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Abstract: This paper proposes a nonparametric approach for jointly modelling lon-

gitudinal and survival data using functional principal components. The proposed

model is data-adaptive in the sense that it does not require pre-specified func-

tional forms for longitudinal trajectories and it automatically detects characteristic

patterns. The longitudinal trajectories observed with measurement error are rep-

resented by flexible basis functions, such as B-splines, and the model dimension

is reduced by functional principal component analysis. The relationship between

the longitudinal process and event history is assessed using Cox regression model.

Although the proposed model inherits the flexibility of a nonparametric approach,

the estimation procedure based on EM algorithm is intrinsically parametric, and

thus is simple and easy to implement. The computation is more efficient by re-

ducing the dimension of random coefficients, i.e., functional principal component

scores. The reduction of dimension achieved from eigen-decomposition also makes

the model particularly applicable for the sparse data often encountered in longi-

tudinal studies. An iterative selection procedure based on the Akaike Information

Criterion (AIC) is proposed to choose tuning parameters, such as the knots of

spline basis and the number of principal components, so that an appropriate de-

gree of smoothness can be assessed. The effectiveness of the proposed approach is

illustrated through a simulation study, followed by an application to longitudinal

CD4 counts and survival data collected in a clinical trial for comparing the efficacy

and safety of two antiretroviral drugs.

Key words and phrases: Cox regression, EM algorithm, functional principal com-

ponents, longitudinal data, smoothing, survival.

1. Introduction

Many scientific investigations generate longitudinal data with repeated mea-

surements at a number of time points, and event history data that are possibly

censored time-to-event, i.e.,“failure” or “survival”, as well as additional covari-

ate information. A typical example is that of HIV clinical trials, in which a

biomarker such as CD4 lymphocyte count is measured intermittently and time

to progression to AIDS or death is also recorded, with possible early dropout or

failure to experience event by the end of study. It is important and necessary
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to investigate the patterns of CD4 changes, and to characterize the relation-

ship between CD4 features and time to progression or death (Pawitan and Self
(1993), Tsiatis, Degruttola and Wulfsohn (1995), Wulfsohn and Tsiatis (1997),

and others).

In practice latent longitudinal process is often unobservable due to mea-

surement error and not available at necessary times, especially when failure
occurs. It is well known that conventional partial likelihood approaches used

for Cox model cannot avoid biased inference by using imputation of the la-

tent longitudinal process, such as last-value-carried-forward method (Prentice

(1982)), smoothing techniques (Raboud et al. (1993)), or “two-stage” approaches
(Bycott and Taylor (1998), Tsiatis et al. (1995)). This invoked the considera-

tion of longitudinal and event processes simultaneously, i.e., the “so-called” joint

modelling, that has attracted substantial recent interest. A standard approach

of joint modelling is to characterize the longitudinal process by a parametric ran-
dom effects model that focuses on smooth trends determined by a small number

of random effects and that has been used to describe the “true” CD4 trajectories

(Tsiatis et al. (1995), Wulfsohn and Tsiatis (1997), Bycott and Taylor (1998),
Dafni and Tsiatis (1998)). Besides bias correction, joint modelling can also po-

tentially improve the efficiency of parameter estimation because of simultane-

ous inference on both longitudinal and survival models, see Faucett and Thomas

(1996); Slasor and Laird (2003), Hsieh, Tseng and Wang (2006) for more discus-
sion on this issue.

Although the above-mentioned parametric models find features in the data

which have been already incorporated a priori in the model, these models may

not be adequate if the time courses are not well defined and do not fall into a
preconceived class of functions. In such situations an analysis through nonpara-

metric methods is advisable. There has been increasing interest in the nonpara-

metric analysis of data that are in the form of sample of curves or trajectories,

i.e., “functional data analysis”, see Ramsay and Silverman (1997) for a summary.
Functional principal component analysis (FPCA) attempts to find the dominant

modes of variation around overall trend functions, and is thus a key technique

in functional data analysis (Berkey and Kent (1983), Besse and Ramsay (1986),

Castro, Lawton and Sylvestre (1986), Rice and Silverman (1991), Silverman
(1996), James, Hastie and Sugar (2000), Yao et al. (2003, 2005), Yao and Lee

(2006), and many others).

The proposed approach is motivated by an analysis of longitudinal CD4

counts and survival data collected in a clinical trial for comparing the efficacy
and safety of two antiretroviral drugs. From the data plotted in Figure 1 the

time courses are not well defined, and one would be reluctant to fit a pre-specified

parametric model such as a linear random effects model to characterize the longi-

tudinal CD4 trajectories. In this paper, a nonparametric approach is proposed to
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model the individual trajectories using flexible basis functions, such as B-splines,

with the covariance structure modelled by a set of orthogonal eigenfunctions and
random coefficients that are called functional principal component (FPC) scores.

