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EMPIRICAL DYNAMICS FOR LONGITUDINAL DATA

BY HANS-GEORG MÜLLER1 AND FANG YAO2

University of California, Davis and University of Toronto

We demonstrate that the processes underlying on-line auction price bids
and many other longitudinal data can be represented by an empirical first
order stochastic ordinary differential equation with time-varying coefficients
and a smooth drift process. This equation may be empirically obtained from
longitudinal observations for a sample of subjects and does not presuppose
specific knowledge of the underlying processes. For the nonparametric es-
timation of the components of the differential equation, it suffices to have
available sparsely observed longitudinal measurements which may be noisy
and are generated by underlying smooth random trajectories for each subject
or experimental unit in the sample. The drift process that drives the equation
determines how closely individual process trajectories follow a deterministic
approximation of the differential equation. We provide estimates for trajec-
tories and especially the variance function of the drift process. At each fixed
time point, the proposed empirical dynamic model implies a decomposition
of the derivative of the process underlying the longitudinal data into a com-
ponent explained by a linear component determined by a varying coefficient
function dynamic equation and an orthogonal complement that corresponds
to the drift process. An enhanced perturbation result enables us to obtain im-
proved asymptotic convergence rates for eigenfunction derivative estimation
and consistency for the varying coefficient function and the components of
the drift process. We illustrate the differential equation with an application to
the dynamics of on-line auction data.

1. Introduction. Recently, there has been increasing interest in analyzing on-
line auction data and in inferring the underlying dynamics that drive the bidding
process. Each series of price bids for a given auction corresponds to pairs of ran-
dom bidding times and corresponding bid prices generated whenever a bidder
places a bid [Jank and Shmueli (2005, 2006), Bapna, Jank and Shmueli (2008),
Reddy and Dass (2006)]. Related longitudinal data where similar sparsely and
irregularly sampled noisy measurements are obtained are abundant in the social
and life sciences; for example, they arise in longitudinal growth studies. While
more traditional approaches of functional data analysis require fully or at least
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densely observed trajectories [Kirkpatrick and Heckman (1989), Ramsay and Sil-
verman (2005), Gervini and Gasser (2005)], more recent extensions cover the case
of sparsely observed and noise-contaminated longitudinal data [Yao, Müller and
Wang (2005), Wang, Carroll and Lin (2005)].

A common assumption of approaches for longitudinal data grounded in func-
tional data analysis is that such data are generated by an underlying smooth
and square integrable stochastic process [Sy, Taylor and Cumberland (1997),
Staniswalis and Lee (1998), Rice (2004), Zhao, Marron and Wells (2004), Hall,
Müller and Wang (2006)]. The derivatives of the trajectories of such processes are
central for assessing the dynamics of the underlying processes [Ramsay (2000),
Mas and Pumo (2007)]. Although this is difficult for sparsely recorded data, var-
ious approaches for estimating derivatives of individual trajectories nonparamet-
rically by pooling data from samples of curves and using these derivatives for
quantifying the underlying dynamics have been developed [Gasser et al. (1984),
Reithinger et al. (2008), Wang, Li and Huang (2008), Wang et al. (2008)]. Related
work on nonparametric methods for derivative estimation can be found in Gasser
and Müller (1984), Härdle and Gasser (1985) and on the role of derivatives for the
functional linear model in Mas and Pumo (2009).

We expand here on some of these approaches and investigate an empirical dy-
namic equation. This equation is distinguished from previous models that involve
differential equations in that it is empirically determined from a sample of tra-
jectories, and does not presuppose knowledge of a specific parametric form of a
differential equation which generates the data, except that we choose it to be a first
order equation. This stands in contrast to current approaches of modeling dynamic
systems, which are “parametric” in the sense that a prespecified differential equa-
tion is assumed. A typical example for such an approach has been developed by
Ramsay et al. (2007), where a prior specification of a differential equation is used
to guide the modeling of the data, which is done primarily for just one observed
trajectory. A problem with parametric approaches is that diagnostic tools to de-
termine whether these equations fit the data either do not exist, or where they do,
are not widely used, especially as nonparametric alternatives to derive differential
equations have not been available. This applies especially to the case where one
has data on many time courses available, providing strong motivation to explore
nonparametric approaches to quantify dynamics. Our starting point is a nonpara-
metric approach to derivative estimation by local polynomial fitting of the deriv-
ative of the mean function and of partial derivatives of the covariance function of
the process by pooling data across all subjects [Liu and Müller (2009)].

We show that each trajectory satisfies a first order stochastic differential equa-
tion where the random part of the equation resides in an additive smooth drift
process which drives the equation; the size of the variance of this process deter-
mines to what extent the time evolution of a specific trajectory is determined by
the nonrandom part of the equation over various time subdomains, and therefore is
of tantamount interest. We quantify the size of the drift process by its variance as a
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function of time. Whenever the variance of the drift process Z is small relative to
the variance of the process X, a deterministic version of the differential equation is
particularly useful as it then explains a large fraction of the variance of the process.

The empirical stochastic differential equation can be easily obtained for various
types of longitudinal data. This approach thus provides a novel perspective to as-
sess the dynamics of longitudinal data and permits insights about the underlying
forces that shape the processes generating the observations, which would be hard
to obtain with other methods. We illustrate these empirical dynamics by construct-
ing the stochastic differential equations that govern online auctions with sporadic
bidding patterns.

We now describe a data model for longitudinally collected observations, which
reflects that the data consist of sparse, irregular and noise-corrupted measurements
of an underlying smooth random trajectory for each subject or experimental unit
[Yao, Müller and Wang (2005)], the dynamics of which is of interest. Given n

realizations Xi of the underlying process X on a domain T and Ni of an integer-
valued bounded random variable N , we assume that Ni measurements Yij , i =
1, . . . , n, j = 1, . . . ,Ni , are obtained at random times Tij , according to

Yij = Xi(Tij ) + εij , Tij ∈ T ,(1)

where εij are zero mean i.i.d. measurement errors, with var(εij ) = σ 2, independent
of all other random components.

The paper is organized as follows. In Section 2, we review expansions in eigen-
functions and functional principal components, which we use directly as the ba-
sic tool for dimension reduction—alternative implementations with B-splines or
P-splines could also be considered [Shi et al. (1996), Rice and Wu (2001), Yao
and Lee (2006)]. We also introduce the empirical stochastic differential equation
and discuss the decomposition of variance it entails. Asymptotic properties of es-
timates for the components of the differential equation, including variance func-
tion of the drift process, coefficient of determination associated with the dynamic
system and auxiliary results on improved rates of convergence for eigenfunction
derivatives are the theme of Section 3. Background on related perturbation results
can be found in Dauxois, Pousse and Romain (1982), Fine (1987), Kato (1995),
Mas and Menneteau (2003). Section 4 contains the illustration of the differential
equation with auction data, followed by a brief discussion of some salient features
of the proposed approach in Section 5. Additional discussion of some preliminary
formulas is provided in Appendix A.1, estimation procedures are described in Ap-
pendix A.2, assumptions and auxiliary results are in Appendix A.3 and proofs in
Appendix A.4.

2. Empirical dynamics.

2.1. Functional principal components and eigenfunction derivatives. A key
methodology for dimension reduction and modeling of the underlying stochastic
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processes X that generate the longitudinal data, which usually are sparse, irreg-
ular and noisy as in (1), is Functional Principal Component Analysis (FPCA).
Processes are assumed to be square integrable with mean function E{X(t)} =
μ(t) and auto-covariance function cov{X(t),X(s)} = G(t, s), s, t ∈ T , which is
smooth, symmetric and nonnegative definite. Using G as kernel in a linear opera-
tor leads to the Hilbert–Schmidt operator (Gf )(t) = ∫T G(t, s)f (s) ds. We denote
the ordered eigenvalues (in declining order) of this operator by λ1 > λ2 > · · · ≥ 0
and the corresponding orthonormal eigenfunctions by φk(t). We assume that all
eigenvalues are of multiplicity 1 in the sequel.

