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SUMMARY
In functional linear models (FLMs), the relationship between the scalar response and the functional pre-
dictor process is often assumed to be identical for all subjects. Motivated by both practical and method-
ological considerations, we relax this assumption and propose a new class of functional regression models
that allow the regression structure to vary for different groups of subjects. By projecting the predictor pro-
cess onto its eigenspace, the new functional regression model is simplified to a framework that is similar
to classical mixture regression models. This leads to the proposed approach named as functional mixture
regression (FMR). The estimation of FMR can be readily carried out using existing software implemented
for functional principal component analysis and mixture regression. The practical necessity and perfor-
mance of FMR are illustrated through applications to a longevity analysis of female medflies and a human
growth study. Theoretical investigations concerning the consistent estimation and prediction properties of
FMR along with simulation experiments illustrating its empirical properties are presented in the supple-
mentary material available &iostatisticsonline. Corresponding results demonstrate that the proposed
approach could potentially achieve substantial gains over traditional FLMs.

Keywords Dimensional reduction; Eigenfunction; Functional data; Functional linear model; Functional principal
components; Mixture regression; Smoothing.

1. INTRODUCTION

Recently, there has been an increased interest in regression models for functional data. In the simplest
setting, the functional predictor and the scalar response are related by a linear operator. Given a scalar
responseY on R and a smooth random predictor procéé§) on a compact suppoft that is square
mtegrable(l.e., J5 X2(t)dt < oo), the classical functional linear model (FLM) relatésnd X by

E(Y|X) = /fﬂ(t)X(t)dt, (1.1)
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where the regression parameter functjp@) is also assumed to be smooth and square integrable. See
Ramsay and Silverma2005 for a comprehensive introduction. For further theoretical studied di, (
seeCardotand otherg1999 2003, Cai and Hall(2009 andHall and Horowitz(2007).

Driven by the needs of generalizing the basic linear relationshigd.i), (several extensions of the
above FLM have been proposed. This is similar to, for example, extending the classical linear regres-
sion models to generalized linear models. One of the early examples is generalized LN énd
Stadtnilller, 2009, and other extensions include varying-coefficient functional modkea @nd Zhang
200Q Fanand others2003 and wavelet-based functional moddiéqfris and others2003.

In line with these extensions and motivated by the fact that, due to some unknown reasons or unob-
served covariates, the subjects may belong to different mutually exclusive groups that possess different
mechanisms to produce the response, we propose a new class of functional regression models. Our ap-
proach achieves this goal by allowing individuals from different groups to have distinct regression func-
tions. To be specific, denote the unknown number of grous,asd letfy (t) be the regression function
for thekth group,k = 1, ..., K. Then, we propose the following model:

E(Y|X) =/ L)X (t)dt if the subject belongs to theh group. (1.2)
T

We shall firstillustrate the utility of our proposal through an analysis of the biodemographic characteristics
of female medfliesNiuller and Zhang2005. This study concerns the dependence of longevity on the
dynamics of the early fertility process and we shall show that our proposal sheds new light on various
important scientific issues. The second example, derived from the Berkeley growth study, considers the
regression of heights at maturity age on the childhood growth patterns. We shall illustrate how distinct
regression relations emerge and reveal the underlying gender groups, even when we were completely
blinded from gender information throughout the analysis. Our proposed method can also be potentially
useful in various medical applications, such as widh) is a longitudinal biomarker and is a disease
indicating variable; for example, glomerular filtration rate in kidney diseases and postload glucose in type
2 diabetes.

Extending the classical FLML(1)—(1.2) is parallel to extending the classical linear regression to mix-
ture regression¥eSarbo and Crqri988, thus termed as functional mixture regression (FMR). We em-
phasize that a main goal of FMR is to specify an appropriate functional model that is capable of identifying
potentially different regression structures. This general idea can readily be adopted to various applications
in which functional regression techniques are needed. We also remark that FMR is conceptually different
from existing approaches for curve-based clusteragfiney and Smyth2003 James and Suga2003
Luan and Lj 2003 among others). These latter methods focus on clustering the trajectories themselves,
while FMR focuses on detecting the possible existence of different regression relations.

The rest of this paper is organized as follows. In Secfipmwe provide a complete description of
FMR and demonstrate that its estimation can be achieved using existing software implemented for func-
tional principal component analysis (FPCA) and mixture regression. Applications of the proposed method
to the above-mentioned real examples are presented in S&ctiGoncluding remarks are offered in
Section4, while simulations illustrating the empirical performance and theoretical investigation on con-
sistent estimation and prediction are deferred to supplementary material availBibstatisticsonline
for conciseness.

2. FUNCTIONAL MIXTURE REGRESSION

We begin with the classical FLML(1) and review a key methodology for dimension reduction and regu-
larization of functional data, namely, FPCA. For introductory material on FPCARgmeand Silverman
(1997), Jamesand otherg2001), Ramsay and Silverm&i2005, Yao and otherg2005, among others.
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2.1 FLM and eigenbasis representation

We begin with the classical FLML(1), where the regression functigit(t) is the same for all subjects

under consideration. It is known that the functional linear operatot.if) {s compact and not directly
invertible, and thus regularization is needed and can be achieved through a truncated basis representation.
In this article, we shall adopt the eigenbasis representation for reasons to be given below.

which form a complete basis of the functional space, with associated nonnegative and nondecreasing
eigenvalue$im}m=1,2, .. By the well-known Karhunen-L&ve expansion, the predictor procésadmits

S

o
X() = ) + > éngm(t),  Wheresn = /T (X(O) = #(Om(b)dt 2.1)
m=1

The random variable&,s are the functional principal component (FPC) scoreX ofvhich are uncorre-
lated and satisf{e (ém) = 0 and va(ém) = Am, 2 Am < oo. The trajectoryX; is an i.i.d. realization of
X for theith subject related to the respongei = 1, ..., n. Here, we highlight the following advantages
of (2.1) for regression regularization that will also be carried over to FMR. First, the eigenfunctions are
orthonormal in theL? space and the FPC scores are uncorrelated random variables, which provide both
analytical and computational convenience. Second, the eigenbasis are determined by the data and will
efficiently capture the dominant modes of variation. The eigenvalues often decrease rapidly and thus the
infinite-dimensional predictor process can be well approximated by a small number of FPCs. This sug-
gests a simple way to achieve regularization by truncating eigenbasis based on the total variation explained
up to a threshold.

Recall that the regression parameter funcjfas square integrable arighm}m=1,2,... form a complete
orthonormal basis, we hayit) = >, bmém(t), and hence model (1) can be expressed equivalently
as

E(YIX) = /f/f(t)ﬂ(t)dtJr /T {Z bm¢m<t)] [Z :mgzsm(t)} dt
m=1 m=1

=ho + Z bmém, (2.2)

m=1

where the intercept ibg and the coefficients are given Iy, = [z (t)gm(t)dt. One can see that the
orthonormality of the complete eigenbasis plays a critical role in transforming the functional regression
structure into a linear combination of the uncorrelated FPC scores that serve as predictor variaiffes in (

2.2 Model specification of functional mixture regression

This section provides a complete mathematical formulation of FMR. Recall that FMR allows the predictor
trajectoriesX; to partition intoK mutually exclusive groups, with each group having its own regression
function g (t) for producing the responsé. This idea was previously expressed by mode2y(and it is

useful to rewrite it in a similar manner a&.9). In this paperK is unknown and will be chosen by some
statistical model selection criterion addressed later. WBite {1, . .., n} and define the index set

Ck = {i € S theith subject belongs to tHeh groug, k=1,..., K.

Thus, Uy Ck = SandC(k)) N C(kz) = & for 1 < ky # ke < K. Write by = [ fx(t)x(t)dt and
bkm = [7 Bk(t)$m(t)dt. By analogy t02.2), we have

Be®) =D bkmgm(®), teT, k=1,... K,

m=1
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and the FMR modell(.2) can be written as

o
E(YilXi,i € Ck) = bxo + Z Bkméim. (2.3)
m=1
We note thatinZ.3) the FPC score§n, serve as the predictor variables and that the infinite-dimensional

feature is inherent to the functional data. The estimation of m@d8) thus requires regularization for the
predictor proces¥X, and we achieve this by truncating the infinite sum to a finite sui ¢érms. Since
often the eigenvalues of decrease to zero rapidly, it is reasonable to assume that an appropréze
always be chosen that leads to a flexible yet parsimonious model. A simple and practical strategy is to
examine the total variation explained up to certain threshpM = min {¢: S m/ 2 Am > t}.
With this truncation, model.3) is refined,

M
m=1
as the underlying model and the regression parameter functions that we aim for are
M
Pem(® =D bumgm(t) forallt e 7 andk =1,...,K. (2.5)
m=1

From 2.4), the FMR model is now reduced to a form similar to classical mixture of linear regression
models.

To complete the mathematical description of the FMR mo2i€) from which the statistical inference
is based on, lety be the probability that a randomly selected subject is fromkthegroup and define
Ukzy =var(Yj|X;)if i € Cx. Writey = (y1, ..., Yn)",bo = (b1o, ..., bko) ", bk = bk, ..., bxm) ", @ =
(r1,....7k-1)", ande} = (alzy, ...,o-,%y)T. Denotey = (bg,b],....bg,x",0])7, the parameter
space® is then given by

K
0= [l/link >0,> m=10%>0forallk=1,..., K], (2.6)

k=1
which is an open subset ®M+3IK-1 Fyrther, writeZ; = (&1,...,&m)T fori = 1,...,n; these

vectorsg;s of the FPC scores are i.i.d. realizations of a random vécthose density isf (£|A) with
E(¢) =0 and co¥, &) = diag{11, ..., Am} = A. The conditional density of givené is

K

fylg, w) =D f (YIE, bro, bk, 03, 2.7)
k=1

where f (y|&, byo, bk, akzy) is the conditional density for thith component. In general, the component
density can be derived from a location-scale famifgnig 2000 or an exponential familyWedel and
DeSarbp1995 that generates identifiable mixtures. This includes most commonly adopted distributions,
such as normal, gamma, exponential, Poisson, binomial, and multinomial. To emphasize the main idea of
coupling functional data, we focus on the mixture of linear regressions with normal errors. It is concep-
tually straightforward to extend our proposal to the mixture of generalized linear models with estimation
procedure modified accordingly. Note that the above formulation holds for mddglahd the depen-
dence orM is suppressed for.

