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1. An Alternative Nonparametric Regression Estimate

An alternative approach for estimating the density ratios is via nonparametric regres-
sion. This is motivated by Bayes’ theorem, as follows,

fj1(u)

fj0(u)
=

pr(Y = 1 | ξj = u)pj(u)/pr(Y = 1)

pr(Y = 0 | ξj = u)pj(u)/pr(Y = 0)

=
pr(Y = 1 | ξj = u)/π1
pr(Y = 0 | ξj = u)/π0

=
π0pr(Y = 1 | ξj = u)

π1(1− pr(Y = 1 | ξj = u))
, (1) 15

where pj(·) is the marginal density of the jth projection. This reduces the construction
of nonparametric Bayes classifiers to a sequence of nonparametric regressions E(Y | ξj =
u) = pr(Y = 1 | ξj = u). These again can be implemented by a kernel method (Nadaraya,

1964; Watson, 1964), smoothing the scatter plots of the pooled estimated scores ξ̂ijk of
group k, which leads to the nonparametric estimators 20

Ê(Y | ξ̂j = u) =

∑1
k=0

∑nk
i=1 kK(

u−ξ̂ijk
hj

)

∑1
k=0

∑nk
i=1K(

u−ξ̂ijk
hj

)
,

where hj = h{(λ̂j0 + λ̂j1)/2}1/2 is the bandwidth. This results in estimates Ê(Y | ξ̂j =
u) = p̂r(Y = 1 | ξ̂j = u) that we plug-in at the right hand side of (1), which then yields
an alternative estimate of the density ratio, replacing the two kernel density estimates
f̂j1(u), f̂j0(u) by just one nonparametric regression estimate Ê(Y | ξ̂j = u).

The estimated criterion function based on kernel regression is 25

Q̂R
J (x) = log

π̂1
π̂0

+
∑

j≤J

log
π̂0Ê(Y | ξ̂j = u)

π̂1{1− Ê(Y | ξ̂j = u)}
.
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2. Perfect Classification when the Mean and the Covariance Functions

are the Same

Let the projection scores ξj be independent random variables with mean 0 and variance
νj that follow normal distributions under Π1 and Laplace distributions under Π0. Then

QJ(X) =

J
∑

j=1

log

1
(2πνj)1/2

exp(− ξ2j
2νj

)

1
(2νj)1/2

exp{− |ξj |

(νj/2)1/2
}

30

=

J
∑

j=1

(

−1

2
log π −

ξ2j
2νj

+
√
2|ξj |/ν1/2j

)

. (2)

Since centred normal and Laplace distributions are in scale families, ζj = ξj/ν
1/2
j have a

common standard distribution ζ0k under Πk, irrespective of j. Denoting the summand
of (2) by Sj, this implies Sj = −(log π + ζ2j )/2 +

√
2|ζj | are independent and identically

distributed. Note that EΠ0(S1) = (− log π + 1)/2 + 1 < 0, EΠ1(S1) = −(log π + 1)/2 +35

(π/2)−1/2 > 0, and S1 has finite variance under either population. So the misclassification
error under Π0 is

prΠ0
(QJ(X) > 0) = prΠ0







J
∑

j=1

Sj − EΠ0(

J
∑

j=1

Sj) > −EΠ0(

J
∑

j=1

Sj)







≤
varΠ0(

∑J
j=1 Sj)

EΠ0(
∑J

j=1 Sj)2

=
J varΠ0(S1)

J2EΠ0(S1)2
→ 0,40

as J → ∞, where the inequality is due to Chebyshev’s inequality and the last equality is
due to Sj are independently and identically distributed. Similarly, the misclassification
error under Π1 also goes to zero as J → ∞. Therefore perfect classification occurs under
this non-Gaussian case where both the mean and the covariance functions are the same.

