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SUMMARY

In functional linear models (FLMs), the relationship between the scalar response and the functional pre-
dictor process is often assumed to be identical for all subjects. Motivated by both practical and method-
ological considerations, we relax this assumption and propose a new class of functional regression models
that allow the regression structure to vary for different groups of subjects. By projecting the predictor pro-
cess onto its eigenspace, the new functional regression model is simplified to a framework that is similar
to classical mixture regression models. This leads to the proposed approach named as functional mixture
regression (FMR). The estimation of FMR can be readily carried out using existing software implemented
for functional principal component analysis and mixture regression. The practical necessity and perfor-
mance of FMR are illustrated through applications to a longevity analysis of female medflies and a human
growth study. Theoretical investigations concerning the consistent estimation and prediction properties of
FMR along with simulation experiments illustrating its empirical properties are presented in the supple-
mentary material available atBiostatisticsonline. Corresponding results demonstrate that the proposed
approach could potentially achieve substantial gains over traditional FLMs.

Keywords: Dimensional reduction; Eigenfunction; Functional data; Functional linear model; Functional principal
components; Mixture regression; Smoothing.

1. INTRODUCTION

Recently, there has been an increased interest in regression models for functional data. In the simplest
setting, the functional predictor and the scalar response are related by a linear operator. Given a scalar
responseY on R̃ and a smooth random predictor processX(∙) on a compact support̃T that is square
integrable

(
i.e.,

∫
T̃ X2(t)dt< ∞

)
, the classical functional linear model (FLM) relatesY andX by

E(Y|X) =
∫

T̃
β(t)X(t)dt, (1.1)
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where the regression parameter functionβ(∙) is also assumed to be smooth and square integrable. See
Ramsay and Silverman(2005) for a comprehensive introduction. For further theoretical studies on (1.1),
seeCardotand others(1999, 2003), Cai and Hall(2006) andHall and Horowitz(2007).

Driven by the needs of generalizing the basic linear relationship in (1.1), several extensions of the
above FLM have been proposed. This is similar to, for example, extending the classical linear regres-
sion models to generalized linear models. One of the early examples is generalized FLMs (Müller and
Stadtm̈uller, 2005), and other extensions include varying-coefficient functional models (Fan and Zhang,
2000; Fanand others, 2003) and wavelet-based functional models (Morris and others, 2003).

In line with these extensions and motivated by the fact that, due to some unknown reasons or unob-
served covariates, the subjects may belong to different mutually exclusive groups that possess different
mechanisms to produce the response, we propose a new class of functional regression models. Our ap-
proach achieves this goal by allowing individuals from different groups to have distinct regression func-
tions. To be specific, denote the unknown number of groups asK , and letβk(t) be the regression function
for thekth group,k = 1, . . . , K . Then, we propose the following model:

E(Y|X) =
∫

T
βk(t)X(t)dt if the subject belongs to thekth group. (1.2)

We shall first illustrate the utility of our proposal through an analysis of the biodemographic characteristics
of female medflies (Müller and Zhang, 2005). This study concerns the dependence of longevity on the
dynamics of the early fertility process and we shall show that our proposal sheds new light on various
important scientific issues. The second example, derived from the Berkeley growth study, considers the
regression of heights at maturity age on the childhood growth patterns. We shall illustrate how distinct
regression relations emerge and reveal the underlying gender groups, even when we were completely
blinded from gender information throughout the analysis. Our proposed method can also be potentially
useful in various medical applications, such as whenX(t) is a longitudinal biomarker andY is a disease
indicating variable; for example, glomerular filtration rate in kidney diseases and postload glucose in type
2 diabetes.

Extending the classical FLM (1.1)–(1.2) is parallel to extending the classical linear regression to mix-
ture regression (DeSarbo and Cron, 1988), thus termed as functional mixture regression (FMR). We em-
phasize that a main goal of FMR is to specify an appropriate functional model that is capable of identifying
potentially different regression structures. This general idea can readily be adopted to various applications
in which functional regression techniques are needed. We also remark that FMR is conceptually different
from existing approaches for curve-based clustering (Gaffney and Smyth, 2003; James and Sugar, 2003;
Luan and Li, 2003, among others). These latter methods focus on clustering the trajectories themselves,
while FMR focuses on detecting the possible existence of different regression relations.

The rest of this paper is organized as follows. In Section2, we provide a complete description of
FMR and demonstrate that its estimation can be achieved using existing software implemented for func-
tional principal component analysis (FPCA) and mixture regression. Applications of the proposed method
to the above-mentioned real examples are presented in Section3. Concluding remarks are offered in
Section4, while simulations illustrating the empirical performance and theoretical investigation on con-
sistent estimation and prediction are deferred to supplementary material available atBiostatisticsonline
for conciseness.

2. FUNCTIONAL MIXTURE REGRESSION

We begin with the classical FLM (1.1) and review a key methodology for dimension reduction and regu-
larization of functional data, namely, FPCA. For introductory material on FPCA, seeRice and Silverman
(1991), Jamesand others(2001), Ramsay and Silverman(2005), Yaoand others(2005), among others.
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2.1 FLM and eigenbasis representation

We begin with the classical FLM (1.1), where the regression functionβ(t) is the same for all subjects
under consideration. It is known that the functional linear operator in (1.1) is compact and not directly
invertible, and thus regularization is needed and can be achieved through a truncated basis representation.
In this article, we shall adopt the eigenbasis representation for reasons to be given below.

The processX with finite covariance possesses a sequence of orthonormal eigenfunctions{φm}m=1,2,...,
which form a complete basis of the functional space, with associated nonnegative and nondecreasing
eigenvalues{λm}m=1,2,.... By the well-known Karhunen–Lòeve expansion, the predictor processX admits

X(t) = μ(t)+
∞∑

m=1

ξmφm(t), whereξm =
∫

T
{X(t)− μ(t)}φm(t)dt. (2.1)

The random variablesξms are the functional principal component (FPC) scores ofX, which are uncorre-
lated and satisfyE(ξm) = 0 and var(ξm) = λm,

∑
m λm < ∞. The trajectoryXi is an i.i.d. realization of

X for thei th subject related to the responseYi , i = 1, . . . , n. Here, we highlight the following advantages
of (2.1) for regression regularization that will also be carried over to FMR. First, the eigenfunctions are
orthonormal in theL2 space and the FPC scores are uncorrelated random variables, which provide both
analytical and computational convenience. Second, the eigenbasis are determined by the data and will
efficiently capture the dominant modes of variation. The eigenvalues often decrease rapidly and thus the
infinite-dimensional predictor process can be well approximated by a small number of FPCs. This sug-
gests a simple way to achieve regularization by truncating eigenbasis based on the total variation explained
up to a threshold.

Recall that the regression parameter functionβ is square integrable and{φm}m=1,2,... form a complete
orthonormal basis, we haveβ(t) =

∑∞
m=1 bmφm(t), and hence model (1.1) can be expressed equivalently

as

E(Y|X) =
∫

T̃
β(t)μ(t)dt +

∫

T̃

{
∞∑

m=1

bmφm(t)

}{
∞∑

m=1

ξmφm(t)

}

dt

= b0 +
∞∑

m=1

bmξm, (2.2)

where the intercept isb0 and the coefficients are given bybm =
∫

T̃ β(t)φm(t)dt . One can see that the
orthonormality of the complete eigenbasis plays a critical role in transforming the functional regression
structure into a linear combination of the uncorrelated FPC scores that serve as predictor variables in (2.2).

2.2 Model specification of functional mixture regression

This section provides a complete mathematical formulation of FMR. Recall that FMR allows the predictor
trajectoriesXi to partition intoK mutually exclusive groups, with each group having its own regression
functionβk(t) for producing the responseYi . This idea was previously expressed by model (1.2) and it is
useful to rewrite it in a similar manner as (2.2). In this paper,K is unknown and will be chosen by some
statistical model selection criterion addressed later. WriteS̃ = {1, . . . , n} and define the index set

C̃k = {i ∈ S̃: the i th subject belongs to thekth group}, k = 1, . . . , K .

Thus,
⋃K

k=1 C̃k = S̃ andC̃(k1)
⋂

C̃(k2) = ∅ for 1 6 k1 6= k2 6 K . Write bk0 =
∫
T βk(t)μ(t)dt and

bkm =
∫
T βk(t)φm(t)dt. By analogy to (2.2), we have

βk(t) =
∞∑

m=1

bkmφm(t), t ∈ T , k = 1, . . . , K ,



344 F. YAO AND OTHERS

and the FMR model (1.2) can be written as

E(Yi |Xi , i ∈ C̃k) = bk0 +
∞∑

m=1

bkmξim. (2.3)

We note that in (2.3) the FPC scoresξim serve as the predictor variables and that the infinite-dimensional
feature is inherent to the functional data. The estimation of model (2.3) thus requires regularization for the
predictor processX, and we achieve this by truncating the infinite sum to a finite sum ofM terms. Since
often the eigenvalues ofX decrease to zero rapidly, it is reasonable to assume that an appropriateM can
always be chosen that leads to a flexible yet parsimonious model. A simple and practical strategy is to
examine the total variation explained up to certain thresholdτ , M = min

{
`:
∑`

m=1 λm/
∑∞

m=1 λm > τ
}
.

With this truncation, model (2.3) is refined,

E(Yi |Xi ,M, i ∈ C̃k) = bk0 +
M∑

m=1

bkmξim, (2.4)

as the underlying model and the regression parameter functions that we aim for are

βk,M (t) =
M∑

m=1

bkmφm(t) for all t ∈ T andk = 1, . . . , K . (2.5)

From (2.4), the FMR model is now reduced to a form similar to classical mixture of linear regression
models.

To complete the mathematical description of the FMR model (2.4) from which the statistical inference
is based on, letπk be the probability that a randomly selected subject is from thekth group and define
σ 2

ky = var(Yi |Xi ) if i ∈ C̃k. Write y = (y1, . . . , yn)
T , b0 = (b10, . . . , bK0)

T , bk = (bk1, . . . , bkM)
T ,πππ =

(π1, . . . , πK−1)
T , andσσσ 2

y = (σ 2
1y, . . . , σ

2
K y)

T . Denoteψψψ = (bT
0 , b

T
1 , . . . , b

T
K ,πππ

T ,σσσ T
y )

T , the parameter
space2 is then given by

2 ≡

{

ψψψ : πk > 0,
K∑

k=1

πk = 1, σ 2
ky > 0 for all k = 1, . . . , K

}

, (2.6)

which is an open subset of̃R(M+3)K−1. Further, writeξξξ i = (ξi 1, . . . , ξi M )
T for i = 1, . . . , n; these

vectorsξξξ i s of the FPC scores are i.i.d. realizations of a random vectorξξξ whose density isf (ξξξ |3) with
E(ξξξ) = 000 and cov(ξξξ, ξξξ) = diag{λ1, . . . , λM } ≡ 3. The conditional density ofY givenξξξ is

f (y|ξξξ,ψψψ) =
K∑

k=1

πk f (y|ξξξ, bk0, bk, σ
2
ky), (2.7)

where f (y|ξξξ, bk0, bk, σ
2
ky) is the conditional density for thekth component. In general, the component

density can be derived from a location-scale family (Hennig, 2000) or an exponential family (Wedel and
DeSarbo, 1995) that generates identifiable mixtures. This includes most commonly adopted distributions,
such as normal, gamma, exponential, Poisson, binomial, and multinomial. To emphasize the main idea of
coupling functional data, we focus on the mixture of linear regressions with normal errors. It is concep-
tually straightforward to extend our proposal to the mixture of generalized linear models with estimation
procedure modified accordingly. Note that the above formulation holds for model (2.4) and the depen-
dence onM is suppressed for.