This produces a low rank, low frequency approximation to the covariance struc-

ture of a longitudinal process. We can also adjust the tuning parameters in the

model, such as the knots of the spline functions and the number of principal
components, to capture some important “wiggles” or fluctuations. The model

is data-adaptive and will automatically capture important features of individual

trajectories. Moreover, a typical feature of longitudinal data often encountered

in practice is that only a few repeated and irregularly spaced measurements are
available per subject. The proposed model is particularly applicable for handling

such irregular and sparse longitudinal data through dimension reduction, using

FPC analysis. This inherits the merits of the reduced rank model proposed by

James, Hastie and Sugar (2000) that does not treat censoring information.
In contrast, a closely related model proposed by Rice and Wu (2000) did

not consider dimension reduction and might not be applicable when data are

sparse (see James et al. (2000) for a comparison of these two approaches). This
makes the difference between the proposed model and that in Brown et al. (2005)

explicit. Another advantage of the proposed joint model with FPCs is the com-

putational efficiency achieved by the dimension reduction using FPCs with a

diagonal covariance matrix, while the joint model in Brown et al. (2005) with
B-splines usually contains more random coefficients with an unstructured covari-

ance matrix. Appropriate interpretation of the orthogonal eigenfunctions and

FPC scores often provides more insight than the B-spline model. Alternatively

Wang and Taylor (2001) incorporated an integrated Ornstein-Uhlenbeck (IOU)
stochastic process to model non-specified longitudinal trajectories in a joint model

context, in similar spirit to smoothing splines. In particular, the IOU process

presents a family of covariance structures with a random effects model and Brow-

nian motion as special cases. Other related work that incorporated zero-mean
processes to model individual fluctuations includes Henderson, Diggle and Dobson

(2000), Xu and Zeger (2001b).

For model selection, we suggest an iterative procedure to choose the tuning

parameters simultaneously, such as the number of knots and the number of prin-
cipal components, using the Akaike Information Criterion (AIC) that considers

the joint likelihood of longitudinal and survival models. Another advantage of

the proposed method is that, although it is a data-driven approach with a non-

parametric feature, the implementation is intrinsically parametric, and thus is
computationally efficient and easily implemented in standard statistical software

packages. Extensions of the proposed model to multiple longitudinal processes or

a sequence of survival times (recurrent events) are also possible, see Xu and Zeger

(2001a), Song et al. (2002a) and Henderson et al. (2000) for modifications.
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The remainder of the paper is organized as follow. In Section 2 we present the

general methodology of the proposed joint model, including functional principal

component and survival models for longitudinal and event processes. Simulation

results that illustrate the effectiveness of the methodology are reported in Sec-

tion 3. An application of the proposed model to longitudinal CD4 counts and

survival data collected in a clinical trial to compare the efficacy and safety of two

antiretroviral drugs, is provided in Section 4. Technical details are deferred to

the Appendix.

2. Methodology

Assumptions and notations

For a sample of subjects, one observes longitudinal covariates and time-to-

event data. Without loss of generality, we assume a single longitudinal process

Xi(t) for the ith individual, i = 1, . . . , n. The survival time Si is subject to inde-

pendent right censoring by Ci, then one observes Ti = min(Si, Ci) and the failure

indicator ∆i which is 1 if failure is observed, Si ≤ Ci, and is 0 otherwise. The ob-

served covariate Yi = (Yi1, . . . , Yini
)T for the ith individual is often assumed to be

sampled from the latent longitudinal process Xi(t), measured intermittently at

ti = (ti1, . . . , tini
)T , and terminated at the endpoint Ti, subject to measurement

error ǫi = (ei1, . . . , eini
)T . Note that tini

≤ Ti ≤ tini+1, and no longitudinal mea-

surements are available after Ti. Then one has Yij = Xi(tij) + ǫij, i = 1, . . . , n,

j = 1, . . . , ni, where tij ∈ [0, Ti], max{Ti : i = 1 . . . , n} ≤ τ , and τ is the length

of study follow-up.

Besides the longitudinal and time-to-event data, there might be other covari-

ates that possibly have significant effects on longitudinal or survival processes.

Let Zi(t) = {Zi1(t), . . . , Zir(t)}T denote the vector of covariates valued at time

t ≤ Ti associated with the longitudinal covariate, and Vi(t) = {Vi1(t), . . . , Vis(t)}T

the vector of covariates at t ≤ Ti having effects on the survival time. Note that

vectors Zi(t) and Vi(t) are possibly time-dependent, and may or may not have el-

ements in common. Assume that the “true” values of these covariates for the ith

subject can be exactly observed at any time t ≤ Ti and, in particular, the Vi(Ti)’s

are available for all subjects. In contrast, the longitudinal covariate Yi is assumed

to be subject to measurement error and only available at ti. Denote the ni × r

design matrix formed by the covariate Zi(t) at ti by Zi = {Zi(ti1), . . . , Zi(tini
)}T .

To validate the specification of our proposed method, the assumed indepen-

dent right censoring is in the sense of Kalbfleisch and Prentice (2002): the hazard

at time t conditional on the whole history only depends on the survival of that in-

dividual to time t. Most analyses, including those based on likelihoods, are valid

under this assumption. One also needs to require that the timing of measurement
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process might depend on the observable covariate history and latent longitudi-

nal process, but not additionally on the unobserved future event time itself, see

Tsiatis and Davidian (2004) for detail. For simplicity in what follows, we assume

that the measurement process is “non-informative”. The observed longitudinal

covariate is assumed to be independent of event time conditional on the latent

longitudinal process and covariates Zi(t) and Vi(t), and the data from different

subjects are generated by independent processes. We suppose that the longitudi-

nal process has significant influence on the failure time, and that the occurrence

of time-to-event may also introduce informative censoring for the longitudinal

process, which is of primary interest in joint modelling problems.