3. Simulation Results without Pre-smoothing45

The misclassification results when using predictor functions sampled with noise that
are not presmoothed are reported in Table 1. When the covariances are the same but
the means differ, the centroid method is the overall best if we use the noisy predictors
while the Gaussian implementation of the proposed Bayes classifiers has comparable
performance. This is expected because our method estimates more parameters than the50

centroid method while both assume the correct model for the simulated data. All meth-
ods gain performance from pre-smoothing due to the presence of noise in the predictor
functions. The logistic method benefits the most from pre-smoothing and becomes the
winner when only a mean difference is present.
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Table 1. Misclassification rates (%), with standard errors in brackets for raw predictors

n µ λ Centroid Gaussian NPD NPR Logistic
Scenario A (Gaussian case)

50 same diff 49.3 (0.12) 23.8 (0.18) 24.5 (0.21) 26.7 (0.22) 49.4 (0.12)
diff same 40.2 (0.16) 41.5 (0.16) 43.4 (0.17) 42.4 (0.18) 40.7 (0.16)
diff diff 37.9 (0.17) 20.8 (0.18) 21.2 (0.20) 23.3 (0.22) 38.8 (0.17)

100 same diff 49.1 (0.13) 17.2 (0.11) 18.6 (0.12) 20.0 (0.13) 49.3 (0.13)
diff same 37.8 (0.13) 39.2 (0.13) 41.4 (0.15) 40.2 (0.16) 38.3 (0.13)
diff diff 35.3 (0.14) 14.6 (0.1) 15.8 (0.10) 17.1 (0.12) 35.8 (0.15)

Scenario B (exponential case)
50 same diff 49.0 (0.13) 30.2 (0.19) 31.2 (0.22) 33.5 (0.23) 49.2 (0.13)

diff same 38.3 (0.21) 40.6 (0.21) 39.5 (0.22) 38.6 (0.21) 38.7 (0.23)
diff diff 35.0 (0.20) 23.3 (0.18) 23.5 (0.21) 24.3 (0.22) 35.7 (0.22)

100 same diff 48.8 (0.14) 26.0 (0.13) 25.4 (0.14) 26.7 (0.16) 48.9 (0.13)
diff same 35.8 (0.16) 38.6 (0.19) 36.3 (0.18) 35.7 (0.16) 35.9 (0.16)
diff diff 32.4 (0.14) 18.7 (0.13) 16.7 (0.13) 17.0 (0.14) 32.7 (0.15)

Scenario C (dependent case)
50 same diff 48.9 (0.14) 33.3 (0.19) 35.3 (0.22) 37.3 (0.22) 49.1 (0.14)

diff same 39.3 (0.22) 42.1 (0.21) 41.0 (0.22) 40.1 (0.22) 39.2 (0.23)
diff diff 36.0 (0.21) 27.3 (0.20) 28.6 (0.21) 29.3 (0.23) 36.7 (0.23)

100 same diff 49.1 (0.13) 29.8 (0.14) 30.6 (0.14) 31.8 (0.15) 49.0 (0.13)
diff same 36.4 (0.17) 39.8 (0.20) 37.9 (0.18) 37.1 (0.17) 36.3 (0.16)
diff diff 33.3 (0.16) 24.1 (0.15) 22.6 (0.15) 22.9 (0.16) 33.5 (0.16)

Centroid method; Gaussian, NPD, and NPR correspond to the Gaussian, nonpara-
metric density, and nonparametric regression implementations of the proposed Bayes
classifiers, respectively; Logistic, functional logistic regression.

4. Proofs 55

4·1. Theorem A1 and Theorem A2

Let S(c) = {x : ||x|| ≤ c} be a bounded set of all square integrable functions for c > 0,
where || · || is the L2 norm. We will use the following lemma:

Lemma 1. Under Conditions A1–A4, for any j =≥ 1, k = 0, 1,

sup
x∈S(c)

|f̂jk(x̂j)− fjk(xj)| = Op

{

h+

(

nh

log n

)−1/2
}

.
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Proof. We prove the statement for k = 0; the proof for k = 1 is analogous. Let the60

sample mean of the jth estimated projection ξ̂j be ξ̄j. Observe

sup
x∈S(c)

∣

∣

∣

∣

∣

ĝj0

(

x̂j − ξ̄j

λ̂
1/2
j0

)

− gj0

(

xj

λ
1/2
j0

)∣

∣

∣

∣

∣

≤ sup
x∈S(c)

∣

∣

∣

∣

∣

ĝj0

(

x̂j − ξ̄j

λ̂
1/2
j0

)

− ḡj0

(

xj

λ
1/2
j0

)∣

∣

∣

∣

∣

+ sup
x∈S(c)

∣

∣

∣

∣

∣

ḡj0

(

xj

λ
1/2
j0

)