Since thef;s are random,2.4) becomes a random design regression model. As to be described in
Section2.3, the matrixA will be estimated in a way that is functionally independenyotherefore, the
inference of 2.4) is completely based on the conditional dendityy|&, w). Asi1 > --- > Ay > O for
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any M, it is easy to see that(£|A) does not have all its mass in upkoof (M — 1)-dimensional linear
subspaces. This implies that the FMR mod&H) is identifiable in the following sensdiénnig 2000:
for any 2 parameteng andy * with a given predictor variablé&; , if

K K*
> mf(YIEi, bro, b, o) = D f(yIEi, o, b o) (2.8)
k=1 k=1

is true for alli and all possible values of, thenK = K* andy = w* up to a permutation. It is
noteworthy that an attractive property &4) is that its predictor variable$ms are uncorrelated, hence
devoid of collinearity.

It is important to note that the condition th#t are i.i.d. processes does not exclude the possibility of
¢&; itself following a mixture distribution because the Karhunenéimexpansion?( 1) that FPC analysis
is based on only requires the existence of covariance function. The inference on the regression structure is
based on the conditional densi.7) and does not depend on the distributiod afFor instance, suppose
thaté; s follow a mixture density. The regression structure does not necessarily vary across the groups of
subjects partitioned by the distribution &f. In other words, the assignments of group membership for
an individual in FMR is determined merely by the relationship betw¥eandY;. Another noteworthy
remark is that, for the reason of detecting different regression structures, the mixing prop@rign
assumed independent of the predicXgr which is similar to classical mixture regression models. This is
distinct from the class of hierarchical mixture of experts arising from the neural network literaiameg (
and Tannerl999, where it is common to assume that thes depend on covariates to allow for flexible
approximation of the overall mean response function.

2.3 Model estimation and implementation

This subsection discusses approaches for estimating the unknowhd)iar{d @.5), which can be nat-
urally done in 2 stages. Briefly, in the first stage, we perform FPCA to obtain estimaigg #md &,
while in the second stage, these estimates are pluggeddmfoand @.5) for the estimation of the re-
maining parameters.

In practice, the observed data are noisy measurerigntaken at;j,

(o]
Uij = Xi(tj) + &ij = p(tij) + D &Gmdm(tj) +ij,  tij € T, (2.9)
m=1
fori =1,...,nandj = 1,...,n;. The measurement errorg are assumed independentdgh with

mean zero and a constant variarlEq% = 2, while a nonconstant variance function could also be
assumed to account for heteroscedasibo(and Lee2006. We first apply the principal analysis by con-
ditional estimation (PACE) procedure %0 and otherg2009 to these noisy measurements to carry out
FPCA. When this is done, the following estimates of model components are obtginé: ¢m, Am,
&m,m=1,..., M. Here,M is the number of FPCs that can be chosen by pseudo-Akaike Information
Criterion or other related selectors or simply as the minimum number of FPCs that explain a sufficiently
large proportion of the total variation for the predictor process. We adopted the latter approach and found
that the 90% threshold works excellently for our numerical examples. In general, one may need to nav-
igate several choices of the threshold values to determine the model that provides an adequate fit with
parsimonious structure.

For conciseness, we referYao and otherg2005 for a complete description of the FPCA technique
used in this paper. Here, we only present the integral and PACE estimates of the FPCjgcottsthe
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notation introduced in Sectich 1 The integral estimate is given by

nj
& = D (Ui} — a(tj)pm(tij) j —ti 1), (2.10)
which is motivated by the definition of the FPC scores as inner products; thaiss ff{Xi t) —
1 (t)}ém(t)dt. For the PACE estimates, writg = (u(ti1), ..., #(tin,))", Ui = (Ui, ..., Uin,)T, and
Sim = (@m(ti1), ..., ¢m(tin)T, and let the(j, 1)-th entry of then; x nj matrix Ty, be (Zy))j =
G, ti) + axzén with ¢ = 1if j =1 and 0ifj # |. Substituting estimates fQt;, im, ¢im, andZy;,
we have the PACE estimates
&P = b EG U — ). (2.11)
Itis widely known that when the design poiriis are dense, the traditional integral estimates of the FPC
scorestm, denoted bfi'm and is given by 2.10 below, are usually satisfactory. By contrast, the PACE
estimatefiﬁ1 as in .17) is more suitable when the design points are moderate or sparse. Corresponding
software is available dtttp://www.utstat.toronto.edu/fyao
Once the crucial estimatég,s of the FPC scores are obtained by eitt2et() or (2.11), the regression
coefficientdgms in (2.4) can be estimated in a relatively straightforward manner: Withas the predictor
variables, thetms can be estimated by standard mixture regression estimation method (e.g., expectation
maximization-based method). The fitted FMR model and regression functions are then giverkby, for
1,....K,

M M

ECYIIXi, M) = bBro+ D Bamdim. - Ao ® = D Bendm(®) i i € Coe (2.12)

m=1 m=1

Notice that the estimated FPC scofgs are unique up to a sign change related to the direction of the
estimated eigenfunctiodﬁn(t). This property is also carried over to the estimated regression coefficients
bim. For the choice oK, one could apply any well-studied model selection criterion, and we adopt the
Bayesian information criterion (BIC) that has provided good results in a variety of applications of model-
based clustering (e.g., sEealey and Raftery2002 and references therein).

For conducting inference procedures on the regression function(s), we could exploit nonparametric
bootstrap methods with a suitable label-switching strategy for mixture regression to avoid nonidentifiabil-
ity of component labels. More specifically, we first resample all the individuals with replacement to obtain
abootstrap sampléUZ, . .., Ui?]i ,¥P):i=1,...,n},b=1,..., B, and perform the FPCA step, where
B is the number of bootstrap replicates. Then the estimated FPC g¢&fes. ., &yp):i = 1,...,n}
are fed into a mixture regression model wi€hcomponents, wheri!? is chosen in FPCA using the same
criterion as for the original sample, akdis the number of mixture components selected for the original
sample. To correctly label the latent groups, we examine the distances from the estimated regression func-

tions of the bootstrap samplgP(t) = Zm:l b2 #P(1), to those obtained from the original sample, that

.....

procedure also provides evidence for model identifiability.

We have derived theoretical results in terms of consistency of model estimation and prediction for
FMR. In establishing such results, a first technical difficulty encountered is the fact that the estimates of
the regression functions in the FMR modg2l4) are based on the estimated FPC scénasnot on the
“true” &m. Thus, existing theories of mixture regression models are no longer applicable. Another major
challenge is due to the lack of analytic expressiondfgr. Therefore, customary theoretical arguments
previously used in FLMs cannot be applied. Due to space limitation, these technical contents such as the
relevant theorems, assumptions, auxiliary lemmas, and proofs to the supplementary material available at
Biostatisticsonline.
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3. APPLICATIONS
3.1 Longevity and early fertility of mediterranean flies

To illustrate the need of the proposed approach, we analyze the egg-laying data from a fertility study
conducted for 1000 female medflies as describe@aneyand others(1998. Our goal is to determine

the dependence of longevity of the medflies on their early fertility process. One of the basic questions
of evolutionary theory is to what extent lifespan is driven by enabling increased reproduction. Diverting
resources used for maintenance and repair into reproductive activity may shorten lifeapadge and
Harvey, 1985 Westendorp and Kirkwoqdl999. The selected sample of 139 medflies includes those
that were fertile during an early life period defined by the first 20 days and also survived beyond. The
trajectories corresponding to the number of daily eggs during this early life period constitute the functional
predictors, while remaining lifetime serves as the response that is an important proxy for longevity and
quantifying the evolutionary fitness of individual flies. As a preprocessing step to achieve homogeneity, a
log-transform of egg counts was applied.

These predictor trajectories (obtained by applying the PACE algorithm in FPCA step) are shown in the
left panel of Figurel. Most egg-laying trajectories display a rise toward a time of peak fertility followed
by a decline. There is substantial variation in the steepness of the rise to the various maximal level of egg-
laying and also in the timing of the peak and the rate of decline. The smooth estimate of the mean fertility
function is also displayed, while the estimates of the first 2 eigenfunctions are shown in the right panel,
explaining 76.8% and 14.5% of the total variation of the trajectories, respectively. These eigenfunctions
reflect the modes of variatiorC@stroand others 1986 and the dynamics of predictor processes. Two
components were chosen, and they account for more than 90% of the variation in the dater, taaQ.i3,

It is of interest to identify shape changes in early life reproductive trajectories that tend to influence
evolutionary longevity. To conduct an adequate analysis, we would inspect whether the regression rela-
tionship varies due to some unknown mechanism. It is noticed that there is no obvious grouping effect
in the predictor trajectories observed. This can be seen from the perspective of the estimated FPC scores
(right panel of Figurdl) that are often viewed as subject-specific summaries. However, when the remain-
ing lifetimes are graphed versus the FPC scores in the right panel of Fgtire lifespan seems driven
by the early fertility differently with considerably longer lifetimes for some flies whose predictor patterns
(in the left panel) might be similar. To verify this conjecture, we applied the FMR approach and unsurpris-
ingly 2 mutually exclusive groups with different regression structures were suggested KBHC2),
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Fig. 1. Left: smoothed egg-laying trajectories (functional predictor) for the 139 included flies with the smooth estimate

of the mean function (thick solid curve). Middle: the first (solid) and second (dashed) estimated eigenfunctions

explaining 76.8% and 14.5% of the total variation, respectively. Right: the estimated FPC scores obtained by the
integral methodZ.10 for the 139 flies.
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Fig. 2. Left: estimated FPC scores for the 139 flies with different markers (circles and crosses) used for representing
the 2 mutually exclusive groups with different regressions as detected by FMR. Right: resjprisamaining
lifetime in day) against estimated FPC scores for the 139 flies with corresponding group assignments.
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Fig. 3. Top panels: estimated regression functifpgsolid in top left) andgs (solid in top right) of the 2 groups
detected by FMR along with 95% bootstrap confidence bands (dashed). Bottom panels: predictor trajectories of the
flies (indicated by circles in the right panel of Fig@ethat correspond td; (bottom left) and of the flies (indicated

by crosses) that correspondfg (bottom right).

where different markers (circles and crosses) were used for enhanced visualization of such phenomenon
in the right panel of Figuré.