2.2. Joint modelling and implementation for longitudinal and survival

data using functional principal components

We extend the principal component model proposed by James et al. (2000)

to joint modelling approaches. Recall that Xi(t) is the realization of the latent

longitudinal process for the ith individual, let µ(t) be the overall mean function

without considering the vector of covariates Zi(t). If the effects of Zi(t) are also

taken into account, then

µi(t) = µ(t|Zi) = µ(t) + βT Zi(t), t ∈ [0, τ ],

where β = (β1, . . . , βr)
T and Zi(t) = {Zi1(t), . . . , Zir(t)}T . The covariance struc-

ture of Xi(t) might also depend on the components of Zi(t), e.g., if Zi(t) contains

a treatment indicator. For convenience, we suppose that the covariance struc-

ture of Zi(t) is the same covariance for all i, with G(s, t) = cov(Xi(s),Xi(t)).

In terms of orthogonal eigenfunctions {φk}k=1,2,... and non-increasing eigenval-

ues {λk}k=1,2,..., let G(s, t) =
∑

k λkφk(s)φk(t), s, t ∈ [0, τ ]. The Karhunen-

Loéve representation in classical functional principal component analysis implies

that the individual trajectories can be expressed as Xi(t) = µi(t) +
∑

k ξikφk(t),

where µi(t) is the mean function for the ith subject, the coefficients ξik =∫ τ
0 {Xi(t) − µi(t)}φk(t)dt are uncorrelated random variables with mean zero and

variances Eξ2
ik = λk, subject to

∑
k λk < ∞.

Since interest is in the relationship between the dominant trends of the lon-

gitudinal process and event times, we suppose that the covariance function G

can be well-approximated by the first few terms in the eigen-decomposition,

i.e., that the eigenvalues λk tend to zero rapidly enough that the variability

is predominantly of large scale and low frequency, and that the individual tra-

jectories can be modelled by using the first K leading principal components,

Xi(t) = µi(t)+
∑K

k=1 ξikφk(t). The truncation parameter K can be adjusted. To

realistically model the noisy observations Yij of Xi(t) at time tij, we incorporate
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uncorrelated measurement errors ǫij which have mean zero, constant variance σ2,

and are independent of ξik, i = 1, . . . , n, j = 1, . . . , ni, k = 1, 2, . . .. Then the

sub-model for the longitudinal covariate Yij is

Yij = Xi(tij) + ǫij = µ(tij) + Zi(tij)
T β +

K∑

k=1

ξikφk(tij) + ǫij , t ∈ [0, τ ]. (1)

The overall mean function and covariance surface, and thus the eigenfunc-

tions, are assumed to be smooth, we model them using expansions of a set of

smooth basis functions, such as B-splines or regression splines. Let B̄p(t) =

(B̄p1(t), . . . , B̄pp(t))
T be a set of basis functions on [0, τ ] used to model the over-

all mean function µ(t), with coefficients α = (α1, . . . , αp)
T , i.e., µ(t) = B̄p(t)

T α.

Due to the orthonormality of {φk}k=1,...,K, the eigenfunctions are modelled by

using a set of orthonormal basis functions Bq(t) = (Bq1(t), . . . , Bqq(t))
T with

coefficients θk = (θ1k, . . . , θqk)
T that are subject to

∫ τ

0
Bqκ(t)Bqℓ(t)dt = δκℓ, θT

k θl = δkl, κ, ℓ = 1, . . . , q, k, l = 1, . . . ,K, (2)

which implies the orthonormal constraints on {φk}k=1,...,K, where δij = 1 if i = j

and 0 otherwise. Note that θT
k θl = δkl in (2) resolves the identifiability between

Θ and ξi, see the Appendix for detail that guarantees θT
k θl = δkl, while the basis

functions Bq(t) for the covariance are orthonormalized.

Letting ξi = (ξi1, . . . , ξiK)T and Θ = (θ1, . . . , θK)T , (1) becomes

Yij = B̄p(tij)
T α + Zi(tij)

T β + Bq(tij)
T Θξi + ǫij. (3)

The covariance between observed values of the longitudinal process is, letting

Λ = diag(λ1, . . . , λK),

cov(Yij , Yil) = Bq(tij)
T ΘΛΘTBq(til) + σ2δjl. (4)

This can be viewed as an approximation, where low frequency components of the

covariance kernel are captured in the first term and the remainder is approxi-

mated by the second term. Let B̄i = (B̄p(ti1), . . . , B̄p(tini
))T , Bi = (Bq(ti1), . . .,

Bq(tini
))T , and recall that Zi = (Zi(ti1), . . . , Zi(tini

))T and ǫi = (ǫi1, . . . , ǫini
)T .

The model (3) can be written in matrix from as

Yi = B̄iα + Ziβ + BiΘξi + ǫi, i = 1, . . . , n, (5)

under constraints given by (2).