− gj0

(

xj

λ
1/2
j0

)∣

∣

∣

∣

∣

= op{(nh)−1/2}+Op

{

h+

(

nh

log n

)−1/2
}

= Op

{

h+

(

nh

log n

)−1/2
}

, (3)

where the first rate is due to Theorem 3.1 in Delaigle & Hall (2010), and the second to,65

for example, Theorem 2 in Stone (1983). Then

sup
x∈S(c)

|f̂j0(x̂j)− fj0(xj)| = sup
x∈S(c)

∣

∣

∣

∣

∣

1

λ̂
1/2
j0

ĝj0

(

x̂j − ξ̄j

λ̂
1/2
j0

)

− 1

λ
1/2
j0

gj0

(

xj

λ
1/2
j0

)∣

∣

∣

∣

∣

≤ sup
x∈S(c)

{

1

λ̂
1/2
j0

∣

∣

∣

∣

∣

ĝj0

(

x̂j − ξ̄j

λ̂
1/2
j0

)

− gj0

(

xj

λ
1/2
j0

)∣

∣

∣

∣

∣

+ gj0

(

xj

λ
1/2
j0

)∣

∣

∣

∣

∣

1

λ̂
1/2
j0

− 1

λ
1/2
j0

∣

∣

∣

∣

∣

}

= Op

{

sup
x∈S(c)

∣

∣

∣

∣

∣

ĝj0

(

x̂j − ξ̄j

λ̂
1/2
j0

)

− gj0

(

xj

λ
1/2
j0

)∣

∣

∣

∣

∣

}

+Op

(∣

∣

∣

∣

∣

1

λ̂
1/2
j0

− 1

λ
1/2
j0

∣

∣

∣

∣

∣

)

= Op

{

h+

(

nh

log n

)−1/2
}

,70

where the second equality follows from the consistency of λ̂j0 and Condition A4, and the

third equality follows from (3) and the fact that λ̂j0 converges at a root-n rate. �

Proof of Theorem A1. For simplicity we consider the case where the supports of gj0
and gj1 are in common. The case where the supports differ can be proven in two step:
First consider classifying elements x whose projections xj are in the intersection of the75

supports of gj0 and gj1; next consider classifying an element x for which a projection
score xj is not contained in the intersection of the supports, in which case QJ(x) will

be ±∞, whence Q̂J(x) will also diverge to ±∞, respectively, and thus consistency is
obtained.

Now fix ǫ > 0. Set c be such that pr(||X|| > c) = pr{X /∈ S(c)} ≤ ǫ/2. First we prove80

there exists an event S such that Q̂J(X) −QJ(X) → 0 on S with pr(S) > 1− ǫ. By
Lemma 1 there exists Mjk > 0 such that the event

Sjk =

{

sup
x∈S(c)

|f̂jk(x̂j)− fjk(xj)| ≤ Mjk

{

h+

(

nh

log n

)−1/2
}}

(j = 1, 2, . . . ; k = 0, 1)

has probability pr(Sjk) ≥ 1− 2−(j+2)ǫ. Letting S =
(

⋂

j≥1,k=0,1 Sjk

)

∩
[

⋂

j≥1,k=0,1{ξj ∈ supp(fjk)}
]

∩ {||X|| ≤ c}, we have pr(S) ≥ 1− ǫ, where supp means

the support of a density. Let an be some increasing sequence such that an → ∞ and85
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an{h+ (nh/ log n)−1/2} = o(1). Define Ujk = {x : xj ∈ supp(fjk)}, U =
⋂

j≥1,k=0,1 Ujk,

djk = min{1, inf
x∈S(c)∩U

fjk(xj)}, J = sup







J ′ ≥ 1 :
∑

j≤J ′, k=0,1

Mjk

djk
≤ an







.

The djk are bounded away from 0 by Condition A5, and J is nondecreasing and tends
to infinity as n → ∞. On S we have

J
∑

j=1

1

djk
sup

x∈S(c)
|f̂jk(x̂j)− fjk(xj)| ≤

J
∑

j=1

Mjk

djk

{

h+

(

nh

log n

)−1/2
}

≤ an

{

h+

(

nh

log n

)−1/2
}

= o(1), (4) 90

where the first and second inequalities are due to the property of S and J , respectively,
and the last equality is by the definition of an.