It is well known that the kernel G has the representation G(t, s) =∑∞
k=1 λk ×

φk(t)φk(s) and the trajectories generated by the process satisfy the Karhunen–
Loève representation [Grenander (1950)] Xi(t) = μ(t) +∑∞

k=1 ξikφk(t). Here the
ξik = ∫T {Xi(t)−μ(t)}φk(t) dt , k = 1,2, . . . , i = 1, . . . , n, are the functional prin-
cipal components (FPCs) of the random trajectories Xi . The ξk are uncorrelated
random variables with E(ξk) = 0 and Eξ2

k = λk , with
∑

k λk < ∞. Upon differen-
tiating both sides, one obtains

X
(1)
i (t) = μ(1)(t) +

∞∑
k=1

ξikφ
(1)
k (t),(2)

where μ(1)(t) and φ
(1)
k (t) are the derivatives of mean and eigenfunctions.

The eigenfunctions φk are the solutions of the eigen-equations
∫

G(t, s) ×
φk(s) ds = λkφk(t), under the constraint of orthonormality. Under suitable reg-
ularity conditions, one observes

d

dt

∫
T

G(t, s)φk(s) ds = λk

d

dt
φk(t),

(3)

φ
(1)
k (t) = 1

λk

∫
T

∂

∂t
G(t, s)φk(s) ds,

which motivates corresponding eigenfunction derivative estimates. A useful repre-
sentation is

cov
{
X(ν1)(t),X(ν2)(s)

}=
∞∑

k=1

λkφ
(ν1)
k (t)φ

(ν2)
k (s),

(4)
ν1, ν2 ∈ {0,1}, s, t ∈ T ,

which is an immediate consequence of the basic properties of the functional prin-
cipal components ξk . For more details and discussion, we refer to Appendix A.1.

It is worthwhile to note that the representation (2) does not correspond to the
Karhunen–Loève representation of the derivatives, which would be based on or-
thonormal eigenfunctions of a linear Hilbert–Schmidt operator defined by the
covariance kernel cov{X(1)(t),X(1)(s)}. A method to obtain this representation
might proceed by first estimating cov{X(1)(t),X(1)(s)} using (4) for ν1 = ν2 = 1
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and suitable estimates φ
(1)
k for eigenfunction derivatives, then directly decom-

posing cov{X(1)(t),X(1)(s)} into eigenfunctions and eigenvalues. This leads to
cov{X(1)(t),X(1)(s)} =∑∞

k=1 λk,1φk,1(t)φk,1(s) and the Karhunen–Loève repre-

sentation X
(1)
i (t) = μ(1)(t) +∑∞

k=1 ξik,1φk,1(t), with orthonormal eigenfunctions
φk,1 [Liu and Müller (2009)].

2.2. Empirical stochastic differential equation. In the following we consider
differentiable Gaussian processes, for which the differential equation introduced
below automatically applies. In the absence of the Gaussian assumption, one may
invoke an alternative least squares-type interpretation. Gaussianity of the processes
implies the joint normality of centered processes {X(t) − μ(t),X(1)(t) − μ(1)(t)}
at all points t ∈ T , so that(

X(1)(t) − μ(1)(t)

X(t) − μ(t)

)

=

⎛
⎜⎜⎜⎜⎝

∞∑
k=1

ξkφ
(1)
k (t)

∞∑
k=1

ξkφk(t)

⎞
⎟⎟⎟⎟⎠(5)

∼ N2

⎛
⎜⎜⎜⎜⎝
(

0
0

)
,

⎛
⎜⎜⎜⎜⎝

∞∑
k=1

λkφ
(1)
k (t)2

∞∑
k=1

λkφ
(1)
k (t)φk(t)

∞∑
k=1

λkφ
(1)
k (t)φk(t)

∞∑
k=1

λkφk(t)
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ .

This joint normality immediately implies a “population” differential equation
of the form E{X(1)(t) − μ(1)(t)|X(t)} = β(t){X(t) − μ(t)}, as has been observed
in Liu and Müller (2009); for additional details see Appendix A.1. However, it is
considerably more interesting to find a dynamic equation which applies to the indi-
vidual trajectories of processes X. This goal necessitates inclusion of a stochastic
term which leads to an empirical stochastic differential equation that governs the
dynamics of individual trajectories Xi .

THEOREM 1. For a differentiable Gaussian process, it holds that

X(1)(t) − μ(1)(t) = β(t){X(t) − μ(t)} + Z(t), t ∈ T ,(6)

where

β(t) = cov{X(1)(t),X(t)}
var{X(t)} =

∑∞
k=1 λkφ

(1)
k (t)φk(t)∑∞

k=1 λkφk(t)2

(7)

= 1

2

d

dt
log[var{X(t)}], t ∈ T ,
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and Z is a Gaussian process such that Z(t),X(t) are independent at each t ∈ T
and where Z is characterized by E{Z(t)} = 0 and cov{Z(t),Z(s)} = Gz(t, s),
with

Gz(t, s) =
∞∑

k=1

λkφ
(1)
k (t)φ

(1)
k (s) − β(t)

∞∑
k=1

λkφk(t)φ
(1)
k (s)

(8)

− β(s)

∞∑
k=1

λkφ
(1)
k (t)φk(s) + β(t)β(s)

∞∑
k=1

λkφk(t)φk(s).

Equation (6) provides a first order linear differential equation which includes
a time-varying linear coefficient function β(t) and a random drift process Z(t).
The process Z “drives” the equation at each time t . It is square integrable and
possesses a smooth covariance function and smooth trajectories. It also provides
an alternative characterization of the individual trajectories of the process. The
size of its variance function var(Z(t)) determines the importance of the role of the
stochastic drift component.

We note that the assumption of differentiability of the process X in Theorem 1
can be relaxed. It is sufficient to require weak differentiability, assuming that
X ∈ W 1,2, where H 1 = W 1,2 denotes the Sobolev space of square integrable func-
tions with square integrable weak derivative [Ziemer (1989)]. Along these lines,
equation (6) may be interpreted as a stochastic Sobolev embedding. Observe also
that the drift term Z can be represented as an integrated diffusion process. Upon
combining (2) and (6), and observing that functional principal components can be
represented as ξk = √

λk/γk

∫
T hk(u) dW(u), where hk is the kth eigenfunction of

the Wiener process W on domain T = [0, T ] and γk the associated eigenvalue,
such a representation is given by

Z(t) =
∞∑

k=1

√
λk

2T 3 (2k − 1)π

∫ T

0
sin
{
(2k − 1)π

2T
u

}{
φ

(1)
k (t) − β(t)φ(t)

}
dW(u).

Another observation is that the joint normality in (5) can be extended to joint
normality for any finite number of derivatives, assuming these are well defined.
Therefore, higher order stochastic differential equations can be derived analo-
gously to (6). However, these higher-order analogues are likely to be much less
relevant practically, as higher-order derivatives of mean and eigenfunctions cannot
be well estimated for the case of sparse noisy data or even denser noisy data.

Finally, it is easy to see that the differential equation (6) is equivalent to the
following stochastic integral equation:

X(t) = X(s) + {μ(t) − μ(s)}
+
∫ t

s
β(u){X(u) − μ(u)}du +

∫ t

s
Z(u)du(9)

for any s, t ∈ T ,0 ≤ s < t,
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in the sense that X is the solution of both equations. For a domain with left end-
point at time 0, setting s = 0 in (9) then defines a classical initial value problem.
Given a trajectory of the drift process Z and a varying coefficient function β , one
may obtain a solution for X numerically by Euler or Runga–Kutta integration or
directly by applying the known solution formula for the initial value problem of an
inhomogeneous linear differential equation.

2.3. Interpretations and decomposition of variance. We note that equations
(6) and (9) are of particular interest on domains T or subdomains defined by those
times t for which the variance function var{Z(t)} is “small.” From (7) and (8) one
finds

V (t) = var{Z(t)}
= (var

{
X(1)(t)

}
var{X(t)} − [cov

{
X(1)(t),X(t)

}]2)
/var{X(t)}

(10)

=
( ∞∑

k=1

λk

(
φ

(1)
k (t)

)2 ∞∑
k=1

λkφ
2
k (t) −

{ ∞∑
k=1

λkφ
(1)
k (t)φk(t)

}2)

/ ∞∑
k=1

λkφ
2
k (t).