The estimates of regression functighis(solid) andg» (solid) serving as weighting functions shown
in the top panels of Figurgindicate how the lifespan is influenced by the early fertility process, depend-
ing on which group a fly belongs to. We applied the nonparametric bootstrap procedure as described in
Section2.3 and constructed the 95% bootstrap confidence bands by taking 2.5th and 97.5th quantiles of
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1000 replicates shown in the same panels. This provides a measure of accuracy of our point estimation and
evidence for model identifiability as well. For illustration, we plotted again the predictor trajectories of

2 groups separately in bottom panels of Fig8revhere the flies in the middle pan@i; = 32) corre-

sponds tg8; that have longer lifetimes (indicated by circles in the right panel of Fi@uand those in

the right paneln; = 107) to > those live shorter (indicated by crosses). Overall higher level of fertility
seems to shorten lifespan. More specifically, if a fly belongs to the group accordfagaslow rise to a

lower peak of egg production helps to prolong the lifespan. By contrast, the flies in the other group with
larger reproductivity around day 15 often have shorter lifetimes. These findings shed some new insight by
distinguishing distinct underlying mechanisms relating longevity and early fertility. This may help exper-
imenters look into evolutionary interpretation and implication of these mechanisms for different medflies.
We conclude this example by a comparison with a FLM, where the leave-one-subject-out cross-validated
relative prediction errors CVRPE 3, (Yi — ¥7)2/ 3" | 2 were obtained for FMR as 0.163 and

for FLM as 0.372, indicating a substantial gain of 56% in prediction ability.

3.2 Berkeley growth study

Studies of human growth dynamics are an important topic in biological and medical applications that have
profound impact for many years. This example concerns the Berkeley growth data originally published
in Tuddenham and Snydé€t954 and analyzed bjramsayand otherq1995 in terms of height acceler-

ation to reveal the dynamics of human growth. Similar data, for example, the Zurich growth data, were
also studied from this perspective using various smoothing approa@hssdiand others 1984 among
others). It is known that the growth patterns of boys and girls during their pubertal spurts differ signifi-
cantly in terms of magnitude and timing. Mainly for demonstration purpose, in this example, we study the
human growth from a different perspective by examining the dependence of the height at maturity age 18
(scalar response) on the dynamic pattern till age 9 (predictor process) before pubertal spurts (ség Figure

Fig. 4. Left and middle: height trajectories from age 1 to 9 for 39 boys (left) and 54 girls (middle). Right: smooth
estimates of the first (solid) and second (dashed) eigenfunctions, accounting for 88.7% and 9.8% of total variation.
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The data analyzed consist of height records for 39 boys and 54 girls, where the measurements were taken
quarterly from ages 1 to 2, annually from 2 to 8, and semiannually from 8 till 18. It is worth mentioning
that, for illustration, we shall blind ourselves from the gender information throughout the analysis, that is,
the gender is an unknown or hidden factor that we expect the proposed approach is capable to detect.

We first carried out FPCA for the predictor process by pooling 93 trajectories together. Shown in the
right panel of Figuret are the smooth estimates of the first 2 eigenfunctions account for 88.7% and 9.8%
of the total variation, respectively, where the first eigenfunction is in the direction of the overall trend
and the second shows a contrast between early and late times. The estimated FPC scores displayed in
the top left panel of Figurg do not show a strong separation between boys and girls. However, when we
examined the plot of the respongeagainst the estimated FPC scores in the top right panel, the separation
between boys and girls becomes more apparent (circles for boys and crosses for girls). This phenomenon
seems to suggest different regression relations for each gender.

The FMR approach indeed worked beautifully and led to 2 distinct groups based on BIC, that is,
K = 2. Moreover, the partition based on FMR results corresponds to the gender group as expected in
which only 1 boy and 2 girls were misclassified when we inspected the cross-validated classification.
The regression functions for boys and girls are displayed in the bottom panels of Bigloeg with
the 95% bootstrap confidence bands. Recall that the first eigenfunction is an overall shift. The common

10
X
(@]
g S 0
S X Xt x o
a x 3 8 2
1S 0 50 x 8
i X BRSO g
'8 o alte) o
g %, 0
O
-9 2 2 4
-40 -20 0 0 0 2nd FPC scores
1st FPC scores 1st FPC scores
0.6
2 0.4
o
©
[
2
[
K]
[}
(%]
o
()]
[0)
o
-0.4
2 4 6 8 2 4 6 8
Age (year) Age (year)

Fig. 5. Top left: the estimated FPC scores obtained by the integral meghiddi for boys (circles) and girls (crosses).

Top right: responsey¥; (heights at maturity) against estimated FPC scores for boys (circles) and girls (crosses).
Bottom panels: estimated regression functions (solid) of 2 groups that correspond to boys (bottom left) and girls
(bottom right) along with 95% bootstrap confidence bands (dashed).
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increasing trends indicate more weights on the height measurements at later times. It is expected and also
confirmed by the data that boys are usually taller than girls at maturity due to the increasing patterns of
individual predictor trajectories and the faster ascending regression weights after around age 5. Again by
comparison with a FLM based on the CVRPEs, 0.0005 for FMR and 0.0017 for FLM, we observed a
substantial reduction of 70%.

4. CONCLUDING REMARKS

In this paper, we investigated a new type of functional regression models, FMR, that relate a scalar re-
sponse to an infinite-dimensional predictor process through possibly different regression structures. The
proposed FMR is particularly useful when the use of a single regression structure for modeling all sub-
jects is inadequate. The need for this modeling approach was demonstrated through 2 real data examples
as well as simulation studies that can be found in the online Appendix. Utilizing FPCA as a means for
regularization caused by the infinite-dimensional nature of the predictor process, we developed a simple
and yet flexible framework that is similar to classical mixture regression with a set of uncorrelated FPC
scores as predictors. The estimation procedures can be easily implemented with existing softwares for
FPCA and mixture regression. Lastly, we note that the proposed modeling framework can be immediately
extended to nonnormal mixture settings and/or to other nonlinear link functions.
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ACKNOWLEDGMENTS

The authors are grateful to the reviewer and the associate editor for many helpful and constructive com-
ments, which led to a significantly improved version of the pa@enflict of InterestNone declared.

FUNDING

Discovery Grant from the Natural Sciences and Engineering Research Council of Canada to F.Y., Y.F,;
National Science Foundation (0707037 and 1007520) to T.C.M.L.

REFERENCES
CAl, T. AND HALL, P. (2006). Prediction in functional linear regressiohe Annals of Statistic34, 2159-2179.

CARDOT, H., FERRATY, F. AND SARDA, P. (1999). Functional linear mod@tatistics and Probability Letters5,
11-22.

CARDOT, H., FERRATY, F. AND SARDA, P. (2003). Spline estimators for the functional linear mo&ghtistica
Sinical3, 571-591.

CAREY, J. R., LEDO, P., MULLER, H. G., WANG, J. L. AND CHIOU, J. M. (1998). Relationship of age patterns
of fecundity to mortality, longevity, and lifetime reproduction in a large, cohort of mediterranean fruit fly females.
Journal of Gerontology: Biological Sciences and Medical Scies&8245-251.

CASTRO, P. E., LawTON, W. H. AND SYLVESTRE, E. A. (1986). Principal modes of variation for processes with
continuous sample curveBechnometric8, 329-337.

DESARBO, W. AND CRON, W. (1988). A maximum likelihood methodology for clusterwise linear regression.
Journal of Classificatiord, 249-282.


http://biostatistics.oxfordjournals.org

352 F. YAO AND OTHERS

Fan, J., Yao, Q. W. AND CAl, Z. W. (2003). Adaptive varying-coefficient linear modelsurnal of the Royal
Statistical Society, Series@b, 57—-80.

FAN, J.AND ZHANG, J. T. (2000). Two-step estimation of functional linear models with applications to longitudinal
data.Journal of the Royal Statistical Society, Serie62B3303—-322.

FRALEY, C. AND RAFTERY, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation.
Journal of the American Statistical Associatidn 611-631.

GAFFNEY, S. AND SMYTH, P. (2003). Curve clustering with random effects regression mixtures. In: Bishop, C.
and Frey, B. (editors)Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics
Key West, FL.

GASSER T., KOHLER, W., MULLER, H. G., KNEIP, A., LARGO, R., MOLINARI, L. AND PRADER, A.
(1984). Velocity and acceleration of height growth using kernel estima#iomals of Human Biologyl1,
397-411.

HALL, P.AND HOROWITZ, J. L. (2007). Methodology and convergence rates for functional linear regre$sien.
Annals of Statistic85, 70-91.

HENNIG, C. (2000). Identifiability of models for clusterwise linear regressiournal of Classificatiorl7, 273-296.

JAMES, L. F., PRIEBE, C. E.AND MARCHETTE, D. J. (2001). Consistent estimation of mixture complexitye
Annals of Statistic®9, 1281-1296.

JAMES, G. AND SUGAR, C. A. (2003). Clustering for sparsely sampled functional datarnal of the Royal
Statistical Society, Series®8, 397-408.

JIANG, W. AND TANNER, M. A. (1999). Hierarchical mixtures-of-experts for exponential family regression models:
approximation and maximum likelihood estimati@mnals of Statistic27, 987-1011.

LuAN, Y. H. AND L1, H. Z. (2003). Clustering of temporal gene expression data using a mixed-effects model with
b-splinesBioinformatics19, 474—-482.

MORRIS, J. S., \ANNUCCI, M., BROWN, P. J.AND CARROLL, R. J. (2003). Wavelet-based nonparametric model-
ing of hierarchical functions in colon carcinogenesis (with discussitm)cnal of the American Statistical Asso-
ciation 98, 573-594.

MULLER, H. G.AND STADTMULLER, U. (2005). Generalized functional linear moddlke Annals of Statistic33,
774-805.

MULLER, H. G. AND ZHANG, Y. (2005). Time-varying functional regression for predicting remaining lifetime
distributions from longitudinal trajectorieBiometrics61, 1064—1075.

PARTRIDGE, L. AND HARVEY, P. H. (1985). Evolutionary biology: cost of reproductidfature316, 20—21.

RAMSAY, J. O., Bock, R. D. AND GASSER T. (1995). Comparisons of heights acceleration curves in the Fels,
Zurich and Berkeley growth datAnnals of Human Biolog22, 413-426.

RAMSAY, J. O.AND SILVERMAN, B. W. (2005).Functional Data Analysis2nd edition. New York: Springer.

RICE, J.AND SILVERMAN, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the
data are curveslournal of the Royal Statistical Society, Serie§3233—-243.

TUDDENHAM, R. D.AND SNYDER, M. M. (1954). Physical growth study of California boys and girls from birth to
eighteen yeardJniversity of California Publications in Child Developmeht183-364.

WEDEL, M. AND DESARBO, W. (1995). A mixture likelihood approach for generalized linear modkdarnal of
Classification12, 21-55.

WESTENDORR R. G. J.AND KIRKWOOD, T. B. L. (1999). Human longevity at the cost of reproductive success.
Nature396, 743-746.