From (4) we infer that on S,

sup
x∈S(c)

|f̂jk(x̂j)− fjk(xj)| ≤ djk/2 (5)

eventually and uniformly for all j ≤ J . Then on S it holds that

|Q̂J(X)−QJ(X)| ≤ sup
x∈S(c)∩U

|Q̂J(x)−QJ(x)| 95

≤
∑

j≤J, k=0,1

sup
x∈S(c)∩U

| log f̂jk(x̂j)− log fjk(xj)|

≤
∑

j≤J, k=0,1

sup
x∈S(c)

|f̂jk(x̂j)− fjk(xj)|
1

infx∈S(c)∩U η3jk

≤
∑

j≤J, k=0,1

sup
x∈S(c)

|f̂jk(x̂j)− fjk(xj)|
2

djk
,

= o(1),

where the third inequality is by Taylor’s theorem, η3jk is between fjk(xj) and f̂jk(x̂j), 100

the last inequality is due to (5) which holds for large enough n, and the equality is

due to (4). We conclude that pr(S ∩ [I{Q̂J(X) ≥ 0} 6= I{QJ(X) ≥ 0}]) → 0 as n → ∞
by noting that Q̂J(X) converges to QJ(X) and thus has the same sign as QJ(X) as
n → ∞. Notice that QJ(X) has a continuous density and thus pr{QJ(X) = 0} = 0 by
Condition A4. � 105
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Proof of Theorem A2. Recall we assume π̂1 = π̂0. Then

Ê(Y | ξ̂j = u) =

∑1
k=0

∑nk
i=1 kK(

u−ξ̂ijk
hj

)

∑1
k=0

∑nk
i=1K(

u−ξ̂ijk
hj

)

=

∑n1
i=1 K(

u−ξ̂ij1
hj

)

∑n1
i=1K(

u−ξ̂ij1
hj

) +
∑n0

i=1 K(
u−ξ̂ij0

hj
)

=
f̂j1(u)

f̂j1(u) + f̂j0(u)
,

where f̂jk are the kernel density estimators with bandwidth hj , implying110

Q̂R
J (x) =

J
∑

j=1

log

[

Ê(Y | ξ̂j = x̂j)

{1− Ê(Y | ξ̂j = x̂j)}

]

=
J
∑

j=1

log

{

f̂j1(x̂j)

f̂j0(x̂j)

}

.

Observe that Q̂R
J has the same form as Q̂J , so this result follows from Theorem A1. �

4·2. Theorem 1

The proof of Theorem 1 requires the following key lemma, which is an extension of115

Lemma 1, changing the rate from h+ (nh/log n)−1/2 to h+ (nh/log n)−1/2 + (m2/5h2)−1.
The remainder of the proof is omitted, since it is analogous to that of Theorem A1.

Lemma 2. Under Conditions A1–A4 and A6–A9, for any j ≥ 1, k = 0, 1,

sup
x∈S(c)

|f̃jk(x̃j)− fjk(xj)| = Op

{

h+

(

nh

log n

)−1/2

+ (m2/5h2)−1

}

.

Proof. Given x ∈ S(c), by triangle inequality

|f̃jk(x̃j)− fjk(xj)| ≤ |f̃jk(x̃j)− f̂jk(x̂j)|+ |f̂jk(x̂j)− fjk(xj)|.

The rate for the second term can be derived from Lemma 1, so we focus only on the120

first term. For fixed j, k and hjk = hλ
1/2
jk ,

|f̃jk(x̃j)− f̂jk(x̂j)| =
1

nkhjk

∣

∣

∣

∣

∣

nk
∑

i=1

K

[

∫

T {X̃
(k)
i (t)− x(t)}φ̃j(t) dt

hjk

]