On subdomains with small variance function, the solutions of (6) will not deviate
too much from the solutions of the approximating equation

X(1)(t) − μ(1)(t) = β(t){X(t) − μ(t)}, t ∈ T .(11)

In this situation, the future changes in value of individual trajectories are highly
predictable and the interpretations of the dynamic behavior of processes X ob-
tained from the shape of the varying coefficient function β(t) apply at the individ-
ual level.

If β(t) < 0, the dynamic behavior can be characterized as “dynamic regres-
sion to the mean”; a trajectory which is away from (above or below) the mean
function μ at time t is bound to move closer toward the mean function μ as time
progresses beyond t . Similarly, if β(t) > 0, trajectories will exhibit “explosive” be-
havior, since deviations from the mean (above or below) at time t will be reinforced
further as time progresses, so that trajectories are bound to move further and fur-
ther away from the population mean trajectory. Intermediate cases arise when the
function β changes sign, in which case the behavior will switch between explosive
and regression to the mean, depending on the time subdomain. Another situation
occurs on subdomains where both β and var(Z(t)) are very small, in which case
the deviation of the derivative of an individual trajectory from the population mean
derivative will also be small which means that trajectory derivatives will closely
track the population mean derivative on such subdomains.

The independence of Z(t) and X(t) means that the right-hand side of (6) pro-
vides an orthogonal decomposition of X(1)(t) into the two components β(t)X(t)
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and Z(t) such that

var
{
X(1)(t)

}= β(t)2 var{X(t)} + var{Z(t)}.
It is therefore of interest to determine the fraction of the variance of X(1)(t) that is
explained by the differential equation itself, that is, the “coefficient of determina-
tion”

R2(t) = var{β(t)X(t)}
var{X(1)(t)} = 1 − var{Z(t)}

var{X(1)(t)} ,(12)

which is seen to be equivalent to the squared correlation between X(t),X(1)(t),

R2(t) = [cov{X(t),X(1)(t)}]2

var{X(t)}var{X(1)(t)} = {∑∞
k=1 λkφ

(1)
k (t)φk(t)}2∑∞

k=1 λkφk(t)2∑∞
k=1 λkφ

(1)
k (t)2

.(13)

We are then particularly interested in subdomains of T where R2(t) is large,
say, exceeds a prespecified threshold of 0.8 or 0.9. On such subdomains the drift
process Z is relatively small compared to X(1)(t) so that the approximating deter-
ministic first order linear differential equation (11) can substitute for the stochastic
dynamic equation (6). In this case, short-term prediction of X(t +�) may be possi-
ble for small �, by directly perusing the approximating differential equation (11).

It is instructive to visualize an example of the function R2(t) for the case of
fully specified eigenfunctions and eigenvalues. Assuming that the eigenfunctions
correspond to the trigonometric orthonormal system {√2 cos(2kπt), k = 1,2, . . .}
on [0,1], we find from (13)

R2(t) =
[∑

λkk cos(2kπt) sin(2kπt)
]2

/[∑
λk(cos(2kπt))2

∑
λkk(sin(2kπt))2

]
, t ∈ [0,1].

Choosing λk = k−4, λk = 2−k and numerically approximating these sums, one ob-
tains the functions R2(t) as depicted in Figure 1. This illustration shows that the
behavior of this function often will fluctuate between small and large values and
also depends critically on both the eigenvalues and the shape of the eigenfunctions.

3. Asymptotic properties. We obtain asymptotic consistency results for esti-
mators of the varying coefficient functions β , for the variance function var{Z(t)}
of the drift process and for the variance explained at time t by the deterministic part
(11) of the stochastic equation (6), quantified by R2(t). Corresponding estimators
result from plugging in estimators for the eigenvalues λk , eigenfunctions φk and
eigenfunction derivatives φ

(1)
k into the representations (7) for the function β(t),

(10) for the variance function of Z and (13) for R2(t). Here one needs to truncate
the expansions at a finite number K = K(n) of included eigen-components.

Details about the estimation procedures, which are based on local linear smooth-
ing of one- and two-dimensional functions, are deferred to Appendix A.2. Our
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FIG. 1. “Coefficient of determination” functions R2(t) (12), (13), quantifying the fraction of vari-
ance explained by the deterministic part of the dynamic equation (6), illustrated for the trigono-
metric basis {√2 cos(2kπt), k = 1,2, . . .} on [0,1] and eigenvalue sequences λk = k−4 (solid) and
λk = 2−k (dashed).

asymptotic consistency results focus on L2 convergence rates. They peruse aux-
iliary results on the convergence of estimates of eigenvalues, eigenfunctions and
eigenfunction derivatives, complementing and improving upon related results of
Liu and Müller (2009), which were derived for convergence in the sup norm. Im-
proved rates of convergence in the L2 distance are the consequence of a special
decomposition that we employ in the proofs to overcome the difficulty caused by
the dependence of the repeated measurements.

Required regularity conditions include assumptions for the distribution of the
design points, behavior of eigenfunctions φk and eigenvalues λk as their order
k increases and the large sample behavior of the bandwidths hμ,0, hμ,1 for the
estimation of the mean function μ and its first derivative μ(1)(t), and hG,0, hG,1
for the estimation of the covariance surface and its partial derivative. We note that
extremely sparse designs are covered, with only two measurements per trajectory;
besides being bounded, the number of measurements Ni for the ith trajectory is
required to satisfy P(Ni ≥ 2) > 0.

Specifically, for the observations (Tij , Yij ), i = 1, . . . , n, j = 1, . . . ,Ni , made
for the ith trajectory, we require that:

(A1) Ni are random variables with Ni
i.i.d.∼ N , where N is a bounded positive dis-

crete random variable with and P {N ≥ 2} > 0, and ({Tij , j ∈ Ji}, {Yij , j ∈
Ji}) are independent of Ni , for Ji ⊆ {1, . . . ,Ni}.

Writing Ti = (Ti1, . . . , TiNi
)T and Yi = (Yi1, . . . , YiNi

)T , the triples {Ti ,Yi ,Ni}
are assumed to be i.i.d. For the bandwidths used in the smoothing steps for μ(t)
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and μ(1)(t) in (21), G(t, s) and G(1,0)(t, s) in (22), we require that, as n → ∞,

(A2) max(hμ,0, hμ,1, hG,0, hG,1) → 0, nhμ,0 → ∞, nh3
μ,1 → ∞, nh2

G,0 → ∞,

nh4
G,1 → ∞.

To characterize the behavior of estimated eigenfunction derivatives φ̂(1)(t), define

δ1 = λ1 − λ2, δk = min
j≤k

(λj−1 − λj , λj − λj+1), k ≥ 2.(14)

For the kernels used in the local linear smoothing steps and underlying density
and moment functions, we require assumptions (B1) and (B2) in the Appendix.
Denote the L2 norm by ‖f ‖ = {∫T f 2(t) dt}1/2, the Hilbert–Schmidt norm by
‖�‖s = {∫T

∫
T {�2(t, s) dt ds}1/2 and also define ‖�‖2

u = {∫T �2(t, t) dt}1/2.
The following result provides asymptotic rates of convergence in the L2 norm

for the auxiliary estimates of mean functions and their derivatives as well as co-
variance functions and their partial derivatives, which are briefly discussed in Ap-
pendix A.2. A consequence is a convergence result for the eigenfunction derivative
estimates φ̂

(1)
k , with constants and rates that hold uniformly in the order k ≥ 1.

THEOREM 2. Under (A1) and (A2) and (B1)–(B3), for ν ∈ {0,1},
∥∥μ̂(ν) − μ(ν)

∥∥= Op

(
1√

nh2ν+1
μ,ν

+ h2
μ,ν

)
,

(15) ∥∥Ĝ(ν,0) − G(ν,0)
∥∥
s = Op

(
1√

nhν+1
G,ν

+ h2
G,ν

)
.

For φ
(1)
k (t) corresponding to λk of multiplicity 1,∥∥φ̂(1)

k (t) − φ
(1)
k (t)

∥∥
(16)

= Op

(
1

λk

{
1√

nh2
G,1

+ h2
G,1 + 1

δk

(
1√

nhG,0
+ h2

G,0

)})
,

where the Op(·) term in (16) is uniform in k ≥ 1.