Since theξξξ i s are random, (2.4) becomes a random design regression model. As to be described in
Section2.3, the matrix3 will be estimated in a way that is functionally independent ofψψψ , therefore, the
inference of (2.4) is completely based on the conditional densityf (y|ξξξ,ψψψ). As λ1 > ∙ ∙ ∙ > λM > 0 for
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any M , it is easy to see thatf (ξξξ |3) does not have all its mass in up toK of (M − 1)-dimensional linear
subspaces. This implies that the FMR model (2.4) is identifiable in the following sense (Hennig, 2000):
for any 2 parametersψψψ andψψψ∗ with a given predictor variableξξξ i , if

K∑

k=1

πk f (y|ξξξ i , bk0, bk, σ
2
ky) =

K ∗
∑

k=1

π∗
k f (y|ξξξ i , b

∗
k0, b

∗
k, σ

∗2
ky ) (2.8)

is true for all i and all possible values ofy, then K = K ∗ andψψψ = ψψψ∗ up to a permutation. It is
noteworthy that an attractive property of (2.4) is that its predictor variablesξims are uncorrelated, hence
devoid of collinearity.

It is important to note that the condition thatXi are i.i.d. processes does not exclude the possibility of
ξξξ i itself following a mixture distribution because the Karhunen–Loéve expansion (2.1) that FPC analysis
is based on only requires the existence of covariance function. The inference on the regression structure is
based on the conditional density (2.7) and does not depend on the distribution ofξξξ i . For instance, suppose
thatξξξ i s follow a mixture density. The regression structure does not necessarily vary across the groups of
subjects partitioned by the distribution ofξξξ i . In other words, the assignments of group membership for
an individual in FMR is determined merely by the relationship betweenXi andYi . Another noteworthy
remark is that, for the reason of detecting different regression structures, the mixing proportionπk is
assumed independent of the predictorXi , which is similar to classical mixture regression models. This is
distinct from the class of hierarchical mixture of experts arising from the neural network literature (Jiang
and Tanner, 1999), where it is common to assume that theπks depend on covariates to allow for flexible
approximation of the overall mean response function.

2.3 Model estimation and implementation

This subsection discusses approaches for estimating the unknowns in (2.4) and (2.5), which can be nat-
urally done in 2 stages. Briefly, in the first stage, we perform FPCA to obtain estimates forφm andξim,
while in the second stage, these estimates are plugged into (2.4) and (2.5) for the estimation of the re-
maining parameters.

In practice, the observed data are noisy measurementsUi j taken atti j ,

Ui j = Xi (ti j )+ εi j = μ(ti j )+
∞∑

m=1

ξimφm(ti j )+ εi j , ti j ∈ T , (2.9)

for i = 1, . . . , n and j = 1, . . . , ni . The measurement errorsεi j are assumed independent ofξim with
mean zero and a constant varianceEε2

i j = σ 2
x , while a nonconstant variance function could also be

assumed to account for heteroscedasity (Yao and Lee, 2006). We first apply the principal analysis by con-
ditional estimation (PACE) procedure ofYao and others(2005) to these noisy measurements to carry out
FPCA. When this is done, the following estimates of model components are obtained:μ̂, Ĝ, φ̂m, λ̂m,
ξ̂im, m = 1, . . . ,M . Here,M is the number of FPCs that can be chosen by pseudo-Akaike Information
Criterion or other related selectors or simply as the minimum number of FPCs that explain a sufficiently
large proportion of the total variation for the predictor process. We adopted the latter approach and found
that the 90% threshold works excellently for our numerical examples. In general, one may need to nav-
igate several choices of the threshold values to determine the model that provides an adequate fit with
parsimonious structure.

For conciseness, we refer toYaoand others(2005) for a complete description of the FPCA technique
used in this paper. Here, we only present the integral and PACE estimates of the FPC scoresξim with the



346 F. YAO AND OTHERS

notation introduced in Section2.1. The integral estimate is given by

ξ̂ I
im =

ni∑

j =2

(Ui j − μ̂(ti j ))φ̂m(ti j )(ti j − ti, j −1), (2.10)

which is motivated by the definition of the FPC scores as inner products; that is,ξim =
∫

T̃ {Xi (t) −
μ(t)}φm(t)dt. For the PACE estimates, writeμμμi = (μ(ti 1), . . . , μ(tini ))

T , Ui = (Ui 1, . . . ,Uini )
T , and

φφφim = (φm(ti 1), . . . , φm(tini ))
T , and let the( j, l )-th entry of theni × ni matrix 6Ui be (6Ui ) j,l =

G(ti j , til ) + σ 2
x δ j l with δ j l = 1 if j = l and 0 if j 6= l . Substituting estimates forμμμi , λm, φφφim, and6Ui ,

we have the PACE estimates

ξ̂ P
im = λ̂mφ̂φφ

T
im6̂

−1
Ui
(Ui − μ̂μμi ). (2.11)

It is widely known that when the design pointsti j are dense, the traditional integral estimates of the FPC
scoresξim, denoted bŷξ I

im and is given by (2.10) below, are usually satisfactory. By contrast, the PACE
estimateŝξ P

im as in (2.11) is more suitable when the design points are moderate or sparse. Corresponding
software is available athttp://www.utstat.toronto.edu/fyao.

Once the crucial estimatesξ̂ims of the FPC scores are obtained by either (2.10) or (2.11), the regression
coefficientsbkms in (2.4) can be estimated in a relatively straightforward manner: withξ̂im as the predictor
variables, thenbkms can be estimated by standard mixture regression estimation method (e.g., expectation
maximization-based method). The fitted FMR model and regression functions are then given by, fork =
1, . . . , K ,

Ê(Yi |Xi ,M) = b̂k0 +
M∑

m=1

b̂kmξ̂im, β̂k,M (t) =
M∑

m=1

b̂kmφ̂m(t) if i ∈ C̃k. (2.12)

Notice that the estimated FPC scoresξ̂im are unique up to a sign change related to the direction of the
estimated eigenfunctionŝφm(t). This property is also carried over to the estimated regression coefficients
b̂km. For the choice ofK , one could apply any well-studied model selection criterion, and we adopt the
Bayesian information criterion (BIC) that has provided good results in a variety of applications of model-
based clustering (e.g., seeFraley and Raftery, 2002, and references therein).

For conducting inference procedures on the regression function(s), we could exploit nonparametric
bootstrap methods with a suitable label-switching strategy for mixture regression to avoid nonidentifiabil-
ity of component labels. More specifically, we first resample all the individuals with replacement to obtain
a bootstrap sample,{(Ub

i 1, . . . ,U
b
ini
, yb

i ): i = 1, . . . , n}, b = 1, . . . , B, and perform the FPCA step, where

B is the number of bootstrap replicates. Then the estimated FPC scores{(ξ̂b
i 1, . . . , ξ̂i M b): i = 1, . . . , n}

are fed into a mixture regression model withK components, whereMb is chosen in FPCA using the same
criterion as for the original sample, andK is the number of mixture components selected for the original
sample. To correctly label the latent groups, we examine the distances from the estimated regression func-

tions of the bootstrap sample,β̂b
` (t) =

∑Mb

m=1 b̂b
`mφ̂

b
` (t), to those obtained from the original sample, that

is, β̂b
k = argmin{β̂b

` : `=1,...,K }

∫
T [β̂b

` (t) − β̂k(t)]2 dt for eachk = 1, . . . , K . We note that this bootstrap

procedure also provides evidence for model identifiability.
We have derived theoretical results in terms of consistency of model estimation and prediction for

FMR. In establishing such results, a first technical difficulty encountered is the fact that the estimates of
the regression functions in the FMR model (2.4) are based on the estimated FPC scoresξ̂im not on the
“true” ξim. Thus, existing theories of mixture regression models are no longer applicable. Another major
challenge is due to the lack of analytic expressions forb̂km. Therefore, customary theoretical arguments
previously used in FLMs cannot be applied. Due to space limitation, these technical contents such as the
relevant theorems, assumptions, auxiliary lemmas, and proofs to the supplementary material available at
Biostatisticsonline.

http://www.utstat.toronto.edu/fyao
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3. APPLICATIONS

3.1 Longevity and early fertility of mediterranean flies

To illustrate the need of the proposed approach, we analyze the egg-laying data from a fertility study
conducted for 1000 female medflies as described inCareyand others(1998). Our goal is to determine
the dependence of longevity of the medflies on their early fertility process. One of the basic questions
of evolutionary theory is to what extent lifespan is driven by enabling increased reproduction. Diverting
resources used for maintenance and repair into reproductive activity may shorten lifespan (Partridge and
Harvey, 1985; Westendorp and Kirkwood, 1999). The selected sample of 139 medflies includes those
that were fertile during an early life period defined by the first 20 days and also survived beyond. The
trajectories corresponding to the number of daily eggs during this early life period constitute the functional
predictors, while remaining lifetime serves as the response that is an important proxy for longevity and
quantifying the evolutionary fitness of individual flies. As a preprocessing step to achieve homogeneity, a
log-transform of egg counts was applied.

These predictor trajectories (obtained by applying the PACE algorithm in FPCA step) are shown in the
left panel of Figure1. Most egg-laying trajectories display a rise toward a time of peak fertility followed
by a decline. There is substantial variation in the steepness of the rise to the various maximal level of egg-
laying and also in the timing of the peak and the rate of decline. The smooth estimate of the mean fertility
function is also displayed, while the estimates of the first 2 eigenfunctions are shown in the right panel,
explaining 76.8% and 14.5% of the total variation of the trajectories, respectively. These eigenfunctions
reflect the modes of variation (Castroand others, 1986) and the dynamics of predictor processes. Two
components were chosen, and they account for more than 90% of the variation in the data, that is,τ = 0.9.

It is of interest to identify shape changes in early life reproductive trajectories that tend to influence
evolutionary longevity. To conduct an adequate analysis, we would inspect whether the regression rela-
tionship varies due to some unknown mechanism. It is noticed that there is no obvious grouping effect
in the predictor trajectories observed. This can be seen from the perspective of the estimated FPC scores
(right panel of Figure1) that are often viewed as subject-specific summaries. However, when the remain-
ing lifetimes are graphed versus the FPC scores in the right panel of Figure2, the lifespan seems driven
by the early fertility differently with considerably longer lifetimes for some flies whose predictor patterns
(in the left panel) might be similar. To verify this conjecture, we applied the FMR approach and unsurpris-
ingly 2 mutually exclusive groups with different regression structures were suggested by BIC(K = 2),

Fig. 1. Left: smoothed egg-laying trajectories (functional predictor) for the 139 included flies with the smooth estimate
of the mean function (thick solid curve). Middle: the first (solid) and second (dashed) estimated eigenfunctions
explaining 76.8% and 14.5% of the total variation, respectively. Right: the estimated FPC scores obtained by the
integral method (2.10) for the 139 flies.
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Fig. 2. Left: estimated FPC scores for the 139 flies with different markers (circles and crosses) used for representing
the 2 mutually exclusive groups with different regressions as detected by FMR. Right: responsesYi (remaining
lifetime in day) against estimated FPC scores for the 139 flies with corresponding group assignments.