Functional mixture regression 353

YAO, F.AND LEE, T. C. M. (2006). Penalized spline models for functional principal component analgsisal
of the Royal Statistical Society, Serie68 3—-25.

YAo, F., MULLER, H. G. AND WANG, J. L. (2005). Functional data analysis for sparse longitudinal datanal
of the American Statistical Associati@00, 577-590.

[Received June 17, 2010; revised September 20, 2010; accepted for publication Septemberi21, 2010



Biostatisticy2010),?, ?, pp.1-17

doi:10.1093/biostatistics/??7?

Supplementary material to functional mixture regression

FANG YAO*

Department of Statistics,

University of Toronto, Toronto, Ontario M5S 3G3, Canada

fyao@utstat.toronto.edu

YUEJIAO FU
Department of Mathematics and Statistics,
York University, Toronto, Ontario M3J 1P3, Canada.
THOMAS C. M. LEE

Department of Statistics,

University of California, Davis, California 95616, U.S.A.

1. SMULATION STUDIES

We conducted simulation studies in two scenarios to ilatstthe empirical performance
of the functional mixture regression (FMR) model in term$oth estimation and pre-
diction. We simulated 500 Monte Carlo runs in both scenagash run consisting of a
collection ofn = 200 predictor trajectories; and associated scalar responsgthat

serve as théraining samplefor estimation. In addition, for each run, we further gen-
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erated anothe?00 pairs of (X;,Y;) that constitute thevalidation samplewhich will
be used towards the end of this section for assessing thecfiwegower of FMR. All
these trajectories were generated with a mean fungtion= ¢ + sin (¢), 0 < ¢ < 10,
and a covariance function derived from two eigenfunctiangt) = sin (7t/10)/v/5
and¢,(t) = sin (27t/10)/+/5, associated with eigenvalugs = 4, A\, = 1 as well as
A = 0 for m > 3. Note that these two eigenfunctions in fact resemble thpeshaf
the estimated ones in Medfly example. The predictor FPC s@me£;,, ~ N (0, \,,),
m = 1,2. The measurement erref; [(2.9) in the paper] are i.i.dN(0,02), where
two noise levels of the predictor process were considere@mnoonstrate the influence,
o, = 0.1 and0.3. Each predictor trajectory was sampled at locations thae wai-
formly distributed over the domai®, 10]. The number of measurements was indepen-
dently chosen for each trajectory, by selecting a numben frt00, . . ., 150} with equal
probability.

In Scenario 1 the response was generated from a single segrdanction,5(t) =
¢1(t) + ¢o(t) for ¢ € [0,10], with an i.i.d. additive noise; , distributed asV (0, o)) for
all subjects. We also included two noise levels of the resppr, = 0.2 and0.6. In
Scenario 2, the response was simulated from two distincessgn functionsy; (t) =
d1(t) + ¢o(t) for the first 100 subjects ands (t) = ¢1(t) — ¢o(t) for the rest, and
again was contaminated with an i.i.d. additivg0, o7) noisee; ,, whereo, = 0.2 and
o, = 0.6 were considered. The proposed FMR was estimated as desanilsection
2.3, including automatic choices of various smoothing peai@rs, the number of FPCs
of the predictor processes truncated by the threshold of &%gerall variation, and the
numbers of regression functions chosen by BIC in mixturadjttlt is worth mentioning

that M = 2 was correctly specified in most Monte Carlo runs for each.case
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We first examine model estimation using the training samphetuding the regres-
sion coefficients as well as the choiceléf The benchmark we compared with is the
ideal case of fitting the FMR [(2.4) in the paper] using thetRPC scores;,,,. From
Tables 1 and 2, one can see that, for identifying the numbeggression function&’,
the proposed FMR methodology is nearly as good as the ideagfitvhere the worst
case is 486/500 (97.2%) in the case with the larger noise edigior process in Sce-
nario 2. These results also provide evidence for the carsigtof regression coefficient
estimates.

It is of more interest to inspect the predictive ability oEtRMR when comparing
with the classical functional linear models (FLM). Recdlat, for each run, we have
generated a validation sample of size= 200, and here we use them to calculate the
relative prediction error (RPE), defined as RPES." | (Y — Y;*)2/ 3.7, Y;*2, where
Y;* is the response of th#h new subject in the validation sample a}Ajtiis its predicted
value. These predicted values were obtained as followst ffie FPC scores;,, of the
new subjects were calculated by applying the integral agr$(2.10) in the paper] to
the new noisy predictor trajectoriés;. Then these FPC scores were fed into the fitted
FMRs and FLMs repectively to calculate the predicted valudere the parameters of
such fitted FMRs and FLMs were estimated from the trainingm@anit is noticed that
the responsé’* were used to determine which cluster the subjects belong EMR.
From the Monte Carlo estimates of the RPEs listed in TableeSsee that the FMR
achieves dramatic gains ranging from 83% to 91% in Scenarndh suggests that the
FMR can definitely be a viable alternative when the FLM is mi#@uate. For Scenario 1,
comparable results were obtained for FMR and FLM. This wageted as the true value

for K = 1 was correctly specified by FMR in most runs. These compasisateed
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provide strong evidence for the need of the proposed FMR vehsimgle regression
function is not sufficient to characterize the underlyintatienship. Also reported in
Table 3 are, for Scenario 2, the FMR predictive classificatates for the validation
samples that correspond to those runs vidtiorrectly specified as 2. As expected, they

are affected by the noise levels of the predictor processespbnse.

2. THEORETICAL RESULTS

We state in this section the theoretical results on the stersty of the proposed func-
tional mixture regression (FMR) in terms of model estimatod prediction, along with
a brief and intuitive outline of the technical arguments. fik&t need to appropriately
guantify the discrepancy between the true and estimatexdi€unal principal component
(FPC) scores, i.e&,;, andé,,,. Besides needing a large number of subjects, it is also re-
quired that the measurements sampled from each subjectficgemtly dense. Then the
FPC scores can be satisfactorily estimated by the integmbaimationé{m [(2.10) in
the paper]. Since the PACE estimaf§§ [(2.11) in the paper] can be considered equiv-
alent to¢!  in the dense case (Milller, 2005), we shall focus on the rategtimates for
theoretical developments and suppress the supersétiptiienever appropriate.

Write &, = (&, ..., &) T and€; = (€, ..., &)Y, whereM is the number of FPCs
used for approximation. We cak, = (£,,...,£,)7 the “estimated” design matrix.
Given the estimated FPC scores, any estimate of the parametgr[defined prior to

(2.6) in the paper] would in fact be calculated from the ‘@stied” log-likelihood

(Y y, Xe) = Zz Py, € Zlogfyz|€z,1/)) (2.1)
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instead of the “true” log-likelihood

(Y, Xe) = leyz, Zlogf vil€:, ).

wheref(y;|€;, ) is defined in (2.7) in the paper. Although the consistencyhefilax-
imum Likelihood Estimation (MLE) ot/ obtained by maximizing the “true” likelihood
is applicable to standard mixture regression (Jiang anddrai999), to the best of our
knowledge, there is no existing theory for estimation ot#diby maximizing the “esti-
mated” likelihood (2.1). For clarity we denote such an eatierag) and call it MLEED,
short for MLE based on the Estimated Design maf?@( A general theorem concern-
ing the consistency of such MLEED has been established i2@b0) and is stated in
Lemma 3 of Section 4.

We shall consider the case of normal random component arateldre density func-
tion of a standard normal by(-). Coupling Lemmas 1-3 in Section 4, together with mild
regularity conditions listed in Section 3, we have the fwilog theorem. Recall thab
is the parameter space afity;|&;, bro, bx, a,ﬁy) is thekth conditional density, defined in

(2.6) and (2.7) in the paper, respectively.

Theorem 1 Suppose that the assumptions (Al)-(A4) hold with thle conditional
density f (:|€;, bro, b, 07,) = ©{(yi — bro — & bi)/owy}, k = 1,..., K, and that the
true valuey, is an interior point of the parameter spageThen, for any compact set
E C © containing some neighborhood of the true vaiiig there exists a sequence
of estimatea) = 1/;n maximizing the estimated likelihood functidg(+; y, )?5) onF,
such thatp —- ;.

Our estimates aim for the regression parameter functipngt) = Z%Zl e O (1)
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km?

[(2.5) in the paper]k = 1,..., K. Letb\), 5, (t) and EO) (Y| X;, M,i € C;) [(2.4)
in the paper] be the quantities evaluated at the true valygsy,, and¢&;,,. That is,

06 = XM 00 6 (1) and EO(Y;] X,, M,i € Cy) = by + S0 b))

m

&im» Where
teT7,k=1,....,K,i =1,...,n. Then we can obtain consistent estimation and

prediction both individually and on average.

Theorem 2 If the assumptions in Theorem 1 hold, for any compact/set © con-
taining some neighborhood gf,, Iettingﬁk,M(t) andE(Yi|Xi, M, i € Cy) be the quan-
tities evaluated ab,,, &, and that maximized,, (v;y, X¢) on E, i.e., B (t) =
ST bk (1) @NA E(Y;| X5, M i € Cr) = bro + SN brmEim, then

sup Brae(t) = B ()] =0, for k=1,--- K, (2.2)
te

R
- > {E(Yi|X:, M,i € C) — EOYi|X;, M,i€C)} -5 0. (2.4)
i=1

Remark. In principle, the consistency of MLEER as well as the predictions can
be extended to FMR model with other conditional densifi@g|&;, bxo, bk, 07,) and/or
with suitable nonlinear link functiong(by, + &; b;), provided that the conditions in

Lemma 3 and other necessary regularity conditions arel@afil

3. TECHNICAL ASSUMPTIONS

Necessary assumptions are listed below. Briefly, theserg#gans concern the number
and density of measurements per trajectory, the underbtimchastic procesk (¢) and
the noise process(¢) that generates the observed repeated measurehigifi¢g8.9) in

the paper], as well as various smoothing parameters anélerrctions. Let = b(n),
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h = h(n) andh* = h*(n) denote the bandwidths for estimating26), G (27) ands.,
(2) in Yao, Muller and Wang (2005).