−K

[

∫

T {X
(k)
i (t)− x(t)}φ̂j(t) dt

hjk

]∣

∣

∣

∣

∣

≤ 1

nkh
2
jk

nk
∑

i=1

∣

∣

∣

∣

∫

T
{X̃(k)

i (t)− x(t)}φ̃j(t)− {X(k)
i (t)− x(t)}φ̂j(t) dt

∣

∣

∣

∣

· |K ′(η4jk)|

≤ c3
nkh2

nk
∑

i=1

∣

∣

∣

∣

∫

T
{X̃(k)

i (t)− x(t)}φ̃j(t)− {X(k)
i (t)− x(t)}φ̂j(t) dt

∣

∣

∣

∣

,

(6)
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for a constant c3 > 0, where the first inequality is by Taylor’s theorem, η4jk is a mean 125

value, and the last inequality is by Condition A4. The summand in (6) is
∣

∣

∣

∣

∫

T
{X̃(k)

i (t)− x(t)}φ̃j(t)− {X(k)
i (t)− x(t)}φ̂j(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

T
{X̃(k)

i (t)−X
(k)
i (t)}φ̃j(t) + {X(k)

i (t)− x(t)}{φ̃j(t)− φ̂j(t)}dt
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

T
{X̃(k)

i (t)−X
(k)
i (t)}φ̃j(t) dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

T
{X(k)

i (t)− x(t)}{φ̃j(t)− φ̂j(t)}dt
∣

∣

∣

∣

≤ ||X̃(k)
i −X

(k)
i || · ||φ̃j ||+ ||X(k)

i − x|| · ||φ̃j − φ̂j || 130

≤ ||X̃(k)
i −X

(k)
i ||+ (||X(k)

i ||+ c)||φ̃j − φ̂j||,

where the second and third inequalities follow from Cauchy–Schwarz inequality and from
||x|| ≤ c, respectively. Plugging the previous result into (6),

|f̃jk(x̃j)− f̂jk(x̂j)| ≤
c3
h2

{

1

nk

nk
∑

i=1

||X̃(k)
i −X

(k)
i ||+ ||φ̃j − φ̂j ||(

1

nk

nk
∑

i=1

||X(k)
i ||+ c)

}

.

(7)

Since (X̃
(k)
i ,X

(k)
i ) are identically distributed (i = 1, . . . , nk), and by Condition A6 the

first term in the brackets has expected value equal to 135

E(||X̃(k)
i −X

(k)
i ||) = E

X
(k)
i

{Eεi(||X̃
(k)
i −X

(k)
i || | X(k)

i )} = O{(mw)−1/2 +w2} = O(m−2/5),

where more details about the second equality can be found in the Supplementary Material

of Kong et al. (2016). Also E(n−1
k

∑nk
i=1 ||X

(k)
i ||+ c) = O(1) by Condition A1. So

1

nk

nk
∑

i=1

||X̃(k)
i −X

(k)
i || = Op(m

−2/5),
1

nk

nk
∑

i=1

||X(k)
i ||+ c = Op(1). (8)

It remains to be shown ||φ̃j − φ̂j || = Op(m
−2/5). Let ∆̃k = G̃k − Ĝk and for a square-

integrable function A(s, t) denote ||A||F = {
∫

T

∫

T A(s, t)2 ds dt}1/2 be the Frobenius

norm. In their Supplementary Material, Kong et al. (2016) show that ||∆̃k||F = 140

Op(m
−2/5), so ||∆̃||F = ||∆̃0 + ∆̃1||F /2 = Op(m

−2/5). By standard perturbation theory
for operators (Bosq, 2000), for a fixed j

||φ̃j − φ̂j || = O(||∆̃||F / sup
k 6=j

|λ̂j − λ̂k|) = Op(m
−2/5). (9)

Inserting (8) and (9) into (7) we arrive at the conclusion. �

4·3. Theorem 2

Assuming X is Gaussian under k = 0, 1, whence the criterion function QJ(x) defined 145

in (3) in the main text becomes

QG
J (x) =

1

2

J
∑

j=1

[

(log λj0 − log λj1)−
{

1

λ j1
(xj − µj)

2 − 1

λ j0
x2j

}]

> 0. (10)
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Letting ζj = ξj/λ
1/2
j0 , then

ζj ∼ N(0, 1) under Π0, ζj ∼ N(mj, r
−1
j ) under Π1,

QG
J (X) =

1

2

J
∑

j=1

{log rj − rj(ζj −mj)
2 + ζ2j }.

Under Gaussian assumptions, our Bayes classifier is a special case of the quadratic dis-150

criminant, a non-Bayes classifier because it uses two different sets of projections. The
perfect classification properties for the functional quadratic discriminant were discussed
in Delaigle & Hall (2013) in the context of truncated functional observations or fragments.
We use the following auxiliary result.

