθ

2
k = λjλk. Thus, by definition of the Hilbert-

Schmidt norm,

||Σ>||2HS =
∑

j,k>m

Σ2
jk ≤

(
∑

k>m

λk

)2

= (Tr(Σ>))
2
.

Hence, by the assumptions of the section we find that Q> = O(logm
∑

k>m λk) = o(R). ✷

Proof of Proposition 1. Let Ψjk represent the Meyer type wavelets on R that

the ψjk are a periodization of. Further, with slight abuse of notation, we let K̂, Ψ̂jk denote

the continuous Fourier transforms of K and Ψjk, while k̂ and ψ̂jk denote the discrete

Fourier transforms of k and ψjk. Owing to the periodization, we have k̂(n) = K̂(n) and

ψ̂jk(n) = Ψ̂jk(n) for n ∈ Z. Due to stationarity, the covariance operator is convolution with
k, then Parseval equality and standard properties of the Fourier transform, together with
the fact that Ψ̂ is real (the Ψ for which Ψjk(·) = 2j/2Ψ(2j · −k)), allow us to calculate that

Cov(θjk, θj′k′) = 〈ψjk, k ∗ ψj′k′〉 =
∑

n∈Z

Ψ̂jk(n)K̂(n)Ψ̂j′k′(n)

= 2−(j+j′)/2
∑

n∈Z

e2πin(2
−jk−2−j′k′)Ψ̂(−2−jn)K̂(n)Ψ̂(2−j′n).

The localization of Ψ̂, Ψ̂(−2−jn)Ψ̂(2−j′n) = 0 for all n ∈ Z if |j − j′| > 1, proves (i).

Now assume |j − j′| ≤ 1, let Ts denote the translation operator, Tsf(x) = f(x− s), and
Da, a > 0, denote the dilation operator, Daf(x) = f(ax). Further, as defined in the paper,

|p− q|j =∈ θn∈Z|p− q + n2j |.

First note that the decay conditions on K̂ imposed by Sobolev regularity guarantee that
K̂(n) = K̂(2j2−jn) ∝ 2−2(r+1)jK̂(2−jn). Further, properties of Fourier transform give that

(Tk−2j−j′ k′K)∧(2−jn) = e2πin(2
−jk−2−j′k′)K̂(2−jn),

and

Ψ̂(2−j′n) = Ψ̂(2−j · 2−(j′−j)n) = (D2j−j′Ψ)∧(2−jn).
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Then as the product of Fourier tranforms is the Fourier transform of convolution, piecing
these observations together and applying the Poisson summation formula gives

Cov(θjk, θj′k′ ) ∝ 2−2(r+1)j
∑

n∈Z

Ψ ∗ (Tk−2j−j′k′K) ∗ (D2j−j′Ψ)(n2j).

Meyer-type wavelets are in the Schwartz space of functions, being infinitely differentiable
and decaying (as do all derivatives) faster than any polynomial. In particular, we have as-
sumed |K(x)| . (1+|x|)−l, l > 1. Given that Ψ is Schwartz, we also have |Ψ(x)|, |DaΨ(x)| .
(1 + |x|)−l. It is easy to verify that for two functions h, g satisfying this type of decay, one
has |h ∗ g(x)| . (1 + |x|)−l, from which we deduce that

Cov(θjk, θj′k′) . 2−2(r+1)j
∑

n∈Z

1

(1 + |n2j + k − 2j−j′k′|)l

=
2−2(r+1)j

(1 + |k − 2j−j′k′|j)l
∑

n∈Z

(
1 + |k − 2j−j′k′|j

1 + |n2j + k − 2j−j′k′|

)l

.

Now as cjkk′

∆
= k − 2j−j′k′ ∈ {−2j + 1, . . . ,−1, 0, 1, . . . , 2j − 1}, we have that the infemum

in the definition of |k− 2j−j′k′|j = |cjkk′ |j is attained at one of n∗ = −1, 0, 1 with n∗ having

the opposite sign of cjkk′ . Further, when |n| > 1, by definition of | · |j , we have

1 + |cjkk′ |j
1 + |n2j + cjkk′ |

=
1 + |n∗2j + cjkk′ |
1 + |n2j + cjkk′ |

≤ 1

|n|

from which we conclude that

Cov(θjk, θj′k′ ) .
2 · 2−2(r+1)j

(1 + |k − 2j−j′k′|j)l

(
1 +

∑

n>1

1

nl

)
.

2−2(r+1)j

(1 + |k − 2j−j′k′|j)l
.

This proves (ii) and establishes the assertions regarding the correlations.
Given these results and with p, q fixed, we find that

∞∑

j=0

2j−1∑

k=0

Cov(θjk, θpq)√
Var(θjk)Var(θpq)

.

p+1∑

j=min(0,p−1)

2j−1∑

k=0

Cov(θjk, θpq)

2−2(r+1)p

where
2j−1∑

k=0

Cov(θjk, θpq)

2−2(r+1)p
.

2j−1∑

k=0

1

(1 + |k − 2p−jq|p)l
.

At each of the scales j = p− 1, p, p+ 1, |k − 2p−jq|p takes values in 0, 1, 2, . . . , 2p − 1. As
p, q are fixed, it can take each value at most twice as we cycle through k. This gives that

2j−1∑

k=0

1

(1 + |k − 2p−jq|p)l
≤ 2

2p∑

m=0

1

(1 +m)l
≤ 2 + 2

∫ ∞

0

dx

(1 + x)l
≤ 2l

l − 1
.