(A1) b — 0, h* — 0, h — 0, nb®* — oo, nh*?> — oo, nh* — oo, nb® < oo,

nh*® < 0o, nh® < 0o, asn — oo,

Denote the sorted time points across all subjectg,as t1) < ... < t,) < bo,
andA = max{ty) —tg_1) : k=1,...,N + 1}, whereN,, = >~ n;, T = [ao, bo),
to) = ao, andty41) = bo. For theith subject, suppose that the time poihjshave been
ordered non-decreasingly. L&, = max{t;; —¢;;_1 : j = 1,...,n; + 1} andA* =
max{A; : i = 1,...,n}, wheret;y = ag andt; ,,+1 = by, andn = n=*Y_"  n;. To
obtain consistent FPC score estimates, we require botlotilegbhdata across all subjects
and the data from each subject to be dense in the time domdtor convenience, we

study the asymptotics in the mannerof- co asn — oo, and assume that

(A2) A = O(min{n= Y2~ n=2p 1 Y41} max{n; :i =1,...,n} <

Cn for someC > 0, andA* = O(1/n), asn — oc.

Denote byU;(t) Hi.d. U(t) the distribution that generaté§; for theith subject at;;.
The predictor proces¥ and measuremet are assumed to satisfy the following con-

ditions.
(A3) E(|IX"||%) < oo, E([[X"||%,) = o), super E[U*(t)] < co.

Recall that smoothing kernels; and K, are compactly supported densities with zero
means and finite variances. The Fourier transformations;ofnd K, are denoted by
k1(t) = [e ™K (u)du and ky(t,s) = [ e ) [y (u, v)du dv respectively. We

require
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(A4) [|r1(t)]dt < oo, [ [|ra(t,s)|dtds < oo, i.e., ki(t) andrs(t, s) are both

absolutely integrable.

Let g; (u; t) denote the density function éf(¢), andgs(uy, us; t1, t2) denote the density
of (U(t1), U(t2)). Itis assumed throughout that these density functionsfgatppropri-

ate regularity conditions.

4. AUXILIARY LEMMAS

Denote the true and estimated covariance operatoG Iaynd@’ generated by~ and
G respectively; i.e.G(f) = [, G( s)ds andG(f) = [, G( s)ds for any
f € L*(T). Define

Dy = [[{G(s,t) — G(s,)}2dsdt]"/?, G = Minyjam(A; — Ajy1)
M*=inf{j > 1:\; — X\j;1 <2Dx} —1, Tm = 1/ A 4+ 1/6p.

' (4.1)

Lemma 1 Under (Al)-(A4) and appropriate regularity conditions fi@nsity functions

g1 (U, t) andgg(ul, U2; tl, tg),

sup i(t) — p(t)] = O sup |G(s, 1) — G(s,1)] = Op(—

1
T =) ’ 9 T =19/ 42
teT \/ﬁb) steT P \/ﬁh2) (4.2)

and as a consequeneg, — o2 = O,(n~'/2h=2 + n~1/2p*~"). Considering eigenvalues

A\ Of multiplicity one, é,, can be chosen such that,= 1,..., M*,

~ ~ T
P Am — Am| < Dx) =1, m(t) — om(t)| = O)(—=), (4.3
(1§£§M| | x) igglcb (t) — om(D)] ”(\/ﬁh2) (4.3)

whereDy, m,,, andM* are defined in (4.1).
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The next lemma provides upper bounds for the estimatiorrserfgn — &im| With

some specific structure, and the derivation can be founduhdviand Yao (2008). Let

| flloo = sup,e4 | f(t)| for an arbitrary functiory with supportA, | g|| = ,/fA g2(t)dt
foranyg € L*(A), and define

05 = | X + ol | Xi XA + 3, Zin) = supyer [dm(t) — dm(t)],

0% = 1+ || pmdl, [loo A, 25 = supyer |it) — p(t)],

05 = call Xilloo + cs| Xllloo + e, 28 = @]l (4.4)
0h) = | > ig €ijbm(tig) (tij — tij—1)l, ZW =1,

o) = > ity leij|(tiy — tij-1), A=A

for some positive constants, . . . , ¢ that do not depend oior m. We note that the sub-
scripts are mainly for notational convenience and do noessarily reflect dependence
on these indices. More importantly, we emphasize&jﬁéare i.i.d.over (¢ =1,3,4,5)

or nonrandom that is freé (¢ = 2), and that thez!" do not depend on for all

¢=1,2,3,4,5.

Lemma 2 For integral estimates of the FPC scofﬁ;gin (2.10) of the paper,
5
gzm| ZOM?LZZ, m:]_) 7M*7 (45)
/=1

Where9§Q andZ\? are defined in (4.4), andi/* is defined in (4.1).

We aim for the consistency results for abWyand X', whereM andK are the numbers
of FPCs and distinct regression functions in the FMR model stte a useful theorem

proved in Yao (2010) as Lemma 3 regarding the consistendyed¥aximum Likelihood
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Estimation based on Estimated Design (MLEED), that can loevshapplicable to the
proposed FMR. For convenience, we first define some conditivett are required for
some relevant functions. A functidr(v, y, £) is said to satisfy the assumption (B1) at

1, € O, provided that the following holds.

(B1) There exist some functiongy, &, 1) andc(v) such that, for all possible

values ofy, ¢, ¢”, andy € Ny, , whereN,, is some neighborhood af

Hh<¢7 Y, 5//) - h(l/)a Y, 5/)" < g<y7 €/7 1/)>H€// - é/H + C(‘b)Hg/ - £/H27
andg(y, &, v¢) andc(v) satisfy

Sup E(wmAO){gz(}/’ £7¢)} < OO, Sup C(’L/)> < OO,
$ENy, PYENy,

wherev, andA, are the true values ap andA.

A function ¢(y, &, 1) is said to satisfy the set of assumptions (B2)atc ©, if the
conditions (B2.1)—(B2.3) below hold.

(B2.1) q(y, &, ) is upper semicontinuous i € Ny, for all (y, §);

(B2.2) There exists afunctiab(y, &) such thatt,, 1, D(y, &) < oo andq(y, &, ) <}

D(y, &) forall (y,£) andip € Ny, ;

(B2.3) Foriy € Ny, and sufficiently small: > 0, Sup g,y — ) <r} q(y, &) is

measurable iy, £).

In Lemma 3, letf(y|&, 1), b € O denote a general conditional density function with a

parameter spade that is a subset dR? for some positive integer [not restricted to the
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conditional density defined in (9) of Section 2.2], a&}cbe any sequence of estimates

of£,,i=1,...,n.Denotel(y;y, &) = log f(y|&, ).

Lemma 3 Suppose that the true valueg is an interior point of the parameter spage
Consider an arbitrary compact sétsatisfying/N,,, € £ C © and anyy) € E is an

interior point of©, whereN,, is some neighborhood af,. Assume that

(i) There exist someZ{ and Hf)n Whereeﬂ are either i.i.d. realizations of posi-
tive random variableg{’ or nonrandom constants with respect tavherej =

1,...,J, for some finite/,

g — &1l <> 2962 B{(09)*} <o,  ZD\E{(67)2} L 0;

Jj=1

(i) Foranyvy € E, (v;y, &) satisfies the assumptions (B1)atvith some functions

9(y, &, 1) andc(vp), whereg(y, &, ¢) satisfies the assumptions (B2)at
(iii) Foranyy € E, [(v;y, &) satisfies the assumptions (B2t

(iv) f(yl& v) = f(y|€ ¢") implies thatyy = ™ in a well-defined sense (identifiabil-
ity).

~

Then for any sequence of the maximizgrof I, (y;y, X¢) = S, 1(¥; v, ;) on
the compact set, i.e., the maximum likelihood estimates based on estimdésiyn

(MLEED), one has
% = Py,
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5. PROOFS OFMAIN THEOREMS

Proof of Theorem 1.We first verify the conditions (i)—(iv) in Lemma 3 for the FMR
model with the conditional density of tti¢h componeny (y;|€;, bro, bi, o7,) = ¢{ (yi—
bro — & by)/owy}, k= 1,..., K, wherep(u) = exp(—u?/2)/+/2r is the density func-
tion of standard normal. Given the expressionszfif and QZ(Q in (4.4), one notes that
92(2 are i.i.d. ornonrandomw.rt,/ =1,...,5,m = 1,..., M. With (A3), it is obvious
thatE{(Qi(Q)z} < oo for ¢ = 1,2,3. Due to the orthonormality of,, and the inde-
pendence among;’s, we haveE{(6{))2} = B30 cijm(tiy)(tiy — tij1)}?] =
var(3 0L, gidm(tiy) (tiy — tig—1)} = 02 3201, 0 (ti) (i — tij-1)? < 20°A" — 0. For
6 applying Cauchy-Schwartz inequaliy{ (6\*)2} < (>, B (tij—ti;1)}T gl
27202 < oo for largen. Combining with Lemmas 1 and 2, then condition (i) holds.
Since the parameter spaéedefined is an open subset BV +3)X-1 any € E is
always an interior point o®. It is easy to verify that condition (iii) holds for the con-
ditional densityf(y;|&,, ) with normal components, while condition (iv) is satisfied

given the identifiability in the sense of (2.8) in the paper.

Now we check condition (ii), and observe that

K
[(;y,€) =log { > mif (yI€, bro, br, oy)
k=1

1 (y — bro — £70)°
bro, by, 02.) = — . 5.1
f(y‘éu k0> Yk, aky) /_27T0'ky €xp { QUzy } ( )

For any fixed interior pointy, of ©, one can always assume that a sufficiently small

neighborhoodV,,, is bounded, and particularty < =, < 1 — § andoy, > 6 for some
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0>0,k=1,..., K. By Mean Value Theorem, one has, forc N, ,

l(tb;y,é”) — sy, &) = (0"1(ap;y,£)/08)(£" - &),
lapry. ) = S i1 TS (YIE” bro, by 02, (y — bro — €7 by )by /0,
65 id S TS (YIE, bro, br, Ohy)

Y

whereg* = ¢ +v(¢" — ¢') for some0 < v < 1. In spite of the complex appearance
of the above expression, one can see that it is in fastighted averagef (y — by —

&by by / o}, with weightsm. f (y|€*, buo, bi, 07,), k = 1,..., K. Therefore,

Mw

0
IIa—El(VJ); y €N <D Iy — bro — €7 br)by /a3, |

B
Il
—

{1Bry — brobi || + 1b&]1?[1€" + v &)}

P‘ﬂx

e

I

—_
)

<

Ty

by || {ly — bro| + L& €]} + { Z ||bk||

— 0' — O’ky

(. w) c(¥)Ig" = &'l

}Hﬁﬁ /

Mx

Il
o =

From the boundedness of the smalj, , it is easy to see thatip,,. v, c(y) < oo,
SUDyen,, Eyone){g?(Y,€,4)} < oo, and moreovey(y, &, ) satisfies the assump-
tions (B2) atvy,. Thus condition (ii) holds. The existence of a consistemjusace
1 € E thatare roots ofl,, (1; y, £) /8y = 0 follows for the conditional mixture normal

density (5.1).