Fig. 3. Top panels: estimated regression functionsβ̂1 (solid in top left) andβ̂2 (solid in top right) of the 2 groups
detected by FMR along with 95% bootstrap confidence bands (dashed). Bottom panels: predictor trajectories of the
flies (indicated by circles in the right panel of Figure2) that correspond tôβ1 (bottom left) and of the flies (indicated
by crosses) that correspond toβ̂2 (bottom right).

where different markers (circles and crosses) were used for enhanced visualization of such phenomenon
in the right panel of Figure2.

The estimates of regression functionsβ1 (solid) andβ2 (solid) serving as weighting functions shown
in the top panels of Figure3 indicate how the lifespan is influenced by the early fertility process, depend-
ing on which group a fly belongs to. We applied the nonparametric bootstrap procedure as described in
Section2.3 and constructed the 95% bootstrap confidence bands by taking 2.5th and 97.5th quantiles of
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1000 replicates shown in the same panels. This provides a measure of accuracy of our point estimation and
evidence for model identifiability as well. For illustration, we plotted again the predictor trajectories of
2 groups separately in bottom panels of Figure3, where the flies in the middle panel(n1 = 32) corre-
sponds toβ1 that have longer lifetimes (indicated by circles in the right panel of Figure2) and those in
the right panel(n2 = 107) to β2 those live shorter (indicated by crosses). Overall higher level of fertility
seems to shorten lifespan. More specifically, if a fly belongs to the group according toβ1, a slow rise to a
lower peak of egg production helps to prolong the lifespan. By contrast, the flies in the other group with
larger reproductivity around day 15 often have shorter lifetimes. These findings shed some new insight by
distinguishing distinct underlying mechanisms relating longevity and early fertility. This may help exper-
imenters look into evolutionary interpretation and implication of these mechanisms for different medflies.
We conclude this example by a comparison with a FLM, where the leave-one-subject-out cross-validated
relative prediction errors CVRPE=

∑n
i =1(Yi − Ŷ(−i )

i )2/
∑n

i =1 Y2
i were obtained for FMR as 0.163 and

for FLM as 0.372, indicating a substantial gain of 56% in prediction ability.

3.2 Berkeley growth study

Studies of human growth dynamics are an important topic in biological and medical applications that have
profound impact for many years. This example concerns the Berkeley growth data originally published
in Tuddenham and Snyder(1954) and analyzed byRamsayand others(1995) in terms of height acceler-
ation to reveal the dynamics of human growth. Similar data, for example, the Zurich growth data, were
also studied from this perspective using various smoothing approaches (Gasserand others, 1984, among
others). It is known that the growth patterns of boys and girls during their pubertal spurts differ signifi-
cantly in terms of magnitude and timing. Mainly for demonstration purpose, in this example, we study the
human growth from a different perspective by examining the dependence of the height at maturity age 18
(scalar response) on the dynamic pattern till age 9 (predictor process) before pubertal spurts (see Figure4).

Fig. 4. Left and middle: height trajectories from age 1 to 9 for 39 boys (left) and 54 girls (middle). Right: smooth
estimates of the first (solid) and second (dashed) eigenfunctions, accounting for 88.7% and 9.8% of total variation.
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The data analyzed consist of height records for 39 boys and 54 girls, where the measurements were taken
quarterly from ages 1 to 2, annually from 2 to 8, and semiannually from 8 till 18. It is worth mentioning
that, for illustration, we shall blind ourselves from the gender information throughout the analysis, that is,
the gender is an unknown or hidden factor that we expect the proposed approach is capable to detect.

We first carried out FPCA for the predictor process by pooling 93 trajectories together. Shown in the
right panel of Figure4 are the smooth estimates of the first 2 eigenfunctions account for 88.7% and 9.8%
of the total variation, respectively, where the first eigenfunction is in the direction of the overall trend
and the second shows a contrast between early and late times. The estimated FPC scores displayed in
the top left panel of Figure5 do not show a strong separation between boys and girls. However, when we
examined the plot of the responseYi against the estimated FPC scores in the top right panel, the separation
between boys and girls becomes more apparent (circles for boys and crosses for girls). This phenomenon
seems to suggest different regression relations for each gender.

The FMR approach indeed worked beautifully and led to 2 distinct groups based on BIC, that is,
K = 2. Moreover, the partition based on FMR results corresponds to the gender group as expected in
which only 1 boy and 2 girls were misclassified when we inspected the cross-validated classification.
The regression functions for boys and girls are displayed in the bottom panels of Figure5 along with
the 95% bootstrap confidence bands. Recall that the first eigenfunction is an overall shift. The common

Fig. 5. Top left: the estimated FPC scores obtained by the integral method (2.10) for boys (circles) and girls (crosses).
Top right: responsesYi (heights at maturity) against estimated FPC scores for boys (circles) and girls (crosses).
Bottom panels: estimated regression functions (solid) of 2 groups that correspond to boys (bottom left) and girls
(bottom right) along with 95% bootstrap confidence bands (dashed).
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increasing trends indicate more weights on the height measurements at later times. It is expected and also
confirmed by the data that boys are usually taller than girls at maturity due to the increasing patterns of
individual predictor trajectories and the faster ascending regression weights after around age 5. Again by
comparison with a FLM based on the CVRPEs, 0.0005 for FMR and 0.0017 for FLM, we observed a
substantial reduction of 70%.

4. CONCLUDING REMARKS

In this paper, we investigated a new type of functional regression models, FMR, that relate a scalar re-
sponse to an infinite-dimensional predictor process through possibly different regression structures. The
proposed FMR is particularly useful when the use of a single regression structure for modeling all sub-
jects is inadequate. The need for this modeling approach was demonstrated through 2 real data examples
as well as simulation studies that can be found in the online Appendix. Utilizing FPCA as a means for
regularization caused by the infinite-dimensional nature of the predictor process, we developed a simple
and yet flexible framework that is similar to classical mixture regression with a set of uncorrelated FPC
scores as predictors. The estimation procedures can be easily implemented with existing softwares for
FPCA and mixture regression. Lastly, we note that the proposed modeling framework can be immediately
extended to nonnormal mixture settings and/or to other nonlinear link functions.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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1. SIMULATION STUDIES

We conducted simulation studies in two scenarios to illustrate the empirical performance

of the functional mixture regression (FMR) model in terms ofboth estimation and pre-

diction. We simulated 500 Monte Carlo runs in both scenarios, each run consisting of a

collection ofn = 200 predictor trajectoriesXi and associated scalar responsesYi that

serve as thetraining samplefor estimation. In addition, for each run, we further gen-
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erated another200 pairs of (Xi, Yi) that constitute thevalidation sample, which will

be used towards the end of this section for assessing the predictive power of FMR. All

these trajectories were generated with a mean functionµ(t) = t + sin (t), 0 6 t 6 10,

and a covariance function derived from two eigenfunctions,φ1(t) = sin (πt/10)/
√

5

andφ2(t) = sin (2πt/10)/
√

5, associated with eigenvaluesλ1 = 4, λ2 = 1 as well as

λm = 0 for m > 3. Note that these two eigenfunctions in fact resemble the shapes of

the estimated ones in Medfly example. The predictor FPC scores areξim ∼ N (0, λm),

m = 1, 2. The measurement errorεij [(2.9) in the paper] are i.i.d.N(0, σ2
x), where

two noise levels of the predictor process were considered todemonstrate the influence,

σx = 0.1 and0.3. Each predictor trajectory was sampled at locations that were uni-

formly distributed over the domain[0, 10]. The number of measurements was indepen-

dently chosen for each trajectory, by selecting a number from {100, . . . , 150} with equal

probability.

In Scenario 1 the response was generated from a single regression function,β(t) =

φ1(t) + φ2(t) for t ∈ [0, 10], with an i.i.d. additive noiseǫi,y distributed asN(0, σ2
y) for

all subjects. We also included two noise levels of the response,σy = 0.2 and0.6. In

Scenario 2, the response was simulated from two distinct regression functions,β1(t) =

φ1(t) + φ2(t) for the first 100 subjects andβ2(t) = φ1(t) − φ2(t) for the rest, and

again was contaminated with an i.i.d. additiveN(0, σ2
y) noiseǫi,y, whereσy = 0.2 and

σy = 0.6 were considered. The proposed FMR was estimated as described in Section

2.3, including automatic choices of various smoothing parameters, the number of FPCs

of the predictor processes truncated by the threshold of 90%of overall variation, and the

numbers of regression functions chosen by BIC in mixture fitting. It is worth mentioning

thatM = 2 was correctly specified in most Monte Carlo runs for each case.
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We first examine model estimation using the training samples, including the regres-

sion coefficients as well as the choice ofK. The benchmark we compared with is the

ideal case of fitting the FMR [(2.4) in the paper] using the true FPC scoresξim. From

Tables 1 and 2, one can see that, for identifying the number ofregression functionsK,

the proposed FMR methodology is nearly as good as the ideal fitting, where the worst

case is 486/500 (97.2%) in the case with the larger noise on predictor process in Sce-

nario 2. These results also provide evidence for the consistency of regression coefficient

estimates.

It is of more interest to inspect the predictive ability of the FMR when comparing

with the classical functional linear models (FLM). Recall that, for each run, we have

generated a validation sample of sizen = 200, and here we use them to calculate the

relative prediction error (RPE), defined as RPE=
∑n

i=1(Y
∗
i − Ŷ ∗

i )2/
∑n

i=1 Y
∗ 2
i , where

Y ∗
i is the response of theith new subject in the validation sample andŶ ∗

i is its predicted

value. These predicted values were obtained as follows. First the FPC scoreŝξ∗im of the

new subjects were calculated by applying the integral approach [(2.10) in the paper] to

the new noisy predictor trajectoriesU∗
ij . Then these FPC scores were fed into the fitted

FMRs and FLMs repectively to calculate the predicted values, where the parameters of

such fitted FMRs and FLMs were estimated from the training sample. It is noticed that

the responseY ∗
i were used to determine which cluster the subjects belong to in FMR.

From the Monte Carlo estimates of the RPEs listed in Table 3, we see that the FMR

achieves dramatic gains ranging from 83% to 91% in Scenario 2, which suggests that the

FMR can definitely be a viable alternative when the FLM is not adequate. For Scenario 1,

comparable results were obtained for FMR and FLM. This was expected as the true value

for K = 1 was correctly specified by FMR in most runs. These comparisons indeed
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provide strong evidence for the need of the proposed FMR whena single regression

function is not sufficient to characterize the underlying relationship. Also reported in

Table 3 are, for Scenario 2, the FMR predictive classification rates for the validation

samples that correspond to those runs withK correctly specified as 2. As expected, they

are affected by the noise levels of the predictor process andresponse.

2. THEORETICAL RESULTS

We state in this section the theoretical results on the consistency of the proposed func-

tional mixture regression (FMR) in terms of model estimation and prediction, along with

a brief and intuitive outline of the technical arguments. Wefirst need to appropriately

quantify the discrepancy between the true and estimated functional principal component

(FPC) scores, i.e.,ξim andξ̂im. Besides needing a large number of subjects, it is also re-

quired that the measurements sampled from each subject are sufficiently dense. Then the

FPC scores can be satisfactorily estimated by the integral approximationξ̂Iim [(2.10) in

the paper]. Since the PACE estimatesξ̂Pim [(2.11) in the paper] can be considered equiv-

alent toξ̂Iim in the dense case (Müller, 2005), we shall focus on the integral estimates for

theoretical developments and suppress the superscript “I” whenever appropriate.

Writeξi = (ξi1, . . . , ξiM)T andξ̂i = (ξ̂i1, . . . , ξ̂iM)T , whereM is the number of FPCs

used for approximation. We call̂Xξ = (ξ̂1, . . . , ξ̂n)
T the “estimated” design matrix.