An additional requirement is that variances of processes X and X(1) are bounded
above and below, since these appear in the denominators of various representa-
tions, for example, in (10) and (13),

(A3) inft∈T G(ν,ν)(s, s) ≥ c > 0 and ‖G(ν,ν)‖u < ∞ for ν = 0,1,

implying that ‖G(ν,ν)‖s < ∞ by the Cauchy–Schwarz inequality. Define remain-
der terms

RK,ν(t) =
∞∑

k=K+1

λk

{
φ(ν)(t)

}2
, R∗

K,ν(s, t) =
∞∑

k=K+1

λkφ
(ν)(s)φ(ν)(t);(17)
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by the Cauchy–Schwarz inequality, ‖R∗
K,ν‖s ≤ ‖RK,ν‖u.

In order to obtain consistent estimates of various quantities, a necessary require-
ment is that the first K eigen-terms approximate the infinite-dimensional process
sufficiently well. The increase in the sequence K = K(n) as n → ∞ therefore
needs to be tied to the spacing and decay of eigenvalues,

(A4) K = o
(
min

{√
nh2

G,1, h
−2
G,1

})
,

K∑
k=1

δ−1
k = o

(
min

(√
nhG,0, h

−2
G,0

})
,

max
ν=0,1

‖RK,ν‖ → 0 as n → ∞.

If the eigenvalues decrease rapidly and merely a few leading terms are needed,

condition (A4) is easily satisfied. We use “
p�” to connect two terms which are

asymptotically of the same order in probability, that is, the terms are Op of each
other. Define the sequence

αn = K
{(√

nh2
G,1
)−1 + h2

G,1
}+

(
K∑

k=1

δ−1
k

){(√
nhG,0

)−1 + h2
G,0
}
.(18)

Note that cov{X(1)(s),X(1)(t)} = G(1,1)(s, t) = ∑∞
k=1 λkφ

(1)
k (s)φ

(1)
k (t) with

corresponding plug-in estimate Ĝ
(1,1)
K (s, t) =∑K

k=1 λ̂kφ̂
(1)
k (s)φ̂

(1)
k (t), where K =

K(n) is the included number of eigenfunctions. The plug-in estimate for β(t) is
based on (7) and given by β̂K(t) =∑K

k=1 λ̂kφ̂
(1)
k (t)φ̂k(t)/

∑K
k=1 λ̂kφ̂k(t)

2 and anal-
ogously the plug-in estimate Ĝz,K of Gz is based on representation (8), using the
estimate β̂K . In a completely analogous fashion one obtains the estimates R̂2

K(t)

of R2(t) from (13) and V̂K(t) of the variance function V (t) = var(Z(t)) of the
drift process from (10). The L2 convergence rates of these estimators of various
components of the dynamic model (6) are given in the following result.

THEOREM 3. Under (A1)–(A4) and (B1)–(B3),∥∥Ĝ(1,1)
K − G(1,1)

∥∥
s = Op(αn + ‖R∗

K,1‖s),
(19) ∥∥Ĝ(1,1)

K − G(1,1)
∥∥
u = Op(αn + ‖RK,1‖),

‖β̂K − β‖ p� ‖Ĝz,K − Gz‖s

p� ‖Ĝz,K − Gz‖u

p� ‖R̂2
K − R2‖ p� ‖V̂K − V ‖(20)

= Op(αn + ‖RK,0‖ + ‖RK,1‖).
The weak convergence and L2 consistency for the estimated eigenvalues {ρk}

and eigenfunctions {ψk} of the drift process Z is an immediate consequence of
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this result. To see this, one may use supk≥1 |ρ̂k − ρk| = Op(‖Ĝz − Gz‖s) and

‖ψ̂k −ψk‖ = δ∗−1
k Op(‖Ĝz −Gz‖s) where Ĝz is any estimate of Gz [Bosq (2000)].

Here the Op(·) terms are uniform in k and δ∗
1 = ρ1 − ρ2, δ

∗
k = minj≤k(ρj−1 −

ρj , ρj − ρj+1) for k ≥ 2.

4. Application to online auction data.

4.1. Data and population level analysis. To illustrate our methods, we analyze
the dynamic system corresponding to online auction data, specifically using eBay
bidding data for 156 online auctions of Palm Personal Digital Assistants in 2003
(courtesy of Wolfgang Jank). The data are “live bids” that are entered by bidders at
irregular times and correspond to the actual price a winning bidder would pay for
the item. This price is usually lower than the “willingness-to-pay” price, which is
the value a bidder enters. Further details regarding the proxy bidding mechanism
for the 7-day second-price auction design that applies to these data can be found
in Jank and Shmueli (2005, 2006), Liu and Müller (2008, 2009).

The time unit of these 7-day auctions is hours and the domain is the interval
[0,168]. Adopting the customary approach, the bid prices are log-transformed
prior to the analysis. The values of the live bids Yij are sampled at bid arrival times
Tij , where i = 1, . . . ,156 refers to the auction index and j = 1, . . . ,Ni to the total
number of bids submitted during the ith auction; the number of bids per auction
is found to be between 6 and 49 for these data. We adopt the point of view that
the observed bid prices result from an underlying price process which is smooth,
where the bids themselves are subject to small random aberrations around underly-
ing continuous trajectories. Since there is substantial variability of little interest in
both bids and price curves during the first three days of an auction, when bid prices
start to increase rapidly from a very low starting point to more realistic levels, we
restrict our analysis to the interval [96,168] (in hours), thus omitting the first three
days of bidding. This allows us to focus on the more interesting dynamics in the
price curves taking place during the last four days of these auctions.

Our aim is to explore the price dynamics through the empirical stochastic dif-
ferential equation (6). Our study emphasizes description of the dynamics over pre-
diction of future auction prices and consists of two parts: a description of the dy-
namics of the price process at the “population level” which focuses on patterns
and trends in the population average and is reflected by dynamic equations for
conditional expectations. The second and major results concern the quantification
of the dynamics of auctions at the individual or “auction-specific level” where one
studies the dynamic behavior for each auction separately, but uses the informa-
tion gained across the entire sample of auctions. Only the latter analysis involves
the stochastic drift term Z in the stochastic differential equation (6). We begin by
reviewing the population level analysis, which is characterized by the determinis-
tic part of (6), corresponding to the equation E(X(1)(t) − μ(1)(t)|X(t) − μ(t)) =
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FIG. 2. Smooth estimate of the mean function of log(Price) in the left panel and of its first derivative
in the right panel.

β(t){X(t)−μ(t)}. This equation describes a relationship that holds for conditional
means but not necessarily for individual trajectories.

For the population level analysis, we require estimates of the mean price curve
μ and its first derivative μ(1), and these are obtained by applying linear smoothers
to (21) to the pooled scatterplots that are displayed in Figure 2 (for more details,
see Appendix A.2). One finds that both log prices and log price derivatives are
increasing throughout, so that at the log-scale the price increases are accelerating
in the mean as the auctions proceed.

A second ingredient for our analysis are estimates for the eigenfunctions and
eigenvalues (details in Appendix A.2). Since the first three eigenfunctions were
found to explain 84.3%, 14.6% and 1.1% of the total variance, three components
were selected. The eigenfunction estimates are shown in the left panel of Figure 3,
along with the estimates of the corresponding eigenfunction derivatives in the right
panel. For the interpretation of the eigenfunctions it is helpful to note that the sign
of the eigenfunctions is arbitrary. We also note that variation in the direction of the
first eigenfunction φ1 corresponds to the major part of the variance. The variances
λ1φ

2
1(t) that are attributable to this eigenfunction are seen to steadily decrease as t

is increasing, so that this eigenfunction represents a strong trend of higher earlier
and smaller later variance in the log price trajectories.