Proof of Theorem 2 The uniform consistency Qtffk,M(t) w.rt. t € 7 is obvious
given Theorem 1 and Lemma 1. For individual prediction, rthm@(YAXi,M) —
B(Y;|X;, M)| < [bro—bo| +11bx—bil|- 1€ — &, and||€,— &[] < 0, S5, 276,
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) Lid. g

We have shown tha‘E{(@%’Y} < oo and Z4Y E{(efﬁ))2} 50, WhereGZ(
(considering i.i.d. random variables here without loss eherality),/ = 1,...,5,
m = 1,... M. We then arrive at the result (2.3) by observing the follayiar each
m and/. For anye > 0 ands > 0, we choosed > /2/(ed), i.e.,(A%0)~! < €/2, when

n is sufficiently large, and apply Chebyshev’s inquality:

P(200 - 500 > 5) < P (20 B( ) > 12) +p(f§QE—{§§f;‘} > Vi)
< E L <e
2 A 5

Noting that(1/n)||€, — &,]| < SN, 520 29 (1/n) 321, 619, then the consistency
of the average prediction (2.4) follows immediately frone taw of large numbers for

triangular arrays.

6. EM ALGORITHM FORMIXTURE REGRESSIONMODELS

For completeness we outline an EM algorithm for fitting mnettegression models. For
details, see, for example, Naik, Shi and Tsai (2007).

Consider the following mixture model witk” normal density components:

K
f(yi|€i7 'lb) = Zwk@(yimiv bro, by, UI%y)? i=1,...,n,
k=1

where0 < 7, < 1l and> m, = 1, @(yl\gz,bko,bk,ak ) is the normal density with
mean(byo + &; by) and variancer?,, andy = (b}, b}, ..., b, w", ol)7 is the vector

containing all relevant parameters. lsgt” be ther-th iterative estimate fogp. In the
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E-Step of the algorithm, one calculates

2(r
(r) - 7Tk Sp(yl|£zvbk()7 ;))

Tik = :
Zk 17Tk @(yl‘£z7bk07b y))

This quantity can be seen as thh estimated probability foy; originated from the:-th
component.
In the M-Step, thér + 1)-th estimates are calculated with the following closed¥for

expressionsr! " = n=1 S 717 and

(r+1) (T ~ (VN ~ (1
Do _ (v =1 ()T ~(r) 20r+1) 3/2) (/- lfé ))3/2)
- (Xk Xk ) X Yy Oky - (r) )
(r+1) F(W )
b, k

fork =1,..., K. In the above?,\” = diagry),...,77), X = w2 x,, g\ =
T rr(r v (r ST o (r)y—1 o ()T >
Wiy, B = XOXT X)X, Xe = (1, Xe), Xe = (€4,...,€,)7 and

y:(y17"'7yn)T
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Table 1.Section 3 Simulation Scenario 1. Monte Carlo estimatesgréssion coefficients (standard errors in paren-
theses) for 4 combinations of noise levels, calculated fiawse runs tha#{ = 1 were correctly specified. The first
integer in each case reports the number, out of 500 runs,réctly specified runs. In this scenario there is one single
regression function with true valués: = b12 = 1. The first row corresponds to the ideal fitting (IDEAL) whitet

second row corresponds to FMR.

Noises o = .1 o =.3
IDEAL 498 .9996 .9998 496 .9998 1.0002
oy =2 (.0073) (.0152) (.0049) (.0070)
FMR 495 9796 9975 494 9179 .9982
(.0493) (.0546) (.0798) (.0770)
IDEAL 497 1.0002 1.0004 496 1.0002 1.0009
oy = .6 (.0141) (.0206) (.0147) (.0216)
FMR 497 .9908 .9934 497 .9251 .9942

(.0861) (.0867) (.0835) (.0854)

Table 2.Similar to Table 1 but for Scenario 2. For this scenario theetrvalue forK = 2 and the regression

coefficients aréby 1, bio, ba1, ba2) = (1,1,1, —1).

Noises o = .1 s =.3
IDEAL 494 9998 .9999 .9999 -1.0007 495 .9998 1.0004 .999P999
oy =2 (.0111) (.0217) (.0110) (.0208) (.0067) (.0100) (.00720)1Q1)
FMR 494 9786 .9992 .9780 -1.0014 486 .9969 .8422 1.0114 -.8211
(.0519) (.0628) (.0531) (.0603) (.0832) (.0838) (.0827889)
IDEAL 493 1.0004 1.0008 1.0009 -1.0009 496 1.0009 .9988 @I1.0G.9980
o, =6 (.02189) (.0293) (.0235) (.0315) (.0222) (.0317) (.022%)310)
FMR 492 9922 9937 .9842 -1.0013 488 .9261 .9933 .9197 -.9979

(.0895) (.0880) (.0887) (.0922) (.0913) (.0954) (.0945)9563)
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Table 3.Monte Carlo estimates of the relative prediction errors ERlefined in Section 3 for 4 combinations of
noise levels. Also reported in the last row is the predictifessification rates (P. C. Rate) calculated for the validat

samples that correspond to those runs with= 2 correctly specified.
Noise levels{oz, oy}

Model Method {.1,.2} {.1,.6} {.3,.2} {.3,.6
Scenario | FLM .02448 .03408 .05764 .08152
(K=1) FMR .02447 .03408 .05764 .08152
Scenario Il FLM .23210 .34332 .37007 .39004
(K =2) FMR .0218 .03016 .04943 .06804

(P.C. Rate) (.8932) (.8951) (.8664) (.8448)
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1. SMULATION STUDIES

We conducted simulation studies in two scenarios to ilatstthe empirical performance
of the functional mixture regression (FMR) model in term$oth estimation and pre-
diction. We simulated 500 Monte Carlo runs in both scenagash run consisting of a
collection ofn = 200 predictor trajectories; and associated scalar responsgthat

serve as théraining samplefor estimation. In addition, for each run, we further gen-
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erated anothe?00 pairs of (X;,Y;) that constitute thevalidation samplewhich will
be used towards the end of this section for assessing thecfiwegower of FMR. All
these trajectories were generated with a mean fungtion= ¢ + sin (¢), 0 < ¢ < 10,
and a covariance function derived from two eigenfunctiangt) = sin (7t/10)/v/5
and¢,(t) = sin (27t/10)/+/5, associated with eigenvalugs = 4, A\, = 1 as well as
A = 0 for m > 3. Note that these two eigenfunctions in fact resemble thpeshaf
the estimated ones in Medfly example. The predictor FPC s@me£;,, ~ N (0, \,,),
m = 1,2. The measurement erref; [(2.9) in the paper] are i.i.dN(0,02), where
two noise levels of the predictor process were considere@mnoonstrate the influence,
o, = 0.1 and0.3. Each predictor trajectory was sampled at locations thae wai-
formly distributed over the domai®, 10]. The number of measurements was indepen-
dently chosen for each trajectory, by selecting a numben frt00, . . ., 150} with equal
probability.

In Scenario 1 the response was generated from a single segrdanction,5(t) =
¢1(t) + ¢o(t) for ¢ € [0,10], with an i.i.d. additive noise; , distributed asV (0, o)) for
all subjects. We also included two noise levels of the resppr, = 0.2 and0.6. In
Scenario 2, the response was simulated from two distincessgn functionsy; (t) =
d1(t) + ¢o(t) for the first 100 subjects ands (t) = ¢1(t) — ¢o(t) for the rest, and
again was contaminated with an i.i.d. additivg0, o7) noisee; ,, whereo, = 0.2 and
o, = 0.6 were considered. The proposed FMR was estimated as desanilsection
2.3, including automatic choices of various smoothing peai@rs, the number of FPCs
of the predictor processes truncated by the threshold of &%gerall variation, and the
numbers of regression functions chosen by BIC in mixturadjttlt is worth mentioning

that M = 2 was correctly specified in most Monte Carlo runs for each.case
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We first examine model estimation using the training samphetuding the regres-
sion coefficients as well as the choiceléf The benchmark we compared with is the
ideal case of fitting the FMR [(2.4) in the paper] using thetRPC scores;,,,. From
Tables 1 and 2, one can see that, for identifying the numbeggression function&’,
the proposed FMR methodology is nearly as good as the ideagfitvhere the worst
case is 486/500 (97.2%) in the case with the larger noise edigior process in Sce-
nario 2. These results also provide evidence for the carsigtof regression coefficient
estimates.

It is of more interest to inspect the predictive ability oEtRMR when comparing
with the classical functional linear models (FLM). Recdlat, for each run, we have
generated a validation sample of size= 200, and here we use them to calculate the
relative prediction error (RPE), defined as RPES." | (Y — Y;*)2/ 3.7, Y;*2, where
Y;* is the response of th#h new subject in the validation sample a}Ajtiis its predicted
value. These predicted values were obtained as followst ffie FPC scores;,, of the
new subjects were calculated by applying the integral agr$(2.10) in the paper] to
the new noisy predictor trajectoriés;. Then these FPC scores were fed into the fitted
FMRs and FLMs repectively to calculate the predicted valudere the parameters of
such fitted FMRs and FLMs were estimated from the trainingm@anit is noticed that
the responsé’* were used to determine which cluster the subjects belong EMR.
From the Monte Carlo estimates of the RPEs listed in TableeSsee that the FMR
achieves dramatic gains ranging from 83% to 91% in Scenarndh suggests that the
FMR can definitely be a viable alternative when the FLM is mi#@uate. For Scenario 1,
comparable results were obtained for FMR and FLM. This wageted as the true value

for K = 1 was correctly specified by FMR in most runs. These compasisateed
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provide strong evidence for the need of the proposed FMR vehsimgle regression
function is not sufficient to characterize the underlyintatienship. Also reported in
Table 3 are, for Scenario 2, the FMR predictive classificatates for the validation
samples that correspond to those runs vidtiorrectly specified as 2. As expected, they

are affected by the noise levels of the predictor processespbnse.

2. THEORETICAL RESULTS

We state in this section the theoretical results on the stersty of the proposed func-
tional mixture regression (FMR) in terms of model estimatod prediction, along with
a brief and intuitive outline of the technical arguments. fik&t need to appropriately
guantify the discrepancy between the true and estimatexdi€unal principal component
(FPC) scores, i.e&,;, andé,,,. Besides needing a large number of subjects, it is also re-
quired that the measurements sampled from each subjectficgemtly dense. Then the
FPC scores can be satisfactorily estimated by the integmbaimationé{m [(2.10) in
the paper]. Since the PACE estimaf§§ [(2.11) in the paper] can be considered equiv-
alent to¢!  in the dense case (Milller, 2005), we shall focus on the rategtimates for
theoretical developments and suppress the supersétiptiienever appropriate.