Given the estimated FPC scoresξ̂im, any estimate of the parameterψ [defined prior to

(2.6) in the paper] would in fact be calculated from the “estimated” log-likelihood

ln(ψ;y, X̂ξ) =

n∑

i=1

l(ψ; yi, ξ̂i) =

n∑

i=1

log f(yi|ξ̂i,ψ) (2.1)
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instead of the “true” log-likelihood

ln(ψ;y, Xξ) =

n∑

i=1

l(ψ; yi, ξi) =

n∑

i=1

log f(yi|ξi,ψ),

wheref(yi|ξi,ψ) is defined in (2.7) in the paper. Although the consistency of the Max-

imum Likelihood Estimation (MLE) ofψ obtained by maximizing the “true” likelihood

is applicable to standard mixture regression (Jiang and Tanner, 1999), to the best of our

knowledge, there is no existing theory for estimation obtained by maximizing the “esti-

mated” likelihood (2.1). For clarity we denote such an estimate asψ̂ and call it MLEED,

short for MLE based on the Estimated Design matrixX̂ξ. A general theorem concern-

ing the consistency of such MLEED has been established in Yao(2010) and is stated in

Lemma 3 of Section 4.

We shall consider the case of normal random component and denote the density func-

tion of a standard normal byϕ(·). Coupling Lemmas 1–3 in Section 4, together with mild

regularity conditions listed in Section 3, we have the following theorem. Recall thatΘ

is the parameter space andf(yi|ξi, bk0, bk, σ2
ky) is thekth conditional density, defined in

(2.6) and (2.7) in the paper, respectively.

Theorem 1 Suppose that the assumptions (A1)-(A4) hold with thekth conditional

densityf(yi|ξi, bk0, bk, σ2
ky) = ϕ{(yi − bk0 − ξTi bk)/σky}, k = 1, . . . , K, and that the

true valueψ0 is an interior point of the parameter spaceΘ. Then, for any compact set

E ⊆ Θ containing some neighborhood of the true valueψ0, there exists a sequence

of estimateŝψ ≡ ψ̂n maximizing the estimated likelihood functionln(ψ;y, X̂ξ) onE,

such that̂ψ
p−→ ψ0.

Our estimates aim for the regression parameter functionsβk,M(t) =
∑M

m=1 bkmφm(t)
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[(2.5) in the paper],k = 1, . . . , K. Let b(0)km, β(0)
k,M(t) andE(0)(Yi|Xi,M, i ∈ Ck) [(2.4)

in the paper] be the quantities evaluated at the true valuesψ0, φm and ξim. That is,

β
(0)
k,M(t) =

∑M
m=1 b

(0)
kmφm(t) andE(0)(Yi|Xi,M, i ∈ Ck) = b

(0)
k0 +

∑M
m=1 b

(0)
kmξim, where

t ∈ T , k = 1, . . . , K, i = 1, . . . , n. Then we can obtain consistent estimation and

prediction both individually and on average.

Theorem 2 If the assumptions in Theorem 1 hold, for any compact setE ⊆ Θ con-

taining some neighborhood ofψ0, letting β̂k,M(t) andÊ(Yi|Xi,M, i ∈ Ck) be the quan-

tities evaluated at̂φm, ξ̂im and ψ̂ that maximizesln(ψ;y, X̂ξ) on E, i.e., β̂k,M(t) =
∑M

m=1 b̂kmφ̂m(t) andÊ(Yi|Xi,M, i ∈ Ck) = b̂k0 +
∑M

m=1 b̂kmξ̂im, then

sup
t∈T

|β̂k,M(t) − β
(0)
k,M(t)| p−→ 0, for k = 1, · · · , K, (2.2)

Ê(Yi|Xi,M, i ∈ Ck) −E(0)(Yi|Xi,M, i ∈ Ck) p−→ 0, for i = 1, · · · , n, (2.3)

1

n

n∑

i=1

{
Ê(Yi|Xi,M, i ∈ Ck) − E(0)(Yi|Xi,M, i ∈ Ck)

} p−→ 0. (2.4)

Remark. In principle, the consistency of MLEED̂ψ as well as the predictions can

be extended to FMR model with other conditional densitiesf(yi|ξi, bk0, bk, σ2
ky) and/or

with suitable nonlinear link functionsg(bk0 + ξTi bk), provided that the conditions in

Lemma 3 and other necessary regularity conditions are fulfilled.

3. TECHNICAL ASSUMPTIONS

Necessary assumptions are listed below. Briefly, these assumptions concern the number

and density of measurements per trajectory, the underlyingstochastic processX(t) and

the noise processU(t) that generates the observed repeated measurementsUij [(2.9) in

the paper], as well as various smoothing parameters and kernel functions. Letb = b(n),
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h = h(n) andh∗ = h∗(n) denote the bandwidths for estimatingµ̂ (26), Ĝ (27) andσ̂x

(2) in Yao, Müller and Wang (2005).

(A1) b → 0, h∗ → 0, h → 0, nb2 → ∞, nh∗2 → ∞, nh4 → ∞, nb6 < ∞,

nh∗6 <∞, nh8 <∞, asn→ ∞,

Denote the sorted time points across all subjects asa0 6 t(1) 6 . . . 6 t(Nn) 6 b0,

and∆ = max{t(k) − t(k−1) : k = 1, . . . , N + 1}, whereNn =
∑n

i=1 ni, T = [a0, b0],

t(0) = a0, andt(N+1) = b0. For theith subject, suppose that the time pointstij have been

ordered non-decreasingly. Let∆i = max{tij − ti,j−1 : j = 1, . . . , ni + 1} and∆∗ =

max{∆i : i = 1, . . . , n}, whereti0 = a0 andti,ni+1 = b0, andn̄ = n−1
∑n

i=1 ni. To

obtain consistent FPC score estimates, we require both the pooled data across all subjects

and the data from each subject to be dense in the time domainT . For convenience, we

study the asymptotics in the manner ofn̄→ ∞ asn→ ∞, and assume that

(A2) ∆ = O(min{n−1/2b−1, n−1/2h∗−1, n−1/4h−1}), max{ni : i = 1, . . . , n} 6

Cn̄ for someC > 0, and∆∗ = O(1/n̄), asn→ ∞.

Denote byUi(t)
i.i.d.∼ U(t) the distribution that generatesUij for the ith subject attij .

The predictor processX and measurementU are assumed to satisfy the following con-

ditions.

(A3) E(‖X ′‖2
∞) <∞,E(‖X ′2‖2

∞) = o(n̄x), supt∈T E[U4(t)] <∞.

Recall that smoothing kernelsK1 andK2 are compactly supported densities with zero

means and finite variances. The Fourier transformations ofK1 andK2 are denoted by

κ1(t) =
∫
e−iutK1(u)du andκ2(t, s) =

∫
e−(iut+ivs)K2(u, v)du dv respectively. We

require
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(A4)
∫
|κ1(t)|dt < ∞,

∫ ∫
|κ2(t, s)|dtds < ∞, i.e.,κ1(t) andκ2(t, s) are both

absolutely integrable.

Let g1(u; t) denote the density function ofU(t), andg2(u1, u2; t1, t2) denote the density

of (U(t1), U(t2)). It is assumed throughout that these density functions satisfy appropri-

ate regularity conditions.

4. AUXILIARY LEMMAS

Denote the true and estimated covariance operators byG andĜ, generated byG and

Ĝ respectively; i.e.,G(f) =
∫
T
G(s, t)f(s)ds andĜ(f) =

∫
T
Ĝ(s, t)f(s)ds for any

f ∈ L2(T ). Define

DX = [
∫
T 2{Ĝ(s, t) −G(s, t)}2dsdt]1/2, δm = min16j6m(λj − λj+1),

M∗ = inf{j > 1 : λj − λj+1 6 2DX} − 1, πm = 1/λm + 1/δm.
(4.1)

Lemma 1 Under (A1)-(A4) and appropriate regularity conditions fordensity functions

g1(u, t) andg2(u1, u2; t1, t2),

sup
t∈T

|µ̂(t) − µ(t)| = Op(
1√
nb

), sup
s,t∈T

|Ĝ(s, t) −G(s, t)| = Op(
1√
nh2

), (4.2)

and as a consequence,σ̂2
x − σ2

x = Op(n
−1/2h−2 + n−1/2h∗−1). Considering eigenvalues

λm of multiplicity one,φ̂m can be chosen such that,m = 1, . . . ,M∗,

P ( sup
16m6M

|λ̂m − λm| 6 DX) = 1, sup
t∈T

|φ̂m(t) − φm(t)| = Op(
πm√
nh2

), (4.3)

whereDX , πm andM∗ are defined in (4.1).
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The next lemma provides upper bounds for the estimation errors |ξ̂Iim − ξim| with

some specific structure, and the derivation can be found in M¨uller and Yao (2008). Let

‖f‖∞ = supt∈A |f(t)| for an arbitrary functionf with supportA, ‖g‖ =
√∫

A
g2(t)dt

for anyg ∈ L2(A), and define

θ
(1)
im = c1‖Xi‖ + c2‖XiX

′
i‖∞∆∗ + c3, Z

(1)
m = supt∈T |φ̂m(t) − φm(t)|,

θ
(2)
im = 1 + ‖φmφ′

m‖∞∆∗, Z
(2)
m = supt∈T |µ̂(t) − µ(t)|,

θ
(3)
im = c4‖Xi‖∞ + c5‖X ′

i‖∞ + c6, Z
(3)
m = ‖φ′

m‖∞∆∗,

θ
(4)
im = |∑ni

j=2 εijφm(tij)(tij − ti,j−1)|, Z
(4)
m ≡ 1,

θ
(5)
im =

∑ni

j=2 |εij|(tij − ti,j−1), Z
(5)
m ≡ Z

(1)
m ,

(4.4)

for some positive constantsc1, . . . , c6 that do not depend oni orm. We note that the sub-

scripts are mainly for notational convenience and do not necessarily reflect dependence

on these indices. More importantly, we emphasize thatθ
(ℓ)
im are i.i.d. overi (ℓ = 1, 3, 4, 5)

or nonrandom that is freei (ℓ = 2), and that theZ(ℓ)
m do not depend oni for all

ℓ = 1, 2, 3, 4, 5.

Lemma 2 For integral estimates of the FPC scoresξ̂Iim in (2.10) of the paper,

|ξ̂Iim − ξim| 6

5∑

ℓ=1

θ
(ℓ)
imZ

(ℓ)
m , m = 1, · · · ,M∗, (4.5)

whereθ(ℓ)
im andZ(ℓ)

m are defined in (4.4), andM∗ is defined in (4.1).

We aim for the consistency results for anyM andK, whereM andK are the numbers

of FPCs and distinct regression functions in the FMR model. We state a useful theorem

proved in Yao (2010) as Lemma 3 regarding the consistency of the Maximum Likelihood



10 F. YAO, Y. FU AND T. C. M. LEE

Estimation based on Estimated Design (MLEED), that can be shown applicable to the

proposed FMR. For convenience, we first define some conditions that are required for

some relevant functions. A functionh(ψ, y, ξ) is said to satisfy the assumption (B1) at

ψ1 ∈ Θ, provided that the following holds.

(B1) There exist some functionsg(y, ξ,ψ) andc(ψ) such that, for all possible

values ofy, ξ′, ξ′′, andψ ∈ Nψ1
, whereNψ1 is some neighborhood ofψ1,

‖h(ψ, y, ξ′′) − h(ψ, y, ξ′)‖ 6 g(y, ξ′,ψ)‖ξ′′ − ξ′‖ + c(ψ)‖ξ′′ − ξ′‖2,

andg(y, ξ,ψ) andc(ψ) satisfy

sup
ψ∈Nψ1

E(ψ0,Λ0)

{
g2(Y, ξ,ψ)

}
<∞, sup

ψ∈Nψ1

c(ψ) <∞,

whereψ0 andΛ0 are the true values ofψ andΛ.