The contrast between large variance of the trajectories at earlier times and
smaller variances later reflects the fact that auction price trajectories are less de-
termined early on when both relatively high as well as low prices are observed,
while at later stages prices differ less as the end of the auction is approached
and prices are constrained into a narrower range. Correspondingly, the first eigen-
function derivative is steadily increasing (decreasing if the sign is switched), with



EMPIRICAL DYNAMICS 3471

FIG. 3. Smooth estimates of the first (solid), second (dashed) and third (dotted) eigenfunctions of

process X (left panel) and of their derivatives (right panel), φ̂
(1)
1 (solid), φ̂

(1)
2 (dashed) and φ̂

(1)
3

(dash-dotted).

notably larger increases (decreases) both at the beginning and at the end and a
relatively flat positive plateau in the middle part.

The second eigenfunction corresponds to a contrast between trajectory levels
during the earlier and the later part of the domain, as is indicated by its steady
increase and the sign change, followed by a slight decrease at the very end. This
component thus reflects a negative correlation between early and late log price
levels. The corresponding derivative is positive and flat, with a decline and nega-
tivity toward the right endpoint. The third eigenfunction, explaining only a small
fraction of the overall variance, reflects a more complex contrast between early
and late phases on one hand and a middle period on the other, with equally more
complex behavior reflected in the first derivative.

The eigenfunctions and their derivatives in conjunction with the eigenvalues
determine the varying coefficient function β , according to (7). The estimate of
this function is obtained by plugging in the estimates for these quantities and is
visualized in the left panel of Figure 5, demonstrating small negative values for
the function β throughout most of the domain, with a sharp dip of the function
into the negative realm near the right end of the auctions.

For subdomains of functional data, where the varying coefficient or “dynamic
transfer” function β is negative, as is the case for the auction data throughout
the entire time domain, one may interpret the population equation E(X(1)(t) −
μ(1)(t)|X(t) − μ(t)) = β(t){X(t) − μ(t)} as indicating “dynamic regression to
the mean.” By this we mean the following: when a trajectory value at a current
time t falls above (resp., below) the population mean trajectory value at t , then
the conditional mean derivative of the trajectory at t falls below (resp., above)
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the mean. The overall effect of this negative association is that the direction of the
derivative is such that trajectories tend to move toward the overall population mean
trajectory as time progresses.

Thus, our findings for the auction data indicate that “dynamic regression to the
mean” takes place to a small extent throughout the auction period and to a larger
extent near the right tail, at the time when the final auction price is determined
[see also Liu and Müller (2009)]. One interpretation is that at the population level,
prices are self-stabilizing, which tends to prevent price trajectories running away
toward levels way above or below the mean trajectory. This self-stabilization fea-
ture gets stronger toward the end of the auction, where the actual “value” of the
item that is being auctioned serves as a strong homogenizing influence. This means
that in a situation where the current price level appears particularly attractive, the
expectation is that the current price derivative is much higher than for an auction
with an unattractive (from the perspective of a buyer) current price, for which then
the corresponding current price derivative is likely lower. The net effect is a trend
for log price trajectories to regress to the mean trajectory as time progresses.

4.2. Auction-specific dynamics. We illustrate here the proposed stochastic dif-
ferential equation (6). First estimating the function β , we obtain the trajectories Zi

of the drift process. These trajectories are presented in Figure 4 for the entire sam-
ple of auctions. They quantify the component of the derivative process X(1) that is
left unexplained by the varying coefficient function and linear part of the dynamic
model (6). The trajectories Zi exhibit fluctuating variances across various sub-
domains. The subdomains for which these variances are small are those where the
deterministic approximation (11) to the stochastic differential equation works best.

FIG. 4. Smooth estimates for the trajectories of the drift process Z.
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FIG. 5. Left: smooth estimate of the dynamic varying coefficient function β . Right: smooth estimates
of the first (solid), second (dashed) and third (dash-dotted) eigenfunction of Z based on (8).

It is noteworthy that the variance is particularly small on the subdomain starting at
around 158 hours toward the endpoint of the auction at 168 hours, since auction
dynamics are of most interest during these last hours. It is well known that toward
the end of the auctions, intensive bidding takes place, in some cases referred to as
“bid sniping,” where bidders work each other into a frenzy to outbid each other in
order to secure the item that is auctioned.

The right panel of Figure 5 shows the first three eigenfunctions of Z, which
are derived from the eigenequations derived from estimates Ĝz,K of covariance
kernels Gz,K (8) that are obtained as described after (22). In accordance with the
visual impression of the trajectories of Z in Figure 4, the first eigenfunction reflects
maximum variance in the middle portion of the domain and very low variance at
both ends. Interestingly, the second eigenfunction reflects high variance at the left
end of the domain where prices are still moving upward quite rapidly, and very
low variance near the end of the auction. This confirms that overall variation is
large in the middle portion of the auctions, so that the drift process in (6) plays an
important role in that period.

Further explorations of the modes of variation of the drift process Z can be
based on the functional principal component scores of Zi . Following Jones and
Rice (1992), we identify the three auctions with the largest absolute values of the
scores. A scatterplot of second and first principal component scores with these auc-
tions highlighted can be seen in the left upper panel of Figure 6. The corresponding
individual (centered) trajectories of the drift process Z are in the right upper panel,
and the corresponding trajectories of centered processes X and X(1) in the left and
right lower panels. The highlighted trajectories of Z are indeed similar to the cor-
responding eigenfunctions (up to sign changes), and we find that they all exhibit
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FIG. 6. Top left: point cloud corresponding to the three leading FPC scores of trajectories Zi ,
where the point marked by a circle corresponds to the auction with the largest (in absolute value)
first score, the point marked with a square to the auction with the largest second score and the point
marked with a “triangle” to the auction with the largest third score, respectively. Top right: the
trajectories Zi of the drift process for these three auctions, where the solid curve corresponds to
the trajectory of the “circle” auction, the dashed curve to the “square” auction and the dash-dotted
curve to the “triangle” auction. Bottom left: corresponding centered trajectories Xi . Bottom right:

corresponding centered trajectory derivatives X
(1)
i .

the typical features of small variance near the end of the auction for Z and X and
of large variance for X(1).

For the two trajectories corresponding to maximal scores for first and second
eigenfunction of Z we find that near the end of the auctions their centered deriva-
tives turn negative. This is in line with dynamic regression to the mean, or equiva-
lently, negative varying coefficient function β , as described in Section 4.1. Here the
trajectories for X at a current time t are above the mean trajectory, which means
the item is pricier than the average price at t . As predicted by dynamic regression
to the mean, log price derivative trajectories at t are indeed seen to be below the
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FIG. 7. Left: smooth estimates of the variance functions of X(1)(t) (dashed) and Z(t) (solid).
Right: smooth estimate of R2(t) (12), the variance explained by the deterministic part of the dynamic
equation at time t .

mean derivative trajectories at t . The trajectory corresponding to maximal score
for the third eigenfunction also follows dynamic regression to the mean: here the
trajectory for X is below the overall mean trajectory, so that the negative varying
coefficient function β predicts that the derivative trajectory X(1) should be above
the mean, which indeed is the case.

That the variance of the drift process Z is small near the endpoint of the auc-
tion is also evident from the estimated variance function V (t) = var(Z(t)) in the
left panel of Figure 7, overlaid with the estimated variance function var(X(1)(t))

of X(1). The latter is rapidly increasing toward the end of the auction, indicating
that the variance of the derivative process is very large near the auction’s end. This
means that price increases vary substantially near the end across auctions. The
large variances of derivatives coupled with the fact that var(Z(t)) is small near the
end of the auction implies that the deterministic part (11) of the empirical differ-
ential equation (6) explains a very high fraction of the variance in the data. This
corresponds to a very high, indeed close to the upper bound 1, value of the coeffi-
cient of determination R2(t) (12), (13) in an interval of about 10 hours before the
endpoint of an auction, as seen in the right panel of Figure 7. We therefore find that
the dynamics during the endrun of an auction can be adequately modeled by the
simple deterministic approximation (11) to the stochastic dynamic equation (6),
which always applies.