Note that the dominant modes of variation of a longitudinal process can

often be captured by the first few principal components in practical applications,
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i.e., the trajectories can be well-approximated by truncated eigen-decomposition

with a few eigenfunctions. Therefore the dimension of random coefficients (FPC

scores), K, is usually small in the forgoing model, leading to fast and efficient

implementation. This is the difference between (5) and the B-spline model of

Brown et al. (2005).

We model failure through the proportional hazards model. Following Cox

(1972), Cox (1975), and under the conditions discussed by Kalbfleisch and Pren-

tice (2002), we use the original Cox model formulation, where the hazard de-

pends on the longitudinal process Xi through its current value and other time-

dependent or time-independent covariates Vi. Other aspects of longitudinal tra-

jectories can also be considered. The framework for characterizing associations

among the longitudinal and survival processes, as well as other covariates, is then

given by

hi(t) = lim
dt→0

P{t ≤ Ti < t + dt|Ti ≥ t,XH
i (t), Vi(t)}/dt

= h0(t) exp{γXi(t) + Vi(t)
T ζ}, (6)

where the coefficients γ and ζ = (ζ1, . . . , ζs)
T reflect the association of interest,

and XH
i (t) = {Xi(u) : 0 ≤ u < t} is the history of the longitudinal process Xi

up to time t. One notes that implementation is complicated by the fact that

the longitudinal covariate Yi is subject to measurement error, and only available

intermittently for each subject at ti = (ti1, . . . , tini
)T .

We now model the longitudinal covariate and survival processes jointly. Note

that observed values Yij of the longitudinal process and the failure information

(Ti,Di) are conditionally independent given the latent process Xi(t) and co-

variates Zi(t) and Vi(t). The observed data for each individual is denoted by

Oi = (Ti,Di, Yi, Zi, Vi, ti), and we cannot observe the latent longitudinal pro-

cess Xi(t) or the FPC scores ξi. Let X̃i = {Xi(ti1), . . . ,Xi(tini
)}T . One can

see that the random components of trajectories Xi(t) are determined by ξi.

Therefore the observed data likelihood for the full set of parameters of inter-

est Ω = {γ, ζ, h0(·), α, β,Θ,Λ, σ2} is given by

Lo =

n∏

i=1

{∫
f(Ti,∆i|XH

i (Ti), Vi(Ti), γ, ζ, h0)f(Yi|X̃i, σ
2, ti)f(ξi|Λ)dξi

}
, (7)

where XH
i (Ti) = {Xi(t) : 0 ≤ t < Ti}, and

f(Ti,∆i|XH
i (Ti), Vi(Ti), γ, ζ, h0) = [h0(Ti) exp{γXi(Ti) + Vi(Ti)

T ζ}]∆i

× exp
[
−

∫ Ti

0
h0(u) exp{γXi(u) + Vi(u)T ζ}du

]
.(8)
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For the distributions of the FPC scores ξi and the measurement error ǫi, assume

ξi ∼ N(0K ,Λ), ǫi ∼ N(0ni
, σ2Ini

), ξi ⊥ ǫi, i = 1, . . . , n, (9)

where “⊥” stands for statistical independence and 0K is a K × 1 vector of

0’s. The normality assumption (9) can be relaxed, assuming only that the ξi have

“smooth” densities in certain well-defined class for instance, see Song, Davidian

and Tsiatis (2002b). However, from simulation studies reported in Section 3

and also in Tsiatis and Davidian (2004), the procedure resulting from the Gaus-

sian assumption works well more generally. The “robustness” of the Gaussian

assumption has also been observed in Yao et al. (2005), and a theoretical justi-

fication was recently given by Hsieh et al. (2006). For convenience we use (9) in

the joint likelihood. Then the densities in (7) are given by

f(Yi|X̃i, σ
2, ti) = (2πσ2)−

ni

2 exp{− 1

2σ2
(Yi − X̃i)

T (Yi − X̃i)}, (10)

f(ξi|Λ) = (2π|Λ|)− 1
2 exp(−1

2
ξT
i Λ−1ξi), (11)

where X̃i = B̄iα+Ziβ+Biξi, and |Λ| denotes the determinant of Λ = diag(λ1, . . .,

λK).

The EM algorithm described by Wulfsohn and Tsiatis (1997) can be easily

extended to the proposed model. The computation time of the EM algorithm is

determined mostly by the dimension of random coefficients that are treated as

missing values, since the numerical approximations to the expectations of func-

tions of these random coefficients are needed in the E-step. When the Gaussian-

Hermite quadrature becomes time-consuming in large dimensions, an alternative

method is to approximate the numerical integrals by a Monte Carlo integration

with antithetic simulation for variance reduction, see Henderson et al. (2000) for

more details. We implement our approach using Monte Carlo integration, rather

than Gaussian-Hermite quadrature, within the EM algorithm. Details are in the

Appendix.

2.3. Iterative selection procedure for choosing tuning parameters

Due to the nonparametric feature of the proposed joint model involving

smoothing and functional principal components, we need to choose tuning pa-

rameters in the model so that the association between appropriate degrees of the

smooth trend of the longitudinal process and survival times can be assessed.