A function q(y, ξ,ψ) is said to satisfy the set of assumptions (B2) atψ1 ∈ Θ, if the

conditions (B2.1)–(B2.3) below hold.

(B2.1) q(y, ξ,ψ) is upper semicontinuous inψ ∈ Nψ1
for all (y, ξ);

(B2.2) There exists a functionD(y, ξ) such thatE(ψ0,Λ0)D(y, ξ) <∞ andq(y, ξ,ψ) 6

D(y, ξ) for all (y, ξ) andψ ∈ Nψ1
;

(B2.3) Forψ ∈ Nψ1
and sufficiently smallr > 0, sup{ψ′:‖ψ′−ψ‖<r} q(y, ξ,ψ

′) is

measurable in(y, ξ).

In Lemma 3, letf(y|ξ,ψ), ψ ∈ Θ denote a general conditional density function with a

parameter spaceΘ that is a subset ofRp for some positive integerp [not restricted to the
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conditional density defined in (9) of Section 2.2], andξ̂i be any sequence of estimates

of ξi, i = 1, . . . , n. Denotel(ψ; y, ξ) = log f(y|ξ,ψ).

Lemma 3 Suppose that the true valueψ0 is an interior point of the parameter spaceΘ.

Consider an arbitrary compact setE satisfyingNψ0
⊆ E ⊆ Θ and anyψ ∈ E is an

interior point ofΘ, whereNψ0
is some neighborhood ofψ0. Assume that

(i) There exist someZ(j)
n and θj)i,n, whereθ(j)

i,n are either i.i.d. realizations of posi-

tive random variablesθ(j)
n or nonrandom constants with respect toi, wherej =

1, . . . , J , for some finiteJ ,

‖ξ̂i − ξi‖ 6

J∑

j=1

Z(j)
n θ

(j)
i,n, E{(θ(j)

n )2} <∞, Z(j)
n

√
E{(θ(j)

n )2} p−→ 0;

(ii) For anyψ ∈ E, l(ψ; y, ξ) satisfies the assumptions (B1) atψ with some functions

g(y, ξ,ψ) andc(ψ), whereg(y, ξ,ψ) satisfies the assumptions (B2) atψ;

(iii) For anyψ ∈ E, l(ψ; y, ξ) satisfies the assumptions (B2) atψ;

(iv) f(y|ξ,ψ) = f(y|ξ,ψ∗) implies thatψ = ψ∗ in a well-defined sense (identifiabil-

ity).

Then for any sequence of the maximizerψ̂ of ln(ψ; y, X̂ξ) =
∑n

i=1 l(ψ; yi, ξ̂i) on

the compact setE, i.e., the maximum likelihood estimates based on estimateddesign

(MLEED), one has

ψ̂
p−→ ψ0.



12 F. YAO, Y. FU AND T. C. M. LEE

5. PROOFS OFMAIN THEOREMS

Proof of Theorem 1.We first verify the conditions (i)–(iv) in Lemma 3 for the FMR

model with the conditional density of thekth componentf(yi|ξi, bk0, bk, σ2
ky) = ϕ{(yi−

bk0 − ξTi bk)/σky}, k = 1, . . . , K, whereϕ(u) = exp(−u2/2)/
√

2π is the density func-

tion of standard normal. Given the expressions ofZ
(ℓ)
m andθ(ℓ)

im in (4.4), one notes that

θ
(ℓ)
im are i.i.d. or nonrandom w.r.t.i, ℓ = 1, . . . , 5,m = 1, . . . ,M . With (A3), it is obvious

thatE{(θ(ℓ)
im)2} < ∞ for ℓ = 1, 2, 3. Due to the orthonormality ofφm and the inde-

pendence amongεij ’s, we haveE{(θ(4)
im )2} = E[{∑ni

j=2 εijφm(tij)(tij − ti,j−1)}2] =

var{∑ni

j=2 εijφm(tij)(tij − ti,j−1)} = σ2
x

∑ni

j=2 φ
2
m(tij)(tij − ti,j−1)

2 6 2σ2∆∗ → 0. For

θ
(5)
im , applying Cauchy-Schwartz inequality,E{(θ(4)

im )2} 6 {∑ni

j=2E(ε2
ij)(tij−ti,j−1)}T 6

2T 2σ2
x < ∞ for largen. Combining with Lemmas 1 and 2, then condition (i) holds.

Since the parameter spaceΘ defined is an open subset ofR(M+3)K−1, anyψ ∈ E is

always an interior point ofΘ. It is easy to verify that condition (iii) holds for the con-

ditional densityf(yi|ξi,ψ) with normal components, while condition (iv) is satisfied

given the identifiability in the sense of (2.8) in the paper.

Now we check condition (ii), and observe that

l(ψ; y, ξ) = log
{ K∑

k=1

πkf(y|ξ, bk0, bk, σky)
}
,

f(y|ξ, bk0, bk, σ2
ky) =

1√
2πσky

exp
{
− (y − bk0 − ξTbk)2

2σ2
ky

}
. (5.1)

For any fixed interior pointψ1 of Θ, one can always assume that a sufficiently small

neighborhoodNψ1
is bounded, and particularlyδ 6 πk 6 1 − δ andσky > δ for some
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δ > 0, k = 1, . . . , K. By Mean Value Theorem, one has, forψ ∈ Nψ1
,

l(ψ; y, ξ′′) − l(ψ; y, ξ′) = (∂T l(ψ; y, ξ∗)/∂ξ)(ξ′′ − ξ′),
∂

∂ξ
l(ψ; y, ξ∗) =

∑K
k=1 πkf(y|ξ∗, bk0, bk, σ2

ky)(y − bk0 − ξ∗Tbk)bk/σ2
ky∑K

k=1 πkf(y|ξ∗, bk0, bk, σky)
,

whereξ∗ = ξ′ + v(ξ′′ − ξ′) for some0 6 v 6 1. In spite of the complex appearance

of the above expression, one can see that it is in fact aweighted averageof (y − bk0 −

ξ∗Tbk)bk/σ
2
ky with weightsπkf(y|ξ∗, bk0, bk, σ2

ky), k = 1, . . . , K. Therefore,

‖ ∂
∂ξ
l(ψ; y, ξ∗)‖ 6

K∑

k=1

‖(y − bk0 − ξ∗Tbk)bk/σ2
ky‖

6

K∑

k=1

1

σ2
ky

{
‖bky − bk0bk‖ + ‖bk‖2‖ξ′ + v(ξ′′ − ξ′)‖

}

6

K∑

k=1

‖bk‖
σ2
ky

{
|y − bk0| + ‖bk‖‖ξ′‖

}
+

{ K∑

k=1

‖bk‖2

σ2
ky

}
‖ξ′′ − ξ′)‖

≡ g(y, ξ′,ψ) + c(ψ)‖ξ′′ − ξ′‖.

From the boundedness of the smallNψ1
, it is easy to see thatsupψ∈Nψ1

c(ψ) < ∞,

supψ∈Nψ1
E(ψ0,Λ0)

{
g2(Y, ξ,ψ)

}
< ∞, and moreoverg(y, ξ,ψ) satisfies the assump-

tions (B2) atψ1. Thus condition (ii) holds. The existence of a consistent sequence

ψ̂ ∈ E that are roots of∂ln(ψ; y, ξ̂)/∂ψ = 0 follows for the conditional mixture normal

density (5.1).

Proof of Theorem 2. The uniform consistency of̂βk,M(t) w.r.t. t ∈ T is obvious

given Theorem 1 and Lemma 1. For individual prediction, notethat |Ê(Yi|Xi,M) −

E(Yi|Xi,M)| 6 |bk0−bk0|+‖bk−bk‖·‖ξ̂i−ξi‖ and‖ξ̂i−ξi‖ 6
∑M

m=1

∑5
ℓ=1Z

(ℓ)
m θ

(ℓ)
im.
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We have shown thatE{(θ(ℓ)
m )2} < ∞ andZ(ℓ)

m

√
E{(θ(ℓ)

m )2} p−→ 0, whereθ(ℓ)
im

i.i.d.∼ θ
(ℓ)
m

(considering i.i.d. random variables here without loss of generality), ℓ = 1, . . . , 5,

m = 1, . . .M . We then arrive at the result (2.3) by observing the following for each

m andℓ. For anyǫ > 0 andδ > 0, we chooseA >
√

2/(ǫδ), i.e.,(A2δ)−1 6 ǫ/2, when

n is sufficiently large, and apply Chebyshev’s inquality:

P
(
Z(ℓ)
m |θ(ℓ)

im − Eθ(ℓ)
m | > δ

)
6 P

(
Z(ℓ)
m

√
E{(θ(ℓ)

m )2} >
√
δ

A

)
+ P

( |θ(ℓ)
im − Eθ

(ℓ)
m |

A

√
E{(θ(ℓ)

m )2}
>

√
δ
)

6
ǫ

2
+

1

A2δ
6 ǫ.

Noting that(1/n)‖ξ̂i − ξi‖ 6
∑M

m=1

∑5
ℓ=1 Z

(ℓ)
m (1/n)

∑n
i=1 θ

(ℓ)
im, then the consistency

of the average prediction (2.4) follows immediately from the law of large numbers for

triangular arrays.

6. EM ALGORITHM FOR M IXTURE REGRESSIONMODELS

For completeness we outline an EM algorithm for fitting mixture regression models. For

details, see, for example, Naik, Shi and Tsai (2007).

Consider the following mixture model withK normal density components:

f(yi|ξi,ψ) =
K∑

k=1

πkϕ(yi|ξi, bk0, bk, σ2
ky), i = 1, . . . , n,

where0 < πk < 1 and
∑
πk = 1, ϕ(yi|ξi, bk0, bk, σ2

ky) is the normal density with

mean(bk0 + ξTi bk) and varianceσ2
ky, andψ = (bT0 , b

T
1 , . . . , b

T
K ,π

T ,σTy )T is the vector

containing all relevant parameters. Letψ(r) be ther-th iterative estimate forψ. In the
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E-Step of the algorithm, one calculates

τ
(r)
ik =

π
(r)
k ϕ(yi|ξi, b(r)k0 , b

(r)
k , σ

2(r)
ky )

∑K
k=1 π

(r)
k ϕ(yi|ξi, b(r)k0 , b

(r)
k , σ

2(r)
ky )

.

This quantity can be seen as ther-th estimated probability foryi originated from thek-th

component.