This finding is corroborated by visualizing the regressions of X(1)(t) versus
X(t) at various fixed times t . These regressions are linear in the Gaussian case
and may be approximated by a linear regression in the least squares sense in the
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FIG. 8. Regression of X
(1)
i (t) on Xi(t) (both centered) at t = 125 hours (left panel) and t = 161

hours (right panel), respectively, with regression slopes β(125) = −0.015 and coefficient of determi-
nation R2(125) = 0.28, respectively, β(161) = −0.072 and R2(161) = 0.99, demonstrating that the
deterministic part (11) of the empirical differential equation (6) explains almost the entire variance
of X(1) at t = 161 hours but only a fraction of variance at t = 125 hours.

non-Gaussian case. The scatterplots of X̂
(1)
i (t) − μ̂(1)(t) versus X̂i(t) − μ̂(t) for

times t = 125 hours and t = 161 hours (where the time domain of the auctions is
between 0 and 168 hours) are displayed in Figure 8. This reveals the relationships
to be indeed very close to linear. These are regressions through the origin. The
regression slope parameters are not estimated from these scatterplot data which are
contaminated by noise, but rather are obtained directly from (6), as they correspond
to β(t). Thus one simply may use the already available slope estimates, β̂(125) =
−0.015 and β̂(1) = −0.072. The associated coefficients of determination, also
directly estimated via (13) and the corresponding estimation procedure, are found
to be R̂2(125) = 0.28 and R̂2(161) = 0.99.

As the regression line fitted near the end of the auction at t = 161 hours explains
almost all the variance, the approximating deterministic differential equation (11)
can be assumed to hold at that time (and at later times as well, all the way to the
end of the auction). At t = 125 the regression line explains only a fraction of the
variance, while a sizable portion of variance resides in the drift process Z, so that
the stochastic part in the dynamic system (6) cannot be comfortably ignored in
this time range. These relationships can be used to predict derivatives of trajecto-
ries and thus price changes at time t for individual auctions, given their log price
trajectory values at t . We note that such predictions apply to fitted trajectories, not
for the actually observed prices which contain an additional random component
that is unpredictable, according to model (1). We find that at time t = 161, regres-
sion to the mean is observed at the level of individual auctions: an above (below)
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average log price level is closely associated with a below (above) average log price
derivative. This implies that a seemingly very good (or bad) deal tends to be not
quite so good (or bad) when the auction ends.

5. Discussion. The main motivation of using the dynamic system approach
based on (6) is that it provides a better description of the mechanisms that drive
longitudinal data but are not directly observable. The empirical dynamic equation
may also suggest constraints on the form of parametric differential equations that
are compatible with the data. In the auction example, the dynamic equation quanti-
fies both the nature and extent of how expected price increases depend on auction
stage and current price level. This approach is primarily phenomenological and
does not directly lend itself to the task of predicting future values of individual
trajectories.

That expected conditional trajectory derivatives satisfy a first-order differential
equation model (which we refer to as the “population level” since this statement is
about conditional expectations) simply follows from Gaussianity and in particular
does not require additional assumptions. This suffices to infer the stochastic differ-
ential equation described in (5) which we term “empirical differential equation” as
it is determined by the data. Then the function R2, quantifying the relative contri-
bution of the drift process Z to the variance of X(1), determines how closely indi-
vidual trajectories follow the deterministic part of the equation. We could equally
consider stochastic differential equations of other orders, but practical considera-
tions favor the modeling with first-order equations.

We find in the application example that online auctions follow a dynamic re-
gression to the mean regime for the entire time domain, which becomes more
acute near the end of the auction. This allows us to construct predictions of log
price trajectory derivatives from trajectory levels at the same t . These predictions
get better toward the right endpoint of the auctions. This provides a cautionary
message to bidders, since an auction that looks particularly promising since it has
a current low log price trajectory is likely not to stay that way and larger than av-
erage price increases are expected down the line. Conversely, an auction with a
seemingly above average log price trajectory is likely found to have smaller than
average price increases down the line.

This suggests that bidders take a somewhat detached stance, watching auctions
patiently as they evolve. In particular, discarding auctions that appear overpriced
is likely not a good strategy as further price increases are going to be smaller
than the average for such auctions. It also implies that bid snipers are ill advised:
a seemingly good deal is not likely to stay that way, suggesting a more relaxed
stance. Conversely, a seller who anxiously follows the price development of an
item, need not despair if the price seems too low at a time before closing, as it is
likely to increase rapidly toward the end of the auction.

For prediction purposes, drift processes Zi for individual auctions are of great
interest. In time domains where their variance is large, any log price development
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is possible. Interestingly, the variance of drift processes is very small toward the
right tail of the auctions, which means that the deterministic part of the differential
equation (6) is relatively more important, and log price derivatives during the final
period of an auction become nearly deterministic and thus predictable.

Other current approaches of statistical modeling of differential equations for
time course data [e.g., Ramsay et al. (2007)] share the idea of modeling with a
first order equation. In all other regards these approaches are quite different, as
they are based on the prior notion that a differential equation of a particular and
known form pertains to the observed time courses and moreover usually have been
developed for the modeling of single time courses. This established methodology
does not take into account the covariance structure of the underlying stochastic
process. In contrast, this covariance structure is a central object in our approach
and is estimated nonparametrically from the entire ensemble of available data,
across all subjects or experiments.

APPENDIX

A.1. Additional details and discussion for preliminary formulas. For-
mula (4) is an extension of the covariance kernel representation in terms of
eigenfunctions, given by cov(X(t),X(s)) = ∑

λkφk(t)φk(s) [Ash and Gardner
(1975)], which itself is a stochastic process version of the classical multivari-
ate representation of a covariance matrix C in terms of its eigenvectors ek and
eigenvalues λk , C = ∑

λkeke
′
k . Specifically, using representation (2), one finds

cov(X(ν1)(t),X(ν2)(s)) = ∑
k,l cov(ξk, ξl)φ

(ν1)
k (t)φ

(ν2)
k (s), and (4) follows upon

observing that cov(ξk, ξl) = λk for k = l and = 0 for k �= l.
Regarding the “population differential equation” E{X(1)(t) − μ(1)(t)|X(t)} =

β(t){X(t) − μ(t)}, observe that for any jointly normal random vectors (U1,U2)

with mean 0 and covariance matrix C with elements c11, c12, c21 = c12, c22, it
holds that E(U2|U1) = (c21/c11)U1. Applying this to the jointly normal random
vectors in (5) then implies this population equation. The specific form for the func-
tion β in (7) is obtained by plugging in the specific terms of the covariance matrix
given on the right-hand side of (5).

Applying (4), observing var(X(t)) = ∑
k λkφk(t)

2, and then taking the log-
derivative leads to d

dt
log(var(X(t))) = 2[∑k λkφk(t)φ

(1)
k (t)]/[∑k λkφ

2
k (t)], estab-

lishing the last equality in representation (7).

A.2. Estimation procedures. Turning to estimation, in a first step we ag-
gregate measurements across all subjects into one “big” scatterplot and apply a
smoothing method that allows us to obtain the νth derivative of a regression func-
tion from scatterplot data. For example, in the case of local polynomial fitting,
given a univariate density function κ1 and bandwidth hμ,ν , one would minimize

n∑
i=1

Ni∑
j=1

κ1

(
Tij − t

hμ,ν

){
Yij −

ν+1∑
m=0

αm(Tij − t)m

}2

(21)
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for each t with respect to αm for m = 0, . . . , ν + 1, from which one obtains
μ̂(ν)(t) = α̂ν(t)ν! [Fan and Gijbels (1996)].

According to (3), we will also need estimates of ∂ν

∂tν
G(t, s) = G(ν,0). There are

various techniques available for this task. Following Liu and Müller (2009), to
which we refer for further details, using again local polynomial fitting, we mini-
mize the pooled scatterplot of pairwise raw covariances

n∑
i=1

∑
1≤j �=l≤Ni

κ2

(
Tij − t

hG,ν

,
Til − s

hG,ν

)
(22)

×
{
Gi(Tij , Til) −

(
ν+1∑
m=0

α1m(Tij − t)m + α21(Til − s)

)}2

for fixed (t, s) with respect to α1m and α21 for m = 1, . . . , ν + 1, where Gi(Tij ,

Til) = (Yij − μ̂(Tij ))(Yil − μ̂(Til)), j �= l, κ2 is a kernel chosen as a bivariate
density function, and hG,ν is a bandwidth. This leads to Ĝ(ν,0)(t, s) = α̂1ν(t, s)ν!.