In practical implementation, spline bases, such as B-spline or regression

splines, is often used to model the mean and covariance functions. For such

a spline basis the degree of smoothness is determined by the sequence of knots

(number and locations). For the locations of the knots, we choose equi-quantile
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knots rather than equidistant knots to avoid clustered observation times, partic-

ularly when observations become fewer due to failure or censoring. For example,

25th, 50th and 75th percentiles of pooled observation times from all individuals

are used if three inside knots are needed. It is obvious that choosing the number

of knots is equivalent to choosing the dimensions of spline basis, i.e., p and q, for

fixed and random components in model (3).

Besides the choice of knots, for functional principal component analysis it is

particularly important to identify the number of terms needed in the approxima-

tion to the infinite-dimensional longitudinal process. Note that the number of

eigenfunctions K and the dimensions of spline basis p and q are simultaneously

related to the behavior of the model. We need a selection procedure to choose K

(K ≤ q), p and q together. Note that the estimation procedure of the proposed

model is intrinsically parametric, though the FPC model inherits the flexibility

of the nonparametric approach. We thus propose to adapt the Akaike infor-

mation criterion (AIC) to the joint model. By analogy to Brown et al. (2005),

a pseudo-Gaussian joint log-likelihood depending on K, p and q, summing the

contributions from all subjects, conditional on the estimated FPC scores ξ̂i, is

l̂c(K, p, q) =

n∑

i=1

[
log{f(Ti,∆i|X̂H

i (Ti), Vi(Ti), γ̂, ζ̂, ĥ0)}

+ log{f(Yi| ̂̃X i, σ̂
2, ti)}

]
, (12)

where the densities of (Ti,∆i) and Yi are as in (8) and (10), “ ˆ ” is the generic no-

tation for the estimates obtained from the EM algorithm, X̂H
i (Ti) = {X̂i(t) : 0 ≤

t ≤ Ti}, X̂i(t)=B̄p(t)
T α̂+Zi(t)

T β̂+Bq(t)
T Θ̂ξ̂i, and ̂̃X i =(X̂i(ti1), . . . , X̂i(tini

))T .

Then the AIC of the model involving K, p and q is

AIC(K, p, q) = −2l̂c(K, p, q) + 2{p + (K + 1)q + r + s + 1}. (13)

Minimization of AIC with respect to K, p and q requires extensive computation.

Alternatively, we start with initial guesses for p and q, choose K using (13), choose

p and q in turn based on (13), and then repeat until there is no further change. It

has been observed that this iterative procedure usually converges quickly (in two

or three iterations) and is practically feasible. This is demonstrated empirically

in Section 3.

3. Simulation Studies

From extensive simulations in the literature, it has been found that the joint

modelling approach improves parameter estimation over “naive” or “two-stage”

approaches (Prentice (1982), Self and Pawitan (1992), Tsiatis et al. (1995),
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Song et al. (2002b), Tsiatis and Davidian (2004), and others), while Henderson

et al. (2000) examined the effect of ignoring latent association between longitu-
dinal and survival processes. However, these simulation studies were constructed

based on using parametric models, such as linear models, during the estimation

procedure. It is not clear how the joint modeling approaches behave when the

underlying parametric forms are not used in the estimation. Our simulation is
designed to demonstrate the empirical performance of the proposed joint model

that does not require knowledge of the underlying longitudinal sub-model.

We assumed sufficient assumptions on censoring and timing of measurements

were satisfied. A comparison was provided to the parametric joint model with
the true longitudinal sub-model incorporated. Both 200 normal and 200 non-

normal samples consisting of n = 200 independently and identically distributed

individuals were considered, to demonstrate the robustness of the procedure re-

garding the sensitivity to the Gaussian assumption (9). For simplicity, we took
η = 0, γ = −1.0 in the survival model (6), with Weibull baseline h0(t) = t2/100

for t ≥ 0. Censoring times Ci were generated independently of all other variables

as Weibull random variables with 20% dropouts at t = 6 and 70% dropouts at
t = 9, and a final truncation time of τ = 10 was used.

The longitudinal process had mean function µ(t) = sin (3πt/40)/3 with

β = 0r in model (1), and a covariance function derived from two eigenfunctions

φ1(t) = − cos (πt/10)/
√

5, and φ2(t) = sin (πt/10)/
√

5, 0 ≤ t ≤ 10. We chose
λ1 = 10, λ2 = 1 and λk = 0, k ≥ 3, as eigenvalues, and σ2 = 0.1 as variance of the

additional measurement errors ǫij in (1), assumed to be normal with mean 0. For

the 200 normal samples, the FPC scores ξik were generated from N (0, λk), while

the ξik for the non-normal samples were generated from a mixture of two normals,
N (