In the M-Step, the(r+ 1)-th estimates are calculated with the following closed-form

expressions:π(r+1)
k = n−1

∑n
i=1 τ

(r)
ik and



 b
(r+1)
k0

b
(r+1)
k



 = (X̃
(r)T

k X̃
(r)
k )−1X̃

(r)T

k ỹ
(r)
k , σ2(r+1)

ky =
ỹ

(r)T

k (I − H̃
(r)
k )ỹ

(r)
k

tr(W (r)
k )

,

for k = 1, . . . , K. In the aboveW (r)
k = diag(τ (r)

1k , . . . , τ
(r)
nk ), X̃(r)

k = W
(r)1/2
k X̃ξ, ỹ

(r)
k =

W
(r)1/2
k y, H̃(r)

k = X̃(r)(X̃
(r)T

k X̃
(r)
k )−1X̃

(r)T

k , X̃ξ = (1, Xξ), Xξ = (ξ1, . . . , ξn)
T and

y = (y1, . . . , yn)
T .
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Table 1.Section 3 Simulation Scenario 1. Monte Carlo estimates of regression coefficients (standard errors in paren-

theses) for 4 combinations of noise levels, calculated fromthose runs thatK = 1 were correctly specified. The first

integer in each case reports the number, out of 500 runs, of correctly specified runs. In this scenario there is one single

regression function with true valuesb11 = b12 = 1. The first row corresponds to the ideal fitting (IDEAL) while the

second row corresponds to FMR.
Noises σx = .1 σx = .3

IDEAL 498 .9996 .9998 496 .9998 1.0002
(.0073) (.0152) (.0049) (.0070)

FMR
σy = .2

495 .9796 .9975 494 .9179 .9982
(.0493) (.0546) (.0798) (.0770)

IDEAL 497 1.0002 1.0004 496 1.0002 1.0009
(.0141) (.0206) (.0147) (.0216)

FMR
σy = .6

497 .9908 .9934 497 .9251 .9942
(.0861) (.0867) (.0835) (.0854)

Table 2.Similar to Table 1 but for Scenario 2. For this scenario the true value forK = 2 and the regression

coefficients are(b11, b12, b21, b22) = (1, 1, 1,−1).
Noises σx = .1 σx = .3

IDEAL 494 .9998 .9999 .9999 -1.0007 495 .9998 1.0004 .9997 -.9999
(.0111) (.0217) (.0110) (.0208) (.0067) (.0100) (.0072) (.0101)

FMR
σy = .2

494 .9786 .9992 .9780 -1.0014 486 .9969 .8422 1.0114 -.8211
(.0519) (.0628) (.0531) (.0603) (.0832) (.0838) (.0827) (.0839)

IDEAL 493 1.0004 1.0008 1.0009 -1.0009 496 1.0009 .9988 1.0001 -.9980
(.02189) (.0293) (.0235) (.0315) (.0222) (.0317) (.0225) (.0310)

FMR
σy = .6

492 .9922 .9937 .9842 -1.0013 488 .9261 .9933 .9197 -.9979
(.0895) (.0880) (.0887) (.0922) (.0913) (.0954) (.0945) (.0953)
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Table 3.Monte Carlo estimates of the relative prediction errors (RPE) defined in Section 3 for 4 combinations of

noise levels. Also reported in the last row is the predictiveclassification rates (P. C. Rate) calculated for the validation

samples that correspond to those runs withK = 2 correctly specified.
Noise levels:{σx, σy}

Model Method {.1, .2} {.1, .6} {.3, .2} {.3, .6}
Scenario I FLM .02448 .03408 .05764 .08152
(K = 1) FMR .02447 .03408 .05764 .08152

Scenario II FLM .23210 .34332 .37007 .39004
(K = 2) FMR .0218 .03016 .04943 .06804

(P. C. Rate) (.8932) (.8951) (.8664) (.8448)
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1. SIMULATION STUDIES

We conducted simulation studies in two scenarios to illustrate the empirical performance

of the functional mixture regression (FMR) model in terms ofboth estimation and pre-

diction. We simulated 500 Monte Carlo runs in both scenarios, each run consisting of a

collection ofn = 200 predictor trajectoriesXi and associated scalar responsesYi that

serve as thetraining samplefor estimation. In addition, for each run, we further gen-
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erated another200 pairs of (Xi, Yi) that constitute thevalidation sample, which will

be used towards the end of this section for assessing the predictive power of FMR. All

these trajectories were generated with a mean functionµ(t) = t + sin (t), 0 6 t 6 10,

and a covariance function derived from two eigenfunctions,φ1(t) = sin (πt/10)/
√

5

andφ2(t) = sin (2πt/10)/
√

5, associated with eigenvaluesλ1 = 4, λ2 = 1 as well as

λm = 0 for m > 3. Note that these two eigenfunctions in fact resemble the shapes of

the estimated ones in Medfly example. The predictor FPC scores areξim ∼ N (0, λm),

m = 1, 2. The measurement errorεij [(2.9) in the paper] are i.i.d.N(0, σ2
x), where

two noise levels of the predictor process were considered todemonstrate the influence,

σx = 0.1 and0.3. Each predictor trajectory was sampled at locations that were uni-

formly distributed over the domain[0, 10]. The number of measurements was indepen-

dently chosen for each trajectory, by selecting a number from {100, . . . , 150} with equal

probability.

In Scenario 1 the response was generated from a single regression function,β(t) =

φ1(t) + φ2(t) for t ∈ [0, 10], with an i.i.d. additive noiseǫi,y distributed asN(0, σ2
y) for

all subjects. We also included two noise levels of the response,σy = 0.2 and0.6. In

Scenario 2, the response was simulated from two distinct regression functions,β1(t) =

φ1(t) + φ2(t) for the first 100 subjects andβ2(t) = φ1(t) − φ2(t) for the rest, and

again was contaminated with an i.i.d. additiveN(0, σ2
y) noiseǫi,y, whereσy = 0.2 and

σy = 0.6 were considered. The proposed FMR was estimated as described in Section

2.3, including automatic choices of various smoothing parameters, the number of FPCs

of the predictor processes truncated by the threshold of 90%of overall variation, and the

numbers of regression functions chosen by BIC in mixture fitting. It is worth mentioning

thatM = 2 was correctly specified in most Monte Carlo runs for each case.
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We first examine model estimation using the training samples, including the regres-

sion coefficients as well as the choice ofK. The benchmark we compared with is the

ideal case of fitting the FMR [(2.4) in the paper] using the true FPC scoresξim. From

Tables 1 and 2, one can see that, for identifying the number ofregression functionsK,

the proposed FMR methodology is nearly as good as the ideal fitting, where the worst

case is 486/500 (97.2%) in the case with the larger noise on predictor process in Sce-

nario 2. These results also provide evidence for the consistency of regression coefficient

estimates.

It is of more interest to inspect the predictive ability of the FMR when comparing

with the classical functional linear models (FLM). Recall that, for each run, we have

generated a validation sample of sizen = 200, and here we use them to calculate the

relative prediction error (RPE), defined as RPE=
∑n

i=1(Y
∗
i − Ŷ ∗

i )2/
∑n

i=1 Y
∗ 2
i , where

Y ∗
i is the response of theith new subject in the validation sample andŶ ∗

i is its predicted

value. These predicted values were obtained as follows. First the FPC scoreŝξ∗im of the

new subjects were calculated by applying the integral approach [(2.10) in the paper] to

the new noisy predictor trajectoriesU∗
ij . Then these FPC scores were fed into the fitted

FMRs and FLMs repectively to calculate the predicted values, where the parameters of

such fitted FMRs and FLMs were estimated from the training sample. It is noticed that

the responseY ∗
i were used to determine which cluster the subjects belong to in FMR.

From the Monte Carlo estimates of the RPEs listed in Table 3, we see that the FMR

achieves dramatic gains ranging from 83% to 91% in Scenario 2, which suggests that the

FMR can definitely be a viable alternative when the FLM is not adequate. For Scenario 1,

comparable results were obtained for FMR and FLM. This was expected as the true value

for K = 1 was correctly specified by FMR in most runs. These comparisons indeed
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provide strong evidence for the need of the proposed FMR whena single regression

function is not sufficient to characterize the underlying relationship. Also reported in

Table 3 are, for Scenario 2, the FMR predictive classification rates for the validation

samples that correspond to those runs withK correctly specified as 2. As expected, they

are affected by the noise levels of the predictor process andresponse.

2. THEORETICAL RESULTS

We state in this section the theoretical results on the consistency of the proposed func-

tional mixture regression (FMR) in terms of model estimation and prediction, along with

a brief and intuitive outline of the technical arguments. Wefirst need to appropriately

quantify the discrepancy between the true and estimated functional principal component

(FPC) scores, i.e.,ξim andξ̂im. Besides needing a large number of subjects, it is also re-

quired that the measurements sampled from each subject are sufficiently dense. Then the

FPC scores can be satisfactorily estimated by the integral approximationξ̂Iim [(2.10) in

the paper]. Since the PACE estimatesξ̂Pim [(2.11) in the paper] can be considered equiv-

alent toξ̂Iim in the dense case (Müller, 2005), we shall focus on the integral estimates for

theoretical developments and suppress the superscript “I” whenever appropriate.

Writeξi = (ξi1, . . . , ξiM)T andξ̂i = (ξ̂i1, . . . , ξ̂iM)T , whereM is the number of FPCs

used for approximation. We call̂Xξ = (ξ̂1, . . . , ξ̂n)
T the “estimated” design matrix.

Given the estimated FPC scoresξ̂im, any estimate of the parameterψ [defined prior to

(2.6) in the paper] would in fact be calculated from the “estimated” log-likelihood

ln(ψ;y, X̂ξ) =

n∑

i=1

l(ψ; yi, ξ̂i) =

n∑

i=1

log f(yi|ξ̂i,ψ) (2.1)
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instead of the “true” log-likelihood

ln(ψ;y, Xξ) =

n∑

i=1

l(ψ; yi, ξi) =

n∑

i=1

log f(yi|ξi,ψ),

wheref(yi|ξi,ψ) is defined in (2.7) in the paper. Although the consistency of the Max-

imum Likelihood Estimation (MLE) ofψ obtained by maximizing the “true” likelihood

is applicable to standard mixture regression (Jiang and Tanner, 1999), to the best of our

knowledge, there is no existing theory for estimation obtained by maximizing the “esti-

mated” likelihood (2.1). For clarity we denote such an estimate asψ̂ and call it MLEED,

short for MLE based on the Estimated Design matrixX̂ξ. A general theorem concern-

ing the consistency of such MLEED has been established in Yao(2010) and is stated in

Lemma 3 of Section 4.

We shall consider the case of normal random component and denote the density func-

tion of a standard normal byϕ(·). Coupling Lemmas 1–3 in Section 4, together with mild

regularity conditions listed in Section 3, we have the following theorem. Recall thatΘ

is the parameter space andf(yi|ξi, bk0, bk, σ2
ky) is thekth conditional density, defined in

(2.6) and (2.7) in the paper, respectively.

Theorem 1 Suppose that the assumptions (A1)-(A4) hold with thekth conditional

densityf(yi|ξi, bk0, bk, σ2
ky) = ϕ{(yi − bk0 − ξTi bk)/σky}, k = 1, . . . , K, and that the

true valueψ0 is an interior point of the parameter spaceΘ. Then, for any compact set

E ⊆ Θ containing some neighborhood of the true valueψ0, there exists a sequence

of estimateŝψ ≡ ψ̂n maximizing the estimated likelihood functionln(ψ;y, X̂ξ) onE,

such that̂ψ
p−→ ψ0.

Our estimates aim for the regression parameter functionsβk,M(t) =
∑M

m=1 bkmφm(t)
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[(2.5) in the paper],k = 1, . . . , K. Let b(0)km, β(0)
k,M(t) andE(0)(Yi|Xi,M, i ∈ Ck) [(2.4)

in the paper] be the quantities evaluated at the true valuesψ0, φm and ξim. That is,

β
(0)
k,M(t) =

∑M
m=1 b

(0)
kmφm(t) andE(0)(Yi|Xi,M, i ∈ Ck) = b

(0)
k0 +

∑M
m=1 b

(0)
kmξim, where

t ∈ T , k = 1, . . . , K, i = 1, . . . , n. Then we can obtain consistent estimation and

prediction both individually and on average.