The pooling that takes place in the scatterplots for estimating the derivatives of
μ and of G is the means to accomplish the borrowing of information across the
sample, which is essential to overcome the limitations of the sparse sampling de-
signs. We note that the case of no derivative ν = 0 is always included, and solving
the eigenequations on the left-hand side of (3) numerically for that case leads to
the required estimates λ̂1, λ̂2, . . . of the eigenvalues and φ̂1, φ̂2, . . . of the eigen-
functions. The estimates φ̂

(1)
1 , φ̂

(1)
2 , . . . of the eigenfunction derivatives are then

obtained from the right-hand side of (3), plugging in the estimates for eigenfunc-
tions and eigenvalues, followed by a numerical integration step.

The plug-in estimates, β̂K, Ĝz,K, V̂K, R̂2
K , are then obtained from the corre-

sponding representations, (7), (8), (10), (13), by including K leading components
in the respective sums. While for theoretical analysis and asymptotic consistency
one requires K = K(n) → ∞, the number of included eigen-terms K in practi-
cal data analysis can be chosen by various criteria, for example, AIC/BIC based
on marginal/conditional pseudo-likelihood or thresholding of the total variation
explained by the included components [Liu and Müller (2009)]. One key feature
of the covariance surface smoothing step in (22) is the exclusion of the diagonal
elements (for which j = l); the expected value for these elements includes the
measurement error variance σ 2 in addition to the variance of the process. The dif-
ference between a smoother that uses the diagonal elements only and the resulting
diagonal from the smoothing step (22) when no derivatives are involved can then
be used to find consistent estimates for the error variance σ 2 [Yao, Müller and
Wang (2005)].

To obtain estimates for the derivatives of the trajectories Xi , a realistic target is
the conditional expectation E{X(ν)

i (t)|Yi1, . . . , YiNi
}. It turns out that this condi-

tional expectation can be consistently estimated in the case of Gaussian processes
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by applying principal analysis by conditional expectation (PACE) [Yao, Müller
and Wang (2005)]. For Xi = (Xi(Ti1), . . . ,Xi(TiNi

))T , Yi = (Yi1, . . . , YiNi
)T ,

μi = (μ(Ti1), . . . ,μ(TiNi
))T , φik = (φk(Ti1), . . . , φk(TiNi

))T , if ξik and εij in (1)
are jointly Gaussian, then by standard properties of the Gaussian distribution,

E(ξik|Yi ) = λkφ
T
ik�

−1
Yi

(Yi − μi ),(23)

where �Yi
= cov(Yi ,Yi) = cov(Xi ,Xi)+σ 2INi

. This implies E(X
(ν)
i (t)|Yi1, . . . ,

YiNi
) = ∑∞

k=1 E(ξik|Yi )φ
(ν)
k (t) = {∑∞

k=1 λkφ
(ν)
k (t)φT

ik}�−1
Yi

(Yi − μi ), ν = 0,1.
The unknown quantities can be estimated by simply plugging in the variance,
eigenvalue, eigenfunction and eigenfunction derivative estimates discussed above,
again coupled with truncating the number of included components at K .

A.3. Additional assumptions and auxiliary results. Denote the densities of
T and (T1, T2) by f1(t), f2(t, s), and define an interior domain by T = [a, b] with
Tδ = [a − δ, b + δ] for some δ > 0. Regularity conditions for the densities and the
targeted moment functions as well as their derivatives are as follows, where �1, �2
are nonnegative integers:

(B1) f
(5)
1 (t) exists and is continuous on Tδ with f (t) > 0, ∂5

∂t�1 ∂s�2
f2(t, s) exists

and is continuous on T 2
δ for �1 + �2 = 5;

(B2) μ(5)(t) exists and is continuous on Tδ , ∂5

∂t�1 ∂s�2
G(t, s) exists and is continu-

ous on T 2
δ for �1 + �2 = 5.

We say that a bivariate kernel function κ2 is of order (ν, �), where ν is a multi-
index ν = (ν1, ν2), if∫ ∫

u�1v�2K2(u, v) dudv

(24)

=
⎧⎨
⎩

0, 0 ≤ �1 + �2 < �,�1 �= ν1, �2 �= ν2,
(−1)|ν|ν1!ν2!, �1 = ν1, �2 = ν2,
�= 0, �1 + �2 = �,

where |ν| = ν1 + ν2 < �. The univariate kernel κ1 is said to be of order (ν, �) for a
univariate ν = ν1, if (24) holds with �2 = 0 on the right-hand side, integrating only
over the argument u on the left-hand side. For the kernel functions κ1, κ2 used in
the smoothing steps to obtain estimates for μ(t) and μ(1)(t) in (21) and for G(t, s)

and G(1,0)(t, s) in (22) we assume

(B3) Kernel functions κ1 and κ2 are nonnegative with compact supports, bounded
and of order (0,2) and ((0,0),2), respectively.

The following lemma provides the weak L2 convergence rate for univari-
ate and bivariate weighted averages defined below. For arbitrary real functions
θ :�2 → � and θ∗ :�4 → �, define θ̃ (t) = E{θ(tij , Yij )|Tij = t} and θ̃∗(t) =
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E{θ∗(tij , til, Yij , Yil)|Tij = t, Til = s}, let θν(t) = θ̃ (ν)(t)f1(t) for a single index

ν and θ∗
ν (t) = f2(t, s)

∂ |ν|
∂ν1 ∂ν2 θ̃∗(t, s) for a multi-index ν = (ν1, ν2), and define the

weighted kernel averages, employing bandwidths h1, h2,

θ̂ (t) = 1

E(N)nhν+1
1

n∑
i=1

Ni∑
j=1

θ(Tij , Yij )κ1

(
t − Tij

h1

)
,(25)

θ̂∗(t, s) = 1

E{N(N − 1)}nh
|ν|+2
2

n∑
i=1

∑
1≤j �=l≤Ni

θ∗(Tij , Til, Yij , Yil)κ2

(26)

×
(

t − Tij

h2
,
s − Til

h2

)
.

For establishing convergence results for the general weighted averages (25), as-
sume that:

(B2†) Derivatives θ̃ (�)(t) exist and are continuous on Tδ , ∂5

∂t�1 ∂s�2
θ̃∗(t, s) exists

and is continuous on T 2
δ for �1 + �2 = �.

(B3†) The univariate kernel κ1 is of order (ν, �) and the bivariate kernel κ2 is of
order (ν, �).

LEMMA 1. Under (A1), (B1), (B2†), (B3†) and if max{h1, h2} → 0,
nh2ν+1

1 → ∞ and nh
2|ν|+2
2 → ∞, as n → ∞,

‖θ̂ − θν‖ = Op

(
1√

nh2ν+1
1

+ h�−ν
1

)
,

(27)

‖θ̂∗ − θ∗
ν ‖s = Op

(
1√

nh
|ν|+1
2

+ h
�−|ν|
2

)
.

A.4. Technical proofs.