This establishes the claim of the proposition with B ∝ 6l/(l− 1). ✷
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Proof of Proposition 2. By specification, ψjk satisfy
∫
xpψjk = 0 for p = 0, 1, . . . , 2r+

1, which gives that Aψjk = 0, henceCov(θjk, θj′k′) = 〈ψjk,Krψj′k′〉 = 〈ψjk, Bψj′k′〉. Given
that B is a polynomial of degree (2r + 1), and ψj′k′ is compactly supported,

Bψj′k′ (x) =

∫ 1

0

ψj′k′(y)

(∫ min(x,y)

0

(x− u)r(y − u)r

(r!)2
du

)
dy

=

∫ x

0

ψj′k′ (y)

(∫ y

0

(x− u)r(y − u)r

(r!)2
du

)
dy

︸ ︷︷ ︸
I∫ 1

x

ψj′k′(y)

(∫ x

0

(x− u)r(y − u)r

(r!)2
du

)
dy

︸ ︷︷ ︸
II

.

Both terms I and II integrate ψj′k′ against polynomials of degree at most (2r + 1) in y
over the ranges [0, x] and [x, 1], respectively. Thus if, e.g., x is less than the minimum
in Supp(ψj′k′), we have I = 0 as the integrand is 0, while II = 0 as the ψj′k′ inte-
grates the polynomial to 0 over its support. By a similar argument, we see that, if x is
greater than the minimum in Supp(ψj′k′ ), we have both I = 0 and II = 0. This shows
that Supp(Bψj′k′) ⊆ Supp(ψj′k′ ), which proves that ψjk(x)(Bψj′k′)(x) = 0 for all x if
Supp(ψjk) ∩ Supp(ψj′k′ ) = ∅.

Notice that |∂pxB(x, y)|, |∂pyB(x, y)| ≤ 1 for all p = 0, . . . , 2r + 1, we may employ tech-
niques in Cohen (2003); Escande and Weiss (2015) to show that, for j > j′

|〈ψjk, Bψj′k′〉| . 2−(2r+1)j · 2−(j+j′)/2 = 2−(r+1)(j+j′)2−(r+1/2)(j−j′)

and by symmetry, this gives that for all j, j′

|Cov(θjk, θj′k′)| = |〈ψjk, Bψj′k′〉| . 2−(r+1)(j+j′)2−(r+1/2)|j−j′|,

which, combined with what has been shown, establishes the bounds on correlations in the
proposition.

For the last assertion, with p, q fixed, first split

∞∑

j=0

2j−1∑

k=0

Cov(θjk, θpq)√
Var(θjk)Var(θpq)

=

p∑

j=0

2j−1∑

k=0

Cov(θjk, θpq)√
Var(θjk)Var(θpq)

︸ ︷︷ ︸
I

+
∞∑

j=p+1

2j−1∑

k=0

Cov(θjk, θpq)√
Var(θjk)Var(θpq)

︸ ︷︷ ︸
II

.

Now in sum I, for each j < p, there is only one ψjk with Supp(ψjk) ∩ Supp(ψj′k′) 6= ∅.
For j = p, there are a finite number depending on (2r + 1), or the number of moments
we integrate to 0. This gives that I . p. Similarly, for II at each j > p, there are at
most O(2j−p) of ψjk for which Supp(ψjk) ∩ Supp(ψj′k′) 6= ∅. Given the bounds derived
on correlations, this gives

II .

∞∑

j=p+1

2−(r−1/2)(j−p) ≤ 1

2r−1/2 − 1
,
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which, combined with the bound for I, proves the last bound in this proposition. ✷

Proof of Proposition 3. We fix p and q, as in the proof of the previous proposition,
split the sum

∞∑

j=0

2j−1∑

k=0

Cov(θjk, θpq)√
Var(θjk)Var(θpq)

=

p∑

j=0

2j−1∑

k=0

Cov(θjk, θpq)√
Var(θjk)Var(θpq)

︸ ︷︷ ︸
I

+

∞∑

j=p+1

2j−1∑

k=0

Cov(θjk, θpq)√
Var(θjk)Var(θpq)

︸ ︷︷ ︸
II

.

for j ≤ p, d((j, k), (p, q)) takes at most 2j values as we range through k, each of which is
boundable by a number in {0, 1, . . . , 2j}. Further, it takes any value at most twice. Thus
we find that in this range

2j−1∑

k=0

Cov(θjk, θpq)√
Var(θjk)Var(θpq)

. 2−p+j
2j∑

k=0

1

(1 + k)γ
. 2−p+j log 2j = j2j/2p,

which gives that I . 2−p
∑p

j=0 j2
j . p. Similarly, for j > p, d((j, k), (p, q)) takes at most

2p values as we range through k, each of which is boundable by a number in {0, 1, . . . , 2p}.
Further, it may take any value at most 2 · 2j−p times. Thus we find that in this range

2j−1∑

k=0

Cov(θjk, θpq)√
Var(θjk)Var(θpq)

. 2−(κ−1)(j−p)
2p∑

k=0

1

(1 + k)γ
. 2−(κ−1)(j−p) log 2p,

and thus II . p
∑∞

j=p+1 2
−(κ−1)(j−p) . p. Combining bounds proves the result. ✷
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