Theorem 2 If the assumptions in Theorem 1 hold, for any compact setE ⊆ Θ con-

taining some neighborhood ofψ0, letting β̂k,M(t) andÊ(Yi|Xi,M, i ∈ Ck) be the quan-

tities evaluated at̂φm, ξ̂im and ψ̂ that maximizesln(ψ;y, X̂ξ) on E, i.e., β̂k,M(t) =
∑M

m=1 b̂kmφ̂m(t) andÊ(Yi|Xi,M, i ∈ Ck) = b̂k0 +
∑M

m=1 b̂kmξ̂im, then

sup
t∈T

|β̂k,M(t) − β
(0)
k,M(t)| p−→ 0, for k = 1, · · · , K, (2.2)

Ê(Yi|Xi,M, i ∈ Ck) −E(0)(Yi|Xi,M, i ∈ Ck) p−→ 0, for i = 1, · · · , n, (2.3)

1

n

n∑

i=1

{
Ê(Yi|Xi,M, i ∈ Ck) − E(0)(Yi|Xi,M, i ∈ Ck)

} p−→ 0. (2.4)

Remark. In principle, the consistency of MLEED̂ψ as well as the predictions can

be extended to FMR model with other conditional densitiesf(yi|ξi, bk0, bk, σ2
ky) and/or

with suitable nonlinear link functionsg(bk0 + ξTi bk), provided that the conditions in

Lemma 3 and other necessary regularity conditions are fulfilled.

3. TECHNICAL ASSUMPTIONS

Necessary assumptions are listed below. Briefly, these assumptions concern the number

and density of measurements per trajectory, the underlyingstochastic processX(t) and

the noise processU(t) that generates the observed repeated measurementsUij [(2.9) in

the paper], as well as various smoothing parameters and kernel functions. Letb = b(n),



Supplementary material to functional mixture regression 7

h = h(n) andh∗ = h∗(n) denote the bandwidths for estimatingµ̂ (26), Ĝ (27) andσ̂x

(2) in Yao, Müller and Wang (2005).

(A1) b → 0, h∗ → 0, h → 0, nb2 → ∞, nh∗2 → ∞, nh4 → ∞, nb6 < ∞,

nh∗6 <∞, nh8 <∞, asn→ ∞,

Denote the sorted time points across all subjects asa0 6 t(1) 6 . . . 6 t(Nn) 6 b0,

and∆ = max{t(k) − t(k−1) : k = 1, . . . , N + 1}, whereNn =
∑n

i=1 ni, T = [a0, b0],

t(0) = a0, andt(N+1) = b0. For theith subject, suppose that the time pointstij have been

ordered non-decreasingly. Let∆i = max{tij − ti,j−1 : j = 1, . . . , ni + 1} and∆∗ =

max{∆i : i = 1, . . . , n}, whereti0 = a0 andti,ni+1 = b0, andn̄ = n−1
∑n

i=1 ni. To

obtain consistent FPC score estimates, we require both the pooled data across all subjects

and the data from each subject to be dense in the time domainT . For convenience, we

study the asymptotics in the manner ofn̄→ ∞ asn→ ∞, and assume that

(A2) ∆ = O(min{n−1/2b−1, n−1/2h∗−1, n−1/4h−1}), max{ni : i = 1, . . . , n} 6

Cn̄ for someC > 0, and∆∗ = O(1/n̄), asn→ ∞.

Denote byUi(t)
i.i.d.∼ U(t) the distribution that generatesUij for the ith subject attij .

The predictor processX and measurementU are assumed to satisfy the following con-

ditions.

(A3) E(‖X ′‖2
∞) <∞,E(‖X ′2‖2

∞) = o(n̄x), supt∈T E[U4(t)] <∞.

Recall that smoothing kernelsK1 andK2 are compactly supported densities with zero

means and finite variances. The Fourier transformations ofK1 andK2 are denoted by

κ1(t) =
∫
e−iutK1(u)du andκ2(t, s) =

∫
e−(iut+ivs)K2(u, v)du dv respectively. We

require
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(A4)
∫
|κ1(t)|dt < ∞,

∫ ∫
|κ2(t, s)|dtds < ∞, i.e.,κ1(t) andκ2(t, s) are both

absolutely integrable.

Let g1(u; t) denote the density function ofU(t), andg2(u1, u2; t1, t2) denote the density

of (U(t1), U(t2)). It is assumed throughout that these density functions satisfy appropri-

ate regularity conditions.

4. AUXILIARY LEMMAS

Denote the true and estimated covariance operators byG andĜ, generated byG and

Ĝ respectively; i.e.,G(f) =
∫
T
G(s, t)f(s)ds andĜ(f) =

∫
T
Ĝ(s, t)f(s)ds for any

f ∈ L2(T ). Define

DX = [
∫
T 2{Ĝ(s, t) −G(s, t)}2dsdt]1/2, δm = min16j6m(λj − λj+1),

M∗ = inf{j > 1 : λj − λj+1 6 2DX} − 1, πm = 1/λm + 1/δm.
(4.1)

Lemma 1 Under (A1)-(A4) and appropriate regularity conditions fordensity functions

g1(u, t) andg2(u1, u2; t1, t2),

sup
t∈T

|µ̂(t) − µ(t)| = Op(
1√
nb

), sup
s,t∈T

|Ĝ(s, t) −G(s, t)| = Op(
1√
nh2

), (4.2)

and as a consequence,σ̂2
x − σ2

x = Op(n
−1/2h−2 + n−1/2h∗−1). Considering eigenvalues

λm of multiplicity one,φ̂m can be chosen such that,m = 1, . . . ,M∗,

P ( sup
16m6M

|λ̂m − λm| 6 DX) = 1, sup
t∈T

|φ̂m(t) − φm(t)| = Op(
πm√
nh2

), (4.3)

whereDX , πm andM∗ are defined in (4.1).
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The next lemma provides upper bounds for the estimation errors |ξ̂Iim − ξim| with

some specific structure, and the derivation can be found in M¨uller and Yao (2008). Let

‖f‖∞ = supt∈A |f(t)| for an arbitrary functionf with supportA, ‖g‖ =
√∫

A
g2(t)dt

for anyg ∈ L2(A), and define

θ
(1)
im = c1‖Xi‖ + c2‖XiX

′
i‖∞∆∗ + c3, Z

(1)
m = supt∈T |φ̂m(t) − φm(t)|,

θ
(2)
im = 1 + ‖φmφ′

m‖∞∆∗, Z
(2)
m = supt∈T |µ̂(t) − µ(t)|,

θ
(3)
im = c4‖Xi‖∞ + c5‖X ′

i‖∞ + c6, Z
(3)
m = ‖φ′

m‖∞∆∗,

θ
(4)
im = |∑ni

j=2 εijφm(tij)(tij − ti,j−1)|, Z
(4)
m ≡ 1,

θ
(5)
im =

∑ni

j=2 |εij|(tij − ti,j−1), Z
(5)
m ≡ Z

(1)
m ,

(4.4)

for some positive constantsc1, . . . , c6 that do not depend oni orm. We note that the sub-

scripts are mainly for notational convenience and do not necessarily reflect dependence

on these indices. More importantly, we emphasize thatθ
(ℓ)
im are i.i.d. overi (ℓ = 1, 3, 4, 5)

or nonrandom that is freei (ℓ = 2), and that theZ(ℓ)
m do not depend oni for all

ℓ = 1, 2, 3, 4, 5.

Lemma 2 For integral estimates of the FPC scoresξ̂Iim in (2.10) of the paper,

|ξ̂Iim − ξim| 6

5∑

ℓ=1

θ
(ℓ)
imZ

(ℓ)
m , m = 1, · · · ,M∗, (4.5)

whereθ(ℓ)
im andZ(ℓ)

m are defined in (4.4), andM∗ is defined in (4.1).

We aim for the consistency results for anyM andK, whereM andK are the numbers

of FPCs and distinct regression functions in the FMR model. We state a useful theorem

proved in Yao (2010) as Lemma 3 regarding the consistency of the Maximum Likelihood
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Estimation based on Estimated Design (MLEED), that can be shown applicable to the

proposed FMR. For convenience, we first define some conditions that are required for

some relevant functions. A functionh(ψ, y, ξ) is said to satisfy the assumption (B1) at

ψ1 ∈ Θ, provided that the following holds.

(B1) There exist some functionsg(y, ξ,ψ) andc(ψ) such that, for all possible

values ofy, ξ′, ξ′′, andψ ∈ Nψ1
, whereNψ1 is some neighborhood ofψ1,

‖h(ψ, y, ξ′′) − h(ψ, y, ξ′)‖ 6 g(y, ξ′,ψ)‖ξ′′ − ξ′‖ + c(ψ)‖ξ′′ − ξ′‖2,

andg(y, ξ,ψ) andc(ψ) satisfy

sup
ψ∈Nψ1

E(ψ0,Λ0)

{
g2(Y, ξ,ψ)

}
<∞, sup

ψ∈Nψ1

c(ψ) <∞,

whereψ0 andΛ0 are the true values ofψ andΛ.

A function q(y, ξ,ψ) is said to satisfy the set of assumptions (B2) atψ1 ∈ Θ, if the

conditions (B2.1)–(B2.3) below hold.

(B2.1) q(y, ξ,ψ) is upper semicontinuous inψ ∈ Nψ1
for all (y, ξ);

(B2.2) There exists a functionD(y, ξ) such thatE(ψ0,Λ0)D(y, ξ) <∞ andq(y, ξ,ψ) 6

D(y, ξ) for all (y, ξ) andψ ∈ Nψ1
;

(B2.3) Forψ ∈ Nψ1
and sufficiently smallr > 0, sup{ψ′:‖ψ′−ψ‖<r} q(y, ξ,ψ

′) is

measurable in(y, ξ).

In Lemma 3, letf(y|ξ,ψ), ψ ∈ Θ denote a general conditional density function with a

parameter spaceΘ that is a subset ofRp for some positive integerp [not restricted to the
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conditional density defined in (9) of Section 2.2], andξ̂i be any sequence of estimates

of ξi, i = 1, . . . , n. Denotel(ψ; y, ξ) = log f(y|ξ,ψ).

Lemma 3 Suppose that the true valueψ0 is an interior point of the parameter spaceΘ.

Consider an arbitrary compact setE satisfyingNψ0
⊆ E ⊆ Θ and anyψ ∈ E is an

interior point ofΘ, whereNψ0
is some neighborhood ofψ0. Assume that

(i) There exist someZ(j)
n and θj)i,n, whereθ(j)

i,n are either i.i.d. realizations of posi-

tive random variablesθ(j)
n or nonrandom constants with respect toi, wherej =

1, . . . , J , for some finiteJ ,

‖ξ̂i − ξi‖ 6

J∑

j=1

Z(j)
n θ

(j)
i,n, E{(θ(j)

n )2} <∞, Z(j)
n

√
E{(θ(j)

n )2} p−→ 0;

(ii) For anyψ ∈ E, l(ψ; y, ξ) satisfies the assumptions (B1) atψ with some functions

g(y, ξ,ψ) andc(ψ), whereg(y, ξ,ψ) satisfies the assumptions (B2) atψ;

(iii) For anyψ ∈ E, l(ψ; y, ξ) satisfies the assumptions (B2) atψ;

(iv) f(y|ξ,ψ) = f(y|ξ,ψ∗) implies thatψ = ψ∗ in a well-defined sense (identifiabil-

ity).