√
λk/2, λk/2) with probability 1/2 and N (−

√
λk/2, λk/2) with probability

1/2. For an equally spaced grid {c1, . . . , c9} on [0, 10] with ci = i, si = ci + ei,

where ei were i.i.d. with N (0, 0.1), si = 0 if si < 0 and si = 10 if si > 10, allow-

ing for non-equidistant “jittered” designs. Measurements at any of these times
were missing with probability 0.5 and would be terminated by the observed event

time Ti, i.e., tini
≤ Ti, demonstrating sparseness of the simulated data, as the

expected number of available observations would be seriously downward-biased

by failure or censoring.
For each normal and mixture sample, γ was estimated in three ways: (i)

using the joint model with the true functional relation for the longitudinal sub-

model, denoted by TRUE; (ii) using the the proposed joint model with functional

principal component sub-model, denoted by FPCA, where the number of eigen-
function K and the dimensions p and q were chosen objectively at (13); (iii)

using the “ideal” approach, where Xi(t) is known for all 0 ≤ t ≤ 10, and γ was

estimated by conventional partial likelihood approach (Cox (1975)), denoted by

IDEAL.
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One can see that the results summarized in Table 1 are consistent with the

results obtained from previous work, such as in Tsiatis and Davidian (2004). If

the true functional relationship is specified in the longitudinal sub-model (TRUE)

during estimation, then unbiased inference was achieved. More importantly, the

proposed model (FPCA) that did not incorporate any prior knowledge of the true

relation also yields approximately unbiased estimate in both normal and mixture

scenarios. In particular, these results are comparable with those obtained from

the TRUE case where the underlying form is used in the longitudinal model

and the IDEAL case where the true trajectories Xi(t) are used in estimation.

This suggests that, without the knowledge of the true longitudinal process, the

proposed model can automatically detect the underlying relationship and provide

satisfactory approximation to the true functional form due to its nonparametric

flexibility. It is notable that the Gaussian assumption does not compromise

accuracy of the estimation of γ under the mixture scenario. This is similar to

what was found in Tsiatis and Davidian (2004), while a theoretical justification

of the robustness phenomenon was recently given by Hsieh et al. (2006).

Table 1. Simulation results obtained from 200 normal and 200 mixture

Monte Carlo datasets for the estimation of γ = −1.0 by the joint model,

incorporating the true (TRUE) longitudinal sub-model, the proposed model

using functional principal components (FPCA), and the “ideal” approach,

where Xi(t) is known for all t ∈ [0, 10] (IDEAL), see Section 3 for details.

Shown are the Monte Carlo average of estimates (Mean), the Monte Carlo

standard deviation (SD) of estimates as well as the Monte Carlo average of

estimated standard errors (SE).

Normal Mixture

Mean SD SE Mean SD SE

TRUE -0.998 0.114 0.109 -1.03 0.117 0.118

FPCA -1.05 0.112 0.121 -.997 0.115 0.119

IDEAL -1.02 0.119 0.113 -1.02 0.108 0.107

Regarding the selection of the tuning parameters, the numbers of eigenfunc-

tions and inside equi-quantile knots, we used (13), and K = 2 was correctly

chosen for most (more than 95%) of the simulated datasets. This provides em-

pirical justification of the effectiveness of the proposed model selection procedure

and distinguishes it from the previously studied parametric joint models.

4. Application to Longitudinal CD4 Counts and Survival Data

In this clinical trial both longitudinal and survival data were collected to

compare the efficacy and safety of two antiretroviral drugs in treating patients
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that failed or were intolerant of zidovudine (AZT) therapy. There were 467 HIV-

infected patients who met entry conditions (either an AIDS diagnosis or two

CD4 counts of 300 or fewer, and fulfilling specific criteria for AZT intolerance

or failure), were enrolled in this trial, and randomly assigned to receive either

zalcitabine (ddC) or didanosine (ddI) treatment. CD4 counts were recorded at

study entry, and again at the 2-, 6-, 12- and 18-month visits (ni ≤ 5). The

time to death was also recorded. For full details regarding the conduct of the

trial and data description, see Abrams et al. (1994), Goldman et al. (1996) and

Guo and Carlin (2004).

To demonstrate the proposed method, we focus on investigating the associ-

ation among CD4 counts of two drug groups (ddC and ddI) and survival time,

including the 160 patients that had no previous opportunistic infection (AIDS

diagnosis) at study entry. As is customary, CD4 counts were transformed by

a fourth-root power to achieve homogeneity of within-subject variance, i.e., Yij

and Xi(t) represent (CD4 + δ)1/4 (Taylor et al. (1991)), where δ = 1 is to ensure

the fourth-root is positive. The observed CD4 counts of eight patients from each

group are displayed in Figure 1. The sample size at the five time points are

(79, 62, 62, 58, 11) for the ddC group, and (81, 71, 60, 51, 10) for the ddI group.

There is a sharply increasing amount of missing data over time, due to deaths

or dropouts that are usually caused by inadequate CD4 counts. Regarding the
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Figure 1. Observed (asterisks) CD4 counts in fourth-root scale and fitted
trajectories (solid) obtained from the proposed joint model using FPCs for
four randomly selected patients in the ddC group (top row), and four patients
in the ddI group (bottom row), compared to the fitted trajectories obtained
from the joint model with linear random effects relation (dashed). The
vertical lines represent the censoring (dashed) or event (solid) time.
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survival in the two drug groups, the empirical survival curves (Nelson-Aalen
estimates) are shown in Figure 2, indicating that the survival rate in the ddC
group looks increasingly better than that in the ddI group in time.
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Figure 2. Estimated average survival rates in (16), obtained from the pro-
posed model (solid lines) and the joint model with linear random effects
(dotted lines) for the ddC group (left panel) and the ddI group (right panel),
compared with empirical survival rates (middle dash-dotted lines) obtained
from Nelson-Aalen estimates, as well as corresponding 95% empirical confi-
dence bands (lower and upper dash-dotted lines).