Lemma 3. Assume the predictors come from Gaussian processes. If
∑∞

j=1m
2
j < ∞ and155

∑∞
j=1(rj − 1)2 < ∞, then QG

J (X) converges almost surely to a random variable as J →
∞, in which case perfect classification does not occur. Otherwise perfect classification
occurs.

This lemma is similar to Theorem 1 of Delaigle & Hall (2013), but uses more transpar-
ent conditions and a proof technique based on the optimality property of Bayes classifiers160

which will be reused in the proof of Theorem 2. Lemma 3 states perfect classification oc-
curs for Gaussian processes if and only if there are sufficient differences between the two
groups in the mean or the covariance functions. This perfect classification phenomenon
arises for the non-degenerate infinite dimensional case because we have infinitely many
independent projection scores ξj for classification.165

Proof of Lemma 3. Case 1: Assume
∑∞

j=1(rj − 1)2 = ∞ and that there exists a sub-
sequence rjl of rj that goes to ∞ or 0 as l → ∞. Correspondingly take a subse-
quence rjl → ∞, rjl > 1 or rjl → 0, rjl < 1 for all l = 1, 2, . . . . Denoting the summand
(log λj0 − log λj1)− {(ξj − µj1)

2/λj1 − ξ2j /λj0} of (10) as SG
j , for any j ≤ J the misclassi-

fication rate pr[I{QG
J (X) ≥ 0} 6= Y ] is smaller than or equal to pr{I(SG

j ≥ 0) 6= Y }, since170

the former is the Bayes classifier using the first J projections, which minimizes the mis-
classification error among the class. Thus the misclassification rate of QG

J (X) is bounded
above by that of the classifier I{log rj − rj(ζj −mj)

2 + ζ2j ≥ 0} for any j ≤ J . Let prΠk

denote the conditional probability measure under group k. If there exists rjl → 0,

prΠ0
{log rjl − rjl(ζjl −mjl)

2 + ζ2jl ≥ 0} ≤ prΠ0
(log rjl + ζ2jl ≥ 0) → 0,175

observing ζ2jl ∼ χ2
1 under Π0 and log rjl → −∞.

If there exist rjl → ∞, then there exists a sequence M → ∞ such that (log rjl +
M)/rjl → 0. For any j = 1, 2, . . . ,

prΠ0
{log rj − rj(ζj −mj)

2 + ζ2j ≥ 0} ≤ prΠ0
{log rj − rj(ζj −mj)

2 +M ≥ 0}+ prΠ0
(ζ2j > M)

= prΠ0
{(ζj −mj)

2 ≤ log rj +M

rj
}+ o(1)180

= prΠ0

{

|ζj −mj| ≤
(

log rj +M

rj

)1/2
}

+ o(1).

(11)
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Plugging the sequence rjl for rj into (11) we have {(log rj +M)/rj}1/2 → 0 as l → ∞
and M → ∞. Since ζj are standard normal and thus have uniformly bounded densities,
(11) goes to zero and we have prΠ0

{log rjl − rjl(ζjl −mjl)
2 + ζ2jl ≥ 0} → 0 as l → ∞ and

M → ∞. Using similar arguments we can also prove prΠ1
{log rjl − rjl(ζjl −mjl)

2 + ζ2jl < 185

0} → 0 as l → ∞. By Bayes’ theorem pr{I(SG
jl
≥ 0) 6= Y } = pr(Y = 0)pr(SG

jl
≥ 0 | Y =

0) + pr(Y = 1)pr(SG
jl
< 0 | Y = 1) → 0 as l → ∞. Therefore

pr[I{QG
J (X) ≥ 0} 6= Y ] ≤ pr{I(SG

jl
≥ 0) 6= Y } → 0, J → ∞,

which means perfect classification occurs.
Case 2: Assume

∑∞
j=1(rj − 1)2 = ∞, and there exists M1 and M2 such that 0 < M1 ≤ 190

rj ≤ M2 < ∞ for all j ≥ 1. Letting EΠk
and varΠk

be the conditional expectation and
variance under group k, respectively, we have

EΠ0{log rj − rj(ζj −mj)
2 + ζ2j } = log rj − (rj − 1)−m2

jrj ,

EΠ1{log rj − rj(ζj −mj)
2 + ζ2j } = − log r−1

j + (r−1
j − 1) +m2

j ,

varΠ0{log rj − rj(ζj −mj)
2 + ζ2j } = 2(1− rj)

2 + 4m2
jr

2
j , 195

varΠ1{log rj − rj(ζj −mj)
2 + ζ2j } = 2(r−1

j − 1)2 + 4m2
jr

−1
j .