Then for any sequence of the maximizerψ̂ of ln(ψ; y, X̂ξ) =
∑n

i=1 l(ψ; yi, ξ̂i) on

the compact setE, i.e., the maximum likelihood estimates based on estimateddesign

(MLEED), one has

ψ̂
p−→ ψ0.
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5. PROOFS OFMAIN THEOREMS

Proof of Theorem 1.We first verify the conditions (i)–(iv) in Lemma 3 for the FMR

model with the conditional density of thekth componentf(yi|ξi, bk0, bk, σ2
ky) = ϕ{(yi−

bk0 − ξTi bk)/σky}, k = 1, . . . , K, whereϕ(u) = exp(−u2/2)/
√

2π is the density func-

tion of standard normal. Given the expressions ofZ
(ℓ)
m andθ(ℓ)

im in (4.4), one notes that

θ
(ℓ)
im are i.i.d. or nonrandom w.r.t.i, ℓ = 1, . . . , 5,m = 1, . . . ,M . With (A3), it is obvious

thatE{(θ(ℓ)
im)2} < ∞ for ℓ = 1, 2, 3. Due to the orthonormality ofφm and the inde-

pendence amongεij ’s, we haveE{(θ(4)
im )2} = E[{∑ni

j=2 εijφm(tij)(tij − ti,j−1)}2] =

var{∑ni

j=2 εijφm(tij)(tij − ti,j−1)} = σ2
x

∑ni

j=2 φ
2
m(tij)(tij − ti,j−1)

2 6 2σ2∆∗ → 0. For

θ
(5)
im , applying Cauchy-Schwartz inequality,E{(θ(4)

im )2} 6 {∑ni

j=2E(ε2
ij)(tij−ti,j−1)}T 6

2T 2σ2
x < ∞ for largen. Combining with Lemmas 1 and 2, then condition (i) holds.

Since the parameter spaceΘ defined is an open subset ofR(M+3)K−1, anyψ ∈ E is

always an interior point ofΘ. It is easy to verify that condition (iii) holds for the con-

ditional densityf(yi|ξi,ψ) with normal components, while condition (iv) is satisfied

given the identifiability in the sense of (2.8) in the paper.

Now we check condition (ii), and observe that

l(ψ; y, ξ) = log
{ K∑

k=1

πkf(y|ξ, bk0, bk, σky)
}
,

f(y|ξ, bk0, bk, σ2
ky) =

1√
2πσky

exp
{
− (y − bk0 − ξTbk)2

2σ2
ky

}
. (5.1)

For any fixed interior pointψ1 of Θ, one can always assume that a sufficiently small

neighborhoodNψ1
is bounded, and particularlyδ 6 πk 6 1 − δ andσky > δ for some
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δ > 0, k = 1, . . . , K. By Mean Value Theorem, one has, forψ ∈ Nψ1
,

l(ψ; y, ξ′′) − l(ψ; y, ξ′) = (∂T l(ψ; y, ξ∗)/∂ξ)(ξ′′ − ξ′),
∂

∂ξ
l(ψ; y, ξ∗) =

∑K
k=1 πkf(y|ξ∗, bk0, bk, σ2

ky)(y − bk0 − ξ∗Tbk)bk/σ2
ky∑K

k=1 πkf(y|ξ∗, bk0, bk, σky)
,

whereξ∗ = ξ′ + v(ξ′′ − ξ′) for some0 6 v 6 1. In spite of the complex appearance

of the above expression, one can see that it is in fact aweighted averageof (y − bk0 −

ξ∗Tbk)bk/σ
2
ky with weightsπkf(y|ξ∗, bk0, bk, σ2

ky), k = 1, . . . , K. Therefore,

‖ ∂
∂ξ
l(ψ; y, ξ∗)‖ 6

K∑

k=1

‖(y − bk0 − ξ∗Tbk)bk/σ2
ky‖

6

K∑

k=1

1

σ2
ky

{
‖bky − bk0bk‖ + ‖bk‖2‖ξ′ + v(ξ′′ − ξ′)‖

}

6

K∑

k=1

‖bk‖
σ2
ky

{
|y − bk0| + ‖bk‖‖ξ′‖

}
+

{ K∑

k=1

‖bk‖2

σ2
ky

}
‖ξ′′ − ξ′)‖

≡ g(y, ξ′,ψ) + c(ψ)‖ξ′′ − ξ′‖.

From the boundedness of the smallNψ1
, it is easy to see thatsupψ∈Nψ1

c(ψ) < ∞,

supψ∈Nψ1
E(ψ0,Λ0)

{
g2(Y, ξ,ψ)

}
< ∞, and moreoverg(y, ξ,ψ) satisfies the assump-

tions (B2) atψ1. Thus condition (ii) holds. The existence of a consistent sequence

ψ̂ ∈ E that are roots of∂ln(ψ; y, ξ̂)/∂ψ = 0 follows for the conditional mixture normal

density (5.1).

Proof of Theorem 2. The uniform consistency of̂βk,M(t) w.r.t. t ∈ T is obvious

given Theorem 1 and Lemma 1. For individual prediction, notethat |Ê(Yi|Xi,M) −

E(Yi|Xi,M)| 6 |bk0−bk0|+‖bk−bk‖·‖ξ̂i−ξi‖ and‖ξ̂i−ξi‖ 6
∑M

m=1

∑5
ℓ=1Z

(ℓ)
m θ

(ℓ)
im.
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We have shown thatE{(θ(ℓ)
m )2} < ∞ andZ(ℓ)

m

√
E{(θ(ℓ)

m )2} p−→ 0, whereθ(ℓ)
im

i.i.d.∼ θ
(ℓ)
m

(considering i.i.d. random variables here without loss of generality), ℓ = 1, . . . , 5,

m = 1, . . .M . We then arrive at the result (2.3) by observing the following for each

m andℓ. For anyǫ > 0 andδ > 0, we chooseA >
√

2/(ǫδ), i.e.,(A2δ)−1 6 ǫ/2, when

n is sufficiently large, and apply Chebyshev’s inquality:

P
(
Z(ℓ)
m |θ(ℓ)

im − Eθ(ℓ)
m | > δ

)
6 P

(
Z(ℓ)
m

√
E{(θ(ℓ)

m )2} >
√
δ

A

)
+ P

( |θ(ℓ)
im − Eθ

(ℓ)
m |

A

√
E{(θ(ℓ)

m )2}
>

√
δ
)

6
ǫ

2
+

1

A2δ
6 ǫ.

Noting that(1/n)‖ξ̂i − ξi‖ 6
∑M

m=1

∑5
ℓ=1 Z

(ℓ)
m (1/n)

∑n
i=1 θ

(ℓ)
im, then the consistency

of the average prediction (2.4) follows immediately from the law of large numbers for

triangular arrays.

6. EM ALGORITHM FOR M IXTURE REGRESSIONMODELS

For completeness we outline an EM algorithm for fitting mixture regression models. For

details, see, for example, Naik, Shi and Tsai (2007).

Consider the following mixture model withK normal density components:

f(yi|ξi,ψ) =
K∑

k=1

πkϕ(yi|ξi, bk0, bk, σ2
ky), i = 1, . . . , n,

where0 < πk < 1 and
∑
πk = 1, ϕ(yi|ξi, bk0, bk, σ2

ky) is the normal density with

mean(bk0 + ξTi bk) and varianceσ2
ky, andψ = (bT0 , b

T
1 , . . . , b

T
K ,π

T ,σTy )T is the vector

containing all relevant parameters. Letψ(r) be ther-th iterative estimate forψ. In the
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E-Step of the algorithm, one calculates

τ
(r)
ik =

π
(r)
k ϕ(yi|ξi, b(r)k0 , b

(r)
k , σ

2(r)
ky )

∑K
k=1 π

(r)
k ϕ(yi|ξi, b(r)k0 , b

(r)
k , σ

2(r)
ky )

.

This quantity can be seen as ther-th estimated probability foryi originated from thek-th

component.

In the M-Step, the(r+ 1)-th estimates are calculated with the following closed-form

expressions:π(r+1)
k = n−1

∑n
i=1 τ

(r)
ik and



 b
(r+1)
k0

b
(r+1)
k



 = (X̃
(r)T

k X̃
(r)
k )−1X̃

(r)T

k ỹ
(r)
k , σ2(r+1)

ky =
ỹ

(r)T

k (I − H̃
(r)
k )ỹ

(r)
k

tr(W (r)
k )

,

for k = 1, . . . , K. In the aboveW (r)
k = diag(τ (r)

1k , . . . , τ
(r)
nk ), X̃(r)

k = W
(r)1/2
k X̃ξ, ỹ

(r)
k =

W
(r)1/2
k y, H̃(r)

k = X̃(r)(X̃
(r)T

k X̃
(r)
k )−1X̃

(r)T

k , X̃ξ = (1, Xξ), Xξ = (ξ1, . . . , ξn)
T and

y = (y1, . . . , yn)
T .
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Table 1.Section 3 Simulation Scenario 1. Monte Carlo estimates of regression coefficients (standard errors in paren-

theses) for 4 combinations of noise levels, calculated fromthose runs thatK = 1 were correctly specified. The first

integer in each case reports the number, out of 500 runs, of correctly specified runs. In this scenario there is one single

regression function with true valuesb11 = b12 = 1. The first row corresponds to the ideal fitting (IDEAL) while the

second row corresponds to FMR.
Noises σx = .1 σx = .3

IDEAL 498 .9996 .9998 496 .9998 1.0002
(.0073) (.0152) (.0049) (.0070)

FMR
σy = .2

495 .9796 .9975 494 .9179 .9982
(.0493) (.0546) (.0798) (.0770)

IDEAL 497 1.0002 1.0004 496 1.0002 1.0009
(.0141) (.0206) (.0147) (.0216)

FMR
σy = .6

497 .9908 .9934 497 .9251 .9942
(.0861) (.0867) (.0835) (.0854)

Table 2.Similar to Table 1 but for Scenario 2. For this scenario the true value forK = 2 and the regression

coefficients are(b11, b12, b21, b22) = (1, 1, 1,−1).
Noises σx = .1 σx = .3

IDEAL 494 .9998 .9999 .9999 -1.0007 495 .9998 1.0004 .9997 -.9999
(.0111) (.0217) (.0110) (.0208) (.0067) (.0100) (.0072) (.0101)

FMR
σy = .2

494 .9786 .9992 .9780 -1.0014 486 .9969 .8422 1.0114 -.8211
(.0519) (.0628) (.0531) (.0603) (.0832) (.0838) (.0827) (.0839)

IDEAL 493 1.0004 1.0008 1.0009 -1.0009 496 1.0009 .9988 1.0001 -.9980
(.02189) (.0293) (.0235) (.0315) (.0222) (.0317) (.0225) (.0310)

FMR
σy = .6

492 .9922 .9937 .9842 -1.0013 488 .9261 .9933 .9197 -.9979
(.0895) (.0880) (.0887) (.0922) (.0913) (.0954) (.0945) (.0953)
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Table 3.Monte Carlo estimates of the relative prediction errors (RPE) defined in Section 3 for 4 combinations of

noise levels. Also reported in the last row is the predictiveclassification rates (P. C. Rate) calculated for the validation

samples that correspond to those runs withK = 2 correctly specified.
Noise levels:{σx, σy}

Model Method {.1, .2} {.1, .6} {.3, .2} {.3, .6}
Scenario I FLM .02448 .03408 .05764 .08152
(K = 1) FMR .02447 .03408 .05764 .08152

Scenario II FLM .23210 .34332 .37007 .39004
(K = 2) FMR .0218 .03016 .04943 .06804

(P. C. Rate) (.8932) (.8951) (.8664) (.8448)
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