The primary interest is to evaluate the relationship between CD4 trajec-
tories of the two drug groups and the survival time. Since the CD4 counts are
noisy and fluctuate dramatically within subject, it is not easy to find appropriate
pre-specified parametric forms for the mean and variation of CD4 trajectories.
Therefore we apply the proposed joint model incorporating functional princi-
pal components to the data, where the mean CD4 curves of the two groups are
modelled separately and nonparametrically using a B-spline basis. A common
covariance structure is used for two groups. Then the longitudinal model is

Yij = µgi
(tij) +

K∑

k=1

ξikφk(tij) + ǫij,

= B̄p(tij)
T (α + giβ) + Bq(tij)

T Θξi + ǫij , (14)

where gi = 0 for the ddC group and gi = 1 for the ddI group, K is the appropriate
number of principal components that would be chosen together with p and q at
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(13) , β = (β1, . . . , βp)
T is the vector of coefficients for modelling the difference

between two drug groups, and the other notations are the same as in (1) and (3).

Regarding the Cox model, the effects of the underlying CD4 processes and drug

groups on survival time are considered, with

h(t|XH
i (t), gi) = h0(t) exp{γXi(t) + ζgi}, t ∈ [0, τ ], (15)

where the duration of the study is 21.4 weeks (τ = 21.4), and the other notations

are as in (6).

Smooth estimates of the mean CD4 trajectories of the two drug groups ob-

tained from the joint model combining (14) and (15) are shown in the left panel

of Figure 3, which presents similar patterns for the two groups, with slightly

different shapes. The large CD4 counts at the beginning of both groups may cor-

respond to the better health conditions of patients when they entered the study.

The overall trends of both groups decrease over time, while the short flat period

at the end might not be scientifically important due to possible boundary effects

and limited information at the longer follow-up times. Although K = 3, p = 5

and q = 5 are selected by the iterative procedure based on (13), the resulting

population- and subject-specific curves vary considerably and it is questionable

whether they represent the true CD4 counts. We instead chose to use K = 2,

p = 4 and q = 4, noting that the AIC only increased by around 1% and the

results were more realistic and interpretable, where p = 4 and q = 4 mean that

2 knots are selected for both B-spline bases. The two eigenfunctions shown in

the right panel of Figure 3 are used to approximate the infinite-dimensional lon-

gitudinal process. The first eigenfunction represents an overall shift, the second

corresponds to a contrast between early and late times, similar to the mean trend

of, especially, the ddI group. These eigenfunctions account for about 96% and 3%

of the total variation respectively. The fitted longitudinal CD4 trajectories ob-

tained from the FPC model for four randomly selected patients from each group,

X̂i(t) = µ̂gi
(tij) +

∑K
k=1 ξ̂ikφ̂k(tij), are shown in Figure 1. The fitted curves are

seen to be reasonably close to the observations. For comparison, we also fit a

joint model with a linear random effects model. The group mean trends with

linear patterns (left panel of Figure 3), and the estimated survival curves (Figure

2) obtained from the linear joint model are not far from those obtained from

the proposed model, while the linear joint model results in a slightly larger AIC

(around 3 %). Moreover one can see that the linear model fails to characterize

the subjects with nonlinear patterns, while the proposed model can effectively

recover the random trajectories based on just two leading FPCs determined by

the data.
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Figure 3. Left: Smooth estimates of the mean functions for the ddC (solid)

group and the ddI (dashed) group, compared with those obtained from the

joint model with linear random effects (dash-dotted line for the ddC group,

and dotted line for the ddI group). Right: Smooth estimates of the first

(solid) and second (dashed) eigenfunctions.

The coefficient γ that describes the strength of relationship between CD4 and

survival is estimated as −0.726 with the joint maximization. The 95% confidence

interval is (−1.176,−0.227) indicating the significance of the relationship, where

the confidence interval is obtained using the observed information as in (21),

valued at convergence of the EM algorithm. This means that, for a fixed time,

a reduction of CD4 count by 1, in fourth-root scale, will result in a risk of death

increased by 107%, with a 95% confidence interval of (32%, 224%). Drug group

membership also plays a significant role in determining survival, since ζ̂ = 1.034

with 95% confidence interval (0.212, 1.856). This implies that, if two patients

have the same CD4 counts, the risk of death for the patient in the ddI group

is about 2.813 times that in the ddC group, with the confidence interval (1.236,

6.4). In contrast the joint model with linear random effects yields γ̂ = −0.518

and ζ̂ = 1.049. The estimated average survival rates, given by

Ĥgi
(t) =

∫ t

0
ĥ0(s) exp{γ̂µgi

(s) + ζ̂gi}ds, Ŝgi
(t) = exp{−Ĥgi

(t)}, (16)

for the patients in ddC and ddI groups are shown in Figure 2, which also suggests

that the average survival rate in the ddC group is increasingly higher than that in

the ddI group. The estimates obtained from the proposed model agree reasonably

with the empirical estimates (Nelson-Aalen estimates) and are well covered by

the 95% empirical confidence bands, giving evidence that the proposed model

provides an adequate fit to the data.