Write &, = (&, ..., &) T and€; = (€, ..., &)Y, whereM is the number of FPCs
used for approximation. We cak, = (£,,...,£,)7 the “estimated” design matrix.
Given the estimated FPC scores, any estimate of the parametgr[defined prior to

(2.6) in the paper] would in fact be calculated from the ‘@stied” log-likelihood

(Y y, Xe) = Zz Py, € Zlogfyz|€z,1/)) (2.1)
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instead of the “true” log-likelihood

(Y, Xe) = leyz, Zlogf vil€:, ).

wheref(y;|€;, ) is defined in (2.7) in the paper. Although the consistencyhefilax-
imum Likelihood Estimation (MLE) ot/ obtained by maximizing the “true” likelihood
is applicable to standard mixture regression (Jiang anddrai999), to the best of our
knowledge, there is no existing theory for estimation ot#diby maximizing the “esti-
mated” likelihood (2.1). For clarity we denote such an eatierag) and call it MLEED,
short for MLE based on the Estimated Design maf?@( A general theorem concern-
ing the consistency of such MLEED has been established i2@b0) and is stated in
Lemma 3 of Section 4.

We shall consider the case of normal random component arateldre density func-
tion of a standard normal by(-). Coupling Lemmas 1-3 in Section 4, together with mild
regularity conditions listed in Section 3, we have the fwilog theorem. Recall thab
is the parameter space afity;|&;, bro, bx, a,ﬁy) is thekth conditional density, defined in

(2.6) and (2.7) in the paper, respectively.

Theorem 1 Suppose that the assumptions (Al)-(A4) hold with thle conditional
density f (:|€;, bro, b, 07,) = ©{(yi — bro — & bi)/owy}, k = 1,..., K, and that the
true valuey, is an interior point of the parameter spageThen, for any compact set
E C © containing some neighborhood of the true vaiiig there exists a sequence
of estimatea) = 1/;n maximizing the estimated likelihood functidg(+; y, )?5) onF,
such thatp —- ;.

Our estimates aim for the regression parameter functipngt) = Z%Zl e O (1)
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km?

[(2.5) in the paper]k = 1,..., K. Letb\), 5, (t) and EO) (Y| X;, M,i € C;) [(2.4)
in the paper] be the quantities evaluated at the true valygsy,, and¢&;,,. That is,

06 = XM 00 6 (1) and EO(Y;] X,, M,i € Cy) = by + S0 b))

m

&im» Where
teT7,k=1,....,K,i =1,...,n. Then we can obtain consistent estimation and

prediction both individually and on average.

Theorem 2 If the assumptions in Theorem 1 hold, for any compact/set © con-
taining some neighborhood gf,, Iettingﬁk,M(t) andE(Yi|Xi, M, i € Cy) be the quan-
tities evaluated ab,,, &, and that maximized,, (v;y, X¢) on E, i.e., B (t) =
ST bk (1) @NA E(Y;| X5, M i € Cr) = bro + SN brmEim, then

sup Brae(t) = B ()] =0, for k=1,--- K, (2.2)
te

R
- > {E(Yi|X:, M,i € C) — EOYi|X;, M,i€C)} -5 0. (2.4)
i=1

Remark. In principle, the consistency of MLEER as well as the predictions can
be extended to FMR model with other conditional densifi@g|&;, bxo, bk, 07,) and/or
with suitable nonlinear link functiong(by, + &; b;), provided that the conditions in

Lemma 3 and other necessary regularity conditions arel@afil

3. TECHNICAL ASSUMPTIONS

Necessary assumptions are listed below. Briefly, theserg#gans concern the number
and density of measurements per trajectory, the underbtimchastic procesk (¢) and
the noise process(¢) that generates the observed repeated measurehigifi¢g8.9) in

the paper], as well as various smoothing parameters anélerrctions. Let = b(n),
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h = h(n) andh* = h*(n) denote the bandwidths for estimating26), G (27) ands.,
(2) in Yao, Muller and Wang (2005).

(A1) b — 0, h* — 0, h — 0, nb®* — oo, nh*?> — oo, nh* — oo, nb® < oo,

nh*® < 0o, nh® < 0o, asn — oo,

Denote the sorted time points across all subjectg,as t1) < ... < t,) < bo,
andA = max{ty) —tg_1) : k=1,...,N + 1}, whereN,, = >~ n;, T = [ao, bo),
to) = ao, andty41) = bo. For theith subject, suppose that the time poihjshave been
ordered non-decreasingly. L&, = max{t;; —¢;;_1 : j = 1,...,n; + 1} andA* =
max{A; : i = 1,...,n}, wheret;y = ag andt; ,,+1 = by, andn = n=*Y_"  n;. To
obtain consistent FPC score estimates, we require botlotilegbhdata across all subjects
and the data from each subject to be dense in the time domdtor convenience, we

study the asymptotics in the mannerof- co asn — oo, and assume that

(A2) A = O(min{n= Y2~ n=2p 1 Y41} max{n; :i =1,...,n} <

Cn for someC > 0, andA* = O(1/n), asn — oc.

Denote byU;(t) Hi.d. U(t) the distribution that generaté§; for theith subject at;;.
The predictor proces¥ and measuremet are assumed to satisfy the following con-

ditions.
(A3) E(|IX"||%) < oo, E([[X"||%,) = o), super E[U*(t)] < co.

Recall that smoothing kernels; and K, are compactly supported densities with zero
means and finite variances. The Fourier transformations;ofnd K, are denoted by
k1(t) = [e ™K (u)du and ky(t,s) = [ e ) [y (u, v)du dv respectively. We

require
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(A4) [|r1(t)]dt < oo, [ [|ra(t,s)|dtds < oo, i.e., ki(t) andrs(t, s) are both

absolutely integrable.

Let g; (u; t) denote the density function éf(¢), andgs(uy, us; t1, t2) denote the density
of (U(t1), U(t2)). Itis assumed throughout that these density functionsfgatppropri-

ate regularity conditions.

4. AUXILIARY LEMMAS

Denote the true and estimated covariance operatoG Iaynd@’ generated by~ and
G respectively; i.e.G(f) = [, G( s)ds andG(f) = [, G( s)ds for any
f € L*(T). Define

Dy = [[{G(s,t) — G(s,)}2dsdt]"/?, G = Minyjam(A; — Ajy1)
M*=inf{j > 1:\; — X\j;1 <2Dx} —1, Tm = 1/ A 4+ 1/6p.

' (4.1)

Lemma 1 Under (Al)-(A4) and appropriate regularity conditions fi@nsity functions

g1 (U, t) andgg(ul, U2; tl, tg),

sup i(t) — p(t)] = O sup |G(s, 1) — G(s,1)] = Op(—

1
T =) ’ 9 T =19/ 42
teT \/ﬁb) steT P \/ﬁh2) (4.2)

and as a consequeneg, — o2 = O,(n~'/2h=2 + n~1/2p*~"). Considering eigenvalues

A\ Of multiplicity one, é,, can be chosen such that,= 1,..., M*,

~ ~ T
P Am — Am| < Dx) =1, m(t) — om(t)| = O)(—=), (4.3
(1§£§M| | x) igglcb (t) — om(D)] ”(\/ﬁh2) (4.3)

whereDy, m,,, andM* are defined in (4.1).
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The next lemma provides upper bounds for the estimatiorrserfgn — &im| With

some specific structure, and the derivation can be founduhdviand Yao (2008). Let

| flloo = sup,e4 | f(t)| for an arbitrary functiory with supportA, | g|| = ,/fA g2(t)dt
foranyg € L*(A), and define

05 = | X + ol | Xi XA + 3, Zin) = supyer [dm(t) — dm(t)],

0% = 1+ || pmdl, [loo A, 25 = supyer |it) — p(t)],

05 = call Xilloo + cs| Xllloo + e, 28 = @]l (4.4)
0h) = | > ig €ijbm(tig) (tij — tij—1)l, ZW =1,

o) = > ity leij|(tiy — tij-1), A=A

for some positive constants, . . . , ¢ that do not depend oior m. We note that the sub-
scripts are mainly for notational convenience and do noessarily reflect dependence
on these indices. More importantly, we emphasize&jﬁéare i.i.d.over (¢ =1,3,4,5)

or nonrandom that is freé (¢ = 2), and that thez!" do not depend on for all

¢=1,2,3,4,5.

Lemma 2 For integral estimates of the FPC scofﬁ;gin (2.10) of the paper,
5
gzm| ZOM?LZZ, m:]_) 7M*7 (45)
/=1

Where9§Q andZ\? are defined in (4.4), andi/* is defined in (4.1).

We aim for the consistency results for abWyand X', whereM andK are the numbers
of FPCs and distinct regression functions in the FMR model stte a useful theorem

proved in Yao (2010) as Lemma 3 regarding the consistendyed¥aximum Likelihood
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Estimation based on Estimated Design (MLEED), that can loevshapplicable to the
proposed FMR. For convenience, we first define some conditivett are required for
some relevant functions. A functidr(v, y, £) is said to satisfy the assumption (B1) at

1, € O, provided that the following holds.

(B1) There exist some functiongy, &, 1) andc(v) such that, for all possible

values ofy, ¢, ¢”, andy € Ny, , whereN,, is some neighborhood af

Hh<¢7 Y, 5//) - h(l/)a Y, 5/)" < g<y7 €/7 1/)>H€// - é/H + C(‘b)Hg/ - £/H27
andg(y, &, v¢) andc(v) satisfy

Sup E(wmAO){gz(}/’ £7¢)} < OO, Sup C(’L/)> < OO,
$ENy, PYENy,

wherev, andA, are the true values ap andA.

A function ¢(y, &, 1) is said to satisfy the set of assumptions (B2)atc ©, if the
conditions (B2.1)—(B2.3) below hold.

(B2.1) q(y, &, ) is upper semicontinuous i € Ny, for all (y, §);

(B2.2) There exists afunctiab(y, &) such thatt,, 1, D(y, &) < oo andq(y, &, ) <}

D(y, &) forall (y,£) andip € Ny, ;

(B2.3) Foriy € Ny, and sufficiently small: > 0, Sup g,y — ) <r} q(y, &) is

measurable iy, £).