Then

prΠ0





J
∑

j=1

{log rj − rj(ζj −mj)
2 + ζ2j } ≥ 0



 ≤
∑J

j=1{2(1 − rj)
2 + 4m2

jr
2
j}

{−∑J
j=1(rj − 1− log rj +m2

jrj)}2

≤
∑J

j=1{2(1 − rj)
2 + 4M2

2m
2
j}

[
∑J

j=1{ 1
M2

(rj − 1)2 +M1m2
j}]2

=
4M2

2 /M1
∑J

j=1{ 1
M2

(rj − 1)2 +M1m
2
j}

×
∑J

j=1{2(1 − rj)
2 + 4M2

2m
2
j}

∑J
j=1{4M2

M1
(rj − 1)2 + 4M2

2m
2
j}

200

≤ 4M2
2 /M1

∑J
j=1{ 1

M2
(rj − 1)2 +M1m2

j}
→ 0, J → 0,

where Chebyshev’s inequality is used for the first inequality, and Taylor expansion in the
second inequality. Analogously the misclassification rate under Π1 also can be proven to
go to zero.

Case 3: Assume
∑∞

j=1(rj − 1)2 < ∞ and
∑∞

j=1m
2
j = ∞. The proof is essentially the 205

same as in Case 2.
Case 4: Assume

∑∞
j=1(rj − 1)2 < ∞ and

∑∞
j=1m

2
j < ∞. Then the mean and variance

of QG
J (X) converges, so QG

J (X) converges to a random variable under either population
by Billingsley (1995). Therefore misclassification does not occur. �

We can then proceed to prove Theorem 2, which does not assume Gaussianity. 210

Proof of Theorem 2. Case 1: Assume
∑∞

j=1(rj − 1)2 = ∞ and there exists a subse-
quence rjl of rj that goes to 0 or ∞ as l → ∞. By the optimality of Bayes classifiers,
the Bayes classifier I{QJ (X) ≥ 0} using the first J components has smaller misclassi-
fication error than that of I(Sj ≥ 0), where Sj is the jth component in the summand
of (3) in the main text, for all j ≤ J . Since I(Sj ≥ 0) is the Bayes classifier using only 215
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the jth projection, it has a smaller misclassification error than the non-Bayes classifier
I(SG

j ≥ 0), where SG
j = log rj − rj(ζj −mj)

2 + ζ2j is the jth summand in (10). Under
Conditions A10–A11, we prove that the misclassification error converges to zeros by
adopting the same argument as in Lemma 3 Case 1.

Case 2: Assume
∑∞

j=1(rj − 1)2 = ∞, and there exists M1 and M2 such that 0 < M1 ≤220

rj ≤ M2 < ∞ for all j ≥ 1. By some algebra,

EΠ0{log rj − rj(ζj −mj)
2 + ζ2j } = log rj − (rj − 1)−m2

jrj,

EΠ1{log rj − rj(ζj −mj)
2 + ζ2j } = − log r−1

j + (r−1
j − 1) +m2

j ,

varΠ0{log rj − rj(ζj −mj)
2 + ζ2j } ≤ (2CM − 1)(1 − rj)

2 + 4(CM + 1)m2
jr

2
j ,

varΠ1{log rj − rj(ζj −mj)
2 + ζ2j } ≤ (2CM − 1)(r−1

j − 1)2 + 4(CM + 1)m2
jr

−1
j .225

The expectations are the same as in the Gaussian case because the first two moments of
ζj do not depend on distributional assumptions. The inequalities in the variance calcula-
tion are due to 2ab ≤ a2 + b2 for all a, b ∈ R. The same Chebyshev’s inequality argument
can be applied as for Theorem A1.

Case 3: Assume
∑∞

j=1(rj − 1)2 < ∞ and
∑∞

j=1m
2
j = ∞. The proof is essentially the230

same as that for Case 2. �
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