980 FANG YAO

Acknowledgement

The author is most grateful to an associate editor and the reviewers for their

constructive comments. He also thanks Thomas C. M. Lee for helpful suggestions

on the presentation.

Appendix. Estimation procedures

In this section we provide details of the EM estimation procedure of the joint

model combined with functional principal component analysis.

1. E-step. Consider the FPC scores, ξi = (ξi1, . . . , ξiK)T as missing data. The

conditional expectation of any function g(·) of ξi is denoted by E{g(ξi)|Ti,∆i,

Yi, ti, Ω̂}, where Ω̂ is the set of current estimates of parameters Ω = {γ, ζ, h0(·),
α, β,Θ,Λ, σ2}. This expectation is taken with respect to the conditional den-

sity f(ξi|Ti,∆i, Yi, ti, Ω̂), and can be written as (Wulfsohn and Tsiatis (1997)),

under the conditional independence of (Ti,∆i) and Yi given Xi(·) and other

covariates,

∫
g(ξi)f(Ti,∆i|XH

i (Ti), Vi(Ti), γ̂, ζ̂ , ĥ0)f(ξi|Yi, ti, α̂, β̂, Θ̂, Λ̂, σ̂2)dξi∫
f(Ti,∆i|XH

i (Ti), Vi(Ti), γ̂, ζ̂, ĥ0)f(ξi|Yi, ti, α̂, β̂, Θ̂, Λ̂, σ̂2)dξi

, (17)

where f(Ti,∆i|XH
i (Ti), Vi(Ti), γ̂, ζ̂, ĥ0) is as in (8), and f(ξi|Yi, ti, α̂, β̂, Θ̂, Λ̂,

σ̂2) is the Gaussian conditional likelihood of the random coefficients given the

data and current parameter estimates. The integral can be approximated by

Gaussian-Hermite quadrature if K is small. To accelerate the algorithm, we

use Monte Carlo integration with antithetic simulation for variance reduction

(Henderson et al. (2000)).

2. M-step. Denote the estimate of the conditional expectation E{g(ξi)|Ti,∆i, Yi,

ti, Ω̂} by Ei{g(ξi)} for convenience. The closed-from maximum likelihood

estimates are

λ̂k =
1

n

n∑

i=1

Ei(ξ
2
ik), σ̂2 =

1∑
i ni

n∑

i=1

Ei{‖Yi − B̄iα̂ − Ziβ̂ − BiΘ̂ξi‖2}, (18)

where ‖·‖ is the usual vector norm. Let Ai = (B̄i, Zi) and Vi = BiΘ̂Λ̂Θ̂T BT
i +

σ̂2Ini
. Then

(
α̂

β̂

)
= (

n∑

i=1

AT
i V −1

i Ai)
−1

n∑

i=1

AT
i V −1

i Yi. (19)

Estimating Θ involves a second iterative procedure, in which each column

of Θ = (θ1, . . . , θK) is estimated separately holding all other columns fixed
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(James et al. (2000)). Note that

n∑

i=1

‖Yi−B̄iα−Ziβ−BiΘξi‖2 =
n∑

i=1

‖(Yi−B̄iα−Ziβ−
∑

ℓ 6=k

ξiℓBiθℓ)−ξikBiθk‖2.

Then the estimate of θk is given by

θ̂k =
{ n∑

i=1

Ei(ξ
2
ik)B

T
i Bi

}−1
n∑

i=1

BT
i

{
Ei(ξik)(Yi − B̄iα̂ − Ziβ̂)

−
∑

ℓ 6=k

Ei(ξikξiℓ)Biθ̂ℓ

}
. (20)

This procedure is repeated for each column of Θ and iterated until no further

change occurs.

The parameter of interest in the Cox model, (γ, ζT )T = η, is estimated

by a third iterative procedure, the Newton-Raphson algorithm, so at the lth

iteration,

η̂(l) = η̂(l−1) + I−1
η̂(l−1)Sη̂(l−1) , (21)

where Sη̂(l−1) and Iη̂(l−1) are the score and the observed information valued at

the (l − 1)th iteration by plugging in η̂(l−1), see Wulfsohn and Tsiatis (1997)

for explicit expressions. The baseline hazard h0(t) can then be estimated by

ĥ0(t) =

n∑

i=1

∆iI(Ti = t)∑n
j=1 Ej [exp{γXj(t) + Vj(t)T ζ}]Rj(t)

, (22)

where Rj(t) is an at-risk indicator that is equal to I(Tj ≥ t), and I(·) is the

indicator function. In our experience, the two inner iterative procedures for

estimating Θ and η converge very quickly, and the computation time required

for the whole algorithm is mainly determined by the dimension of the random

coefficients, i.e., the number of principal components K, and the number of

antithetical pairs that are used to approximate conditional expectations in

the E-step while using the Monte Carlo integration method.

3. Since the matrix produced by this procedure will not be orthonormal, we need

to orthonormalize it by letting Γ̂ = Θ̂Λ̂Θ̂T and setting the final estimate Θ̂

equal to the first K eigenvectors of Γ̂, while Λ̂ is the diagonal matrix consisting

of the first K eigenvalues of Γ̂. The estimated FPC scores ξ̂i are then obtained

by computing Ei(ξi) once more as described in the E-step.
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