In Lemma 3, letf(y|&, 1), b € O denote a general conditional density function with a

parameter spade that is a subset dR? for some positive integer [not restricted to the
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conditional density defined in (9) of Section 2.2], a&}cbe any sequence of estimates

of£,,i=1,...,n.Denotel(y;y, &) = log f(y|&, ).

Lemma 3 Suppose that the true valueg is an interior point of the parameter spage
Consider an arbitrary compact sétsatisfying/N,,, € £ C © and anyy) € E is an

interior point of©, whereN,, is some neighborhood af,. Assume that

(i) There exist someZ{ and Hf)n Whereeﬂ are either i.i.d. realizations of posi-
tive random variableg{’ or nonrandom constants with respect tavherej =

1,...,J, for some finite/,

g — &1l <> 2962 B{(09)*} <o,  ZD\E{(67)2} L 0;

Jj=1

(i) Foranyvy € E, (v;y, &) satisfies the assumptions (B1)atvith some functions

9(y, &, 1) andc(vp), whereg(y, &, ¢) satisfies the assumptions (B2)at
(iii) Foranyy € E, [(v;y, &) satisfies the assumptions (B2t

(iv) f(yl& v) = f(y|€ ¢") implies thatyy = ™ in a well-defined sense (identifiabil-
ity).

~

Then for any sequence of the maximizgrof I, (y;y, X¢) = S, 1(¥; v, ;) on
the compact set, i.e., the maximum likelihood estimates based on estimdésiyn

(MLEED), one has
% = Py,
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5. PROOFS OFMAIN THEOREMS

Proof of Theorem 1.We first verify the conditions (i)—(iv) in Lemma 3 for the FMR
model with the conditional density of tti¢h componeny (y;|€;, bro, bi, o7,) = ¢{ (yi—
bro — & by)/owy}, k= 1,..., K, wherep(u) = exp(—u?/2)/+/2r is the density func-
tion of standard normal. Given the expressionszfif and QZ(Q in (4.4), one notes that
92(2 are i.i.d. ornonrandomw.rt,/ =1,...,5,m = 1,..., M. With (A3), it is obvious
thatE{(Qi(Q)z} < oo for ¢ = 1,2,3. Due to the orthonormality of,, and the inde-
pendence among;’s, we haveE{(6{))2} = B30 cijm(tiy)(tiy — tij1)}?] =
var(3 0L, gidm(tiy) (tiy — tig—1)} = 02 3201, 0 (ti) (i — tij-1)? < 20°A" — 0. For
6 applying Cauchy-Schwartz inequaliy{ (6\*)2} < (>, B (tij—ti;1)}T gl
27202 < oo for largen. Combining with Lemmas 1 and 2, then condition (i) holds.
Since the parameter spaéedefined is an open subset BV +3)X-1 any € E is
always an interior point o®. It is easy to verify that condition (iii) holds for the con-
ditional densityf(y;|&,, ) with normal components, while condition (iv) is satisfied

given the identifiability in the sense of (2.8) in the paper.

Now we check condition (ii), and observe that

K
[(;y,€) =log { > mif (yI€, bro, br, oy)
k=1

1 (y — bro — £70)°
bro, by, 02.) = — . 5.1
f(y‘éu k0> Yk, aky) /_27T0'ky €xp { QUzy } ( )

For any fixed interior pointy, of ©, one can always assume that a sufficiently small

neighborhoodV,,, is bounded, and particularty < =, < 1 — § andoy, > 6 for some
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0>0,k=1,..., K. By Mean Value Theorem, one has, forc N, ,

l(tb;y,é”) — sy, &) = (0"1(ap;y,£)/08)(£" - &),
lapry. ) = S i1 TS (YIE” bro, by 02, (y — bro — €7 by )by /0,
65 id S TS (YIE, bro, br, Ohy)

Y

whereg* = ¢ +v(¢" — ¢') for some0 < v < 1. In spite of the complex appearance
of the above expression, one can see that it is in fastighted averagef (y — by —

&by by / o}, with weightsm. f (y|€*, buo, bi, 07,), k = 1,..., K. Therefore,

Mw

0
IIa—El(VJ); y €N <D Iy — bro — €7 br)by /a3, |

B
Il
—

{1Bry — brobi || + 1b&]1?[1€" + v &)}

P‘ﬂx

e

I

—_
)

<

Ty

by || {ly — bro| + L& €]} + { Z ||bk||

— 0' — O’ky

(. w) c(¥)Ig" = &'l

}Hﬁﬁ /

Mx

Il
o =

From the boundedness of the smalj, , it is easy to see thatip,,. v, c(y) < oo,
SUDyen,, Eyone){g?(Y,€,4)} < oo, and moreovey(y, &, ) satisfies the assump-
tions (B2) atvy,. Thus condition (ii) holds. The existence of a consistemjusace
1 € E thatare roots ofl,, (1; y, £) /8y = 0 follows for the conditional mixture normal

density (5.1).

Proof of Theorem 2 The uniform consistency Qtffk,M(t) w.rt. t € 7 is obvious
given Theorem 1 and Lemma 1. For individual prediction, rthm@(YAXi,M) —
B(Y;|X;, M)| < [bro—bo| +11bx—bil|- 1€ — &, and||€,— &[] < 0, S5, 276,
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) Lid. g

We have shown tha‘E{(@%’Y} < oo and Z4Y E{(efﬁ))2} 50, WhereGZ(
(considering i.i.d. random variables here without loss eherality),/ = 1,...,5,
m = 1,... M. We then arrive at the result (2.3) by observing the follayiar each
m and/. For anye > 0 ands > 0, we choosed > /2/(ed), i.e.,(A%0)~! < €/2, when

n is sufficiently large, and apply Chebyshev’s inquality:

P(200 - 500 > 5) < P (20 B( ) > 12) +p(f§QE—{§§f;‘} > Vi)
< E L <e
2 A 5

Noting that(1/n)||€, — &,]| < SN, 520 29 (1/n) 321, 619, then the consistency
of the average prediction (2.4) follows immediately frone taw of large numbers for

triangular arrays.

6. EM ALGORITHM FORMIXTURE REGRESSIONMODELS

For completeness we outline an EM algorithm for fitting mnettegression models. For
details, see, for example, Naik, Shi and Tsai (2007).

Consider the following mixture model witk” normal density components:

K
f(yi|€i7 'lb) = Zwk@(yimiv bro, by, UI%y)? i=1,...,n,
k=1

where0 < 7, < 1l and> m, = 1, @(yl\gz,bko,bk,ak ) is the normal density with
mean(byo + &; by) and variancer?,, andy = (b}, b}, ..., b, w", ol)7 is the vector

containing all relevant parameters. lsgt” be ther-th iterative estimate fogp. In the
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E-Step of the algorithm, one calculates

2(r
(r) - 7Tk Sp(yl|£zvbk()7 ;))

Tik = :
Zk 17Tk @(yl‘£z7bk07b y))

This quantity can be seen as thh estimated probability foy; originated from the:-th
component.
In the M-Step, thér + 1)-th estimates are calculated with the following closed¥for

expressionsr! " = n=1 S 717 and

(r+1) (T ~ (VN ~ (1
Do _ (v =1 ()T ~(r) 20r+1) 3/2) (/- lfé ))3/2)
- (Xk Xk ) X Yy Oky - (r) )
(r+1) F(W )
b, k

fork =1,..., K. In the above?,\” = diagry),...,77), X = w2 x,, g\ =
T rr(r v (r ST o (r)y—1 o ()T >
Wiy, B = XOXT X)X, Xe = (1, Xe), Xe = (€4,...,€,)7 and

y:(y17"'7yn)T
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Table 1.Section 3 Simulation Scenario 1. Monte Carlo estimatesgréssion coefficients (standard errors in paren-
theses) for 4 combinations of noise levels, calculated fiawse runs tha#{ = 1 were correctly specified. The first
integer in each case reports the number, out of 500 runs,réctly specified runs. In this scenario there is one single
regression function with true valués: = b12 = 1. The first row corresponds to the ideal fitting (IDEAL) whitet

second row corresponds to FMR.

Noises o = .1 o =.3
IDEAL 498 .9996 .9998 496 .9998 1.0002
oy =2 (.0073) (.0152) (.0049) (.0070)
FMR 495 9796 9975 494 9179 .9982
(.0493) (.0546) (.0798) (.0770)
IDEAL 497 1.0002 1.0004 496 1.0002 1.0009
oy = .6 (.0141) (.0206) (.0147) (.0216)
FMR 497 .9908 .9934 497 .9251 .9942

(.0861) (.0867) (.0835) (.0854)

Table 2.Similar to Table 1 but for Scenario 2. For this scenario theetrvalue forK = 2 and the regression

coefficients aréby 1, bio, ba1, ba2) = (1,1,1, —1).

Noises o = .1 s =.3
IDEAL 494 9998 .9999 .9999 -1.0007 495 .9998 1.0004 .999P999
oy =2 (.0111) (.0217) (.0110) (.0208) (.0067) (.0100) (.00720)1Q1)
FMR 494 9786 .9992 .9780 -1.0014 486 .9969 .8422 1.0114 -.8211
(.0519) (.0628) (.0531) (.0603) (.0832) (.0838) (.0827889)
IDEAL 493 1.0004 1.0008 1.0009 -1.0009 496 1.0009 .9988 @I1.0G.9980
o, =6 (.02189) (.0293) (.0235) (.0315) (.0222) (.0317) (.022%)310)
FMR 492 9922 9937 .9842 -1.0013 488 .9261 .9933 .9197 -.9979

(.0895) (.0880) (.0887) (.0922) (.0913) (.0954) (.0945)9563)
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Table 3.Monte Carlo estimates of the relative prediction errors ERlefined in Section 3 for 4 combinations of
noise levels. Also reported in the last row is the predictifessification rates (P. C. Rate) calculated for the validat

samples that correspond to those runs with= 2 correctly specified.
Noise levels{oz, oy}

Model Method {.1,.2} {.1,.6} {.3,.2} {.3,.6
Scenario | FLM .02448 .03408 .05764 .08152
(K=1) FMR .02447 .03408 .05764 .08152
Scenario Il FLM .23210 .34332 .37007 .39004
(K =2) FMR .0218 .03016 .04943 .06804

(P.C. Rate) (.8932) (.8951) (.8664) (.8448)




	Introduction
	Functional mixture regression
	FLM and eigenbasis representation
	Model specification of functional mixture regression
	Model estimation and implementation

	Applications
	Longevity and early fertility of mediterranean flies
	Berkeley growth study

	Concluding remarks