PROOF OF THEOREM 1. Since X,X(1) are jointly Gaussian processes, it is
clear that Z is Gaussian. Formula (7) for β(t) is obtained by observing that
for joint Gaussian r.v.s, E{X(1)(t) − μ(1)(t)|X(t) − μ(t)} = [cov{X(1)(t),X(t)}/
var{X(t)}]{X(t) − μ(t)}. Then the properties of the functional principal compo-
nent scores lead directly to

cov
{
X(1)(t),X(t)

}=
∞∑

k=1

λkφ
(1)
k (t)φk(t), var{X(t)} =

∞∑
k=1

λkφk(t)
2,(28)

whence β(t) = E{X(1)(t) − μ(1)(t)|X(t) − μ(t)}. This implies E{Z(t)} = 0. Ac-
cording to (6), cov{Z(t),X(t)} = cov{X(1)(t),X(t)} − β(t)var{X(t)} = 0, for all
t ∈ T , using (28) and (7). This implies the independence of Z(t),X(t), due to the
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Gaussianity. Next observe cov{Z(t),Z(s)} = cov{X(1)(t) − β(t)X(t),X(1)(s) −
β(s)X(s)}, from which one obtains the result by straightforward calculation. �

PROOF OF LEMMA 1. Since Ni
i.i.d.∼ N and N is a bounded and integer-valued

random variable. Denote the upper bound by M . To handle the one-dimensional
case in (25), we observe

θ̂ (t) =
M∑

j=1

1

E(N)

1

nhν+1
1

n∑
i=1

θ(Tij , Yij )κ1

(
t − Tij

h1

)
1(Ni ≥ j)

≡
M∑

j=1

1

E(N)
θ̂νj (t),

where 1(·) is the indication function. Note that for each j , θ̂νj is obtained from
an i.i.d. sample. Slightly modifying the proof of Theorem 2 in Hall (1984) for a
kernel of order (ν, �) provides the weak convergence rate ‖θ̂νj − θνP (N ≥ j)‖ =
Op{(nh2ν+1

1 )−1/2 + h�−ν
1 }. It is easy to check that

∑M
j=1 P(N ≥ j) = E(N), as N

is a positive integer-valued random variable. Therefore,

‖θ̂ − θν‖ ≤
M∑

j=1

P(N ≥ j)

E(N)

∥∥∥∥ θ̂νj

P (N ≥ j)
− θν

∥∥∥∥= Op

(
1√

nh2ν+1
1

+ h�−ν
1

)
.

Analogously, for the two-dimensional case in (26), let

θ̂∗
νj = 1

nh
|ν|+2
2

n∑
i=1

θ∗(Tij , Til, Yij , Yil)κ2

(
t − Tij

h2
,
s − Til

h2

)
1{Ni ≥ max(j, l)},

and then θ̂∗
ν = ∑

1≤j �=l≤M [E{N(N − 1)}]−1θ̂∗
j . Similarly to the above, one has

‖θ̂∗
νj − θνP {N ≥ max(j, l)}‖s = Op{(nh

2|ν|+2
2 )−1/2 + h

�−|ν|
2 }. Again it is easy to

verify that E{N(N − 1)} =∑1≤j �=l≤M P {N ≥ max(j, l)}. The triangle inequality

for the L2 distance entails ‖θ̂∗ − θν‖s = Op{(nh
2|ν|+2
2 )−1/2 + h

�−|ν|
2 }. �

PROOF OF THEOREM 2. Note that the estimators μ̂, μ̂(1), Ĝ and Ĝ(1,0) all can
be written as functions of the general averages defined in (25), (26). Slightly mod-
ifying the proof of Theorem 1 in Liu and Müller (2009), with sup rates replaced
by the L2 rates given in Lemma 1, then leads to the optimal L2 weak convergence
rates for μ̂ν and Ĝ(ν,0) in (15).

For the convergence rate of φ̂(1), Lemma 4.3 in Bosq (2000) implies that

|λ̂k − λk| ≤ ‖Ĝ − G‖s, ‖φ̂k − φk‖ ≤ 2
√

2δ−1
k ‖Ĝ − G‖s,(29)

where δk is defined in (14) and Ĝ is an arbitrary estimate (or perturbation) of G.
Denote the linear operators generated from the kernels G(1,0) and Ĝ(1,0) by G(1,0),
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respectively, Ĝ(1,0). Noting that δk ≤ λk , one finds

∥∥φ(1)
k − φ

(1)
k

∥∥ ≤ 1

λ̂k

∥∥Ĝ(1,0)φ̂k − G(1,0)φk

∥∥+ ∥∥G(1,0)φk

∥∥ ·
∣∣∣∣ 1

λ̂k

− 1

λk

∣∣∣∣
p� 1

λk

{∥∥Ĝ(1,0) − G(1,0)
∥∥
s + ‖φ̂k − φk‖}+ |λ̂k − λk|

λ2
k

(30)

p� 1

λk

{∥∥Ĝ(1,0) − G(1,0)
∥∥
s + 1

δk

‖Ĝ − G‖s

}
,

which implies (16). �

PROOF OF THEOREM 3. From (29) it is easy to see that |λ̂k −λk| = op(‖φ̂k −
φk‖), and from both (29) and (30) that ‖φ̂k − φk‖ = op(‖φ̂(1)

k − φ
(1)
k ‖) uniformly

in k. One then finds that ‖Ĝ(1,1) − G(1,1)‖s is bounded in probability by

K∑
k=1

∥∥λ̂kφ̂
(1)
k φ̂

(1)
k − λkφ

(1)
k φ

(1)
k

∥∥
s +

∥∥∥∥∥
∞∑

k=K+1

λkφ
(1)
k φ

(1)
k

∥∥∥∥∥
s

p�
K∑

k=1

λk

∥∥φ̂(1)
k − φ

(1)
k

∥∥+ ‖R∗
K,1‖,

which implies that ‖Ĝ(1,1) − G(1,1)‖s = Op(αn + ‖R∗
K,1‖), where αn is defined

in (18) and the remainder terms in (17). Similar arguments lead to ‖Ĝ(1,1) −
G(1,1)‖u = Op(αn + ‖RK,1‖), noting ‖R∗

K,1‖ ≤ ‖RK,1‖ due to the Cauchy–
Schwarz inequality.

Regarding ‖β̂K − β‖, one has

‖β̂K − β‖ ≤ 1

inft G(t, t)

(
K∑

k=1

∥∥λ̂kφ̂kφ̂
(1)
k − λkφkφ

(1)
k

∥∥+
∥∥∥∥∥

K∑
k=1

λkφkφ
(1)
k

∥∥∥∥∥
)

+
∥∥∥∥

∑K
k=1 λ̂kφ̂kφ̂

(1)
k∑K

k=1 λ̂kφ̂
2
k

∑∞
k=1 λkφ

2
k

∥∥∥∥
(

K∑
k=1

‖λ̂kφ̂
2
k − λkφ

2
k‖ +

∥∥∥∥∥
∞∑

k=K+1

λkφ
2
k

∥∥∥∥∥
)

p�
K∑

k=1

λk

∥∥φ̂(1)
k − φ

(1)
k

∥∥+ ‖RK,0‖ +
√

‖RK,0‖ · ‖RK,1‖,

applying the Cauchy–Schwarz inequality to ‖∑∞
k=K+1 λkφkφ

(1)
k ‖. Observing√‖RK,0‖ · ‖RK,1‖ ≤ (‖RK,0‖+‖RK,1‖}/2 yields ‖β̂K −β‖ = Op(αn+‖RK,0‖+

‖RK,1‖).
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To study ‖Ĝz,K − Gz‖s , we investigate the L2 convergence rates of

I1 =
∥∥∥∥∥β̂K

K∑
k=1

λ̂kφ̂kφ̂
(1)
k − β

∞∑
k=1

λkφkφ
(1)
k

∥∥∥∥∥
s

, I2 = ‖β̂KĜKβ̂K − βGβ‖s,

where β (resp., β̂K ) and φk (resp., φ̂k) share the same argument, and we define

ĜK(t, s) = ∑K
k=1 λ̂φ̂k(t)φ̂k(s). In analogy to the above arguments, I1

p� ‖β̂K −
β‖+∑K

k=1 λk‖φ̂(1)
k −φ

(1)
k ‖+√‖RK,0‖ · ‖RK,1‖, I2 = ‖β̂K −β‖+∑K

k=1 λk‖φ̂k −
φk‖ + ‖RK,0‖. This leads to ‖Ĝz,K − Gz‖s = Op(αn + ‖RK,0‖ + ‖RK,1‖). The
same argument also applies to ‖Ĝz,K − Gz‖u. Next we study ‖R̂2

K − R2‖ and

find that ‖∑K
k=1 λ̂kφ̂

(ν1)
k φ̂

(ν2)
k −∑∞

k=1 λkφ
(ν1)φ(ν2)‖ p�∑K

k=1 λk(‖φ̂(ν1)
k − φ

(ν1)
k ‖ +

‖φ̂(ν2)
k −φ

(ν2)
k ‖)+‖RK,ν1‖+‖RK,ν2‖ = Op(αn +‖RK,ν1‖+‖RK,ν2‖). Analogous

arguments apply to ‖V̂K − V ‖, completing the proof. �
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