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Fig. 3. MLE of scattering potential based image using imaging function (16)
and the measurement at 5 GHz.

by (16). To make the two images comparable, we normalized the func-
tions of the two images to [0; 1]. It can be seen that the scatterer located
at (202.7,32.3) appears in Fig. 2 to be much darker compared with the
scatterer at (224.7, �14:0), whereas it is much brighter in Fig. 3. This
difference verifies the near–far problem of the basic time-reversal and
confirms that the MLE of scattering potential imaging is more balanced
due to the proper scaling. In addition, many spurious local peaks can
be observed in both images, which are the grating lobes since both the
transmit and receive arrays in the experiment have antenna spacing
much larger than half of the wavelength. We proposed a wideband
imaging approach to exploit frequency diversity and resolved this spa-
tial ambiguity under the sparse array setup. Interested readers are re-
ferred to [1].

VI. CONCLUSION

We demonstrated that basic time-reversal imaging is related to an
MLE of the scattering potential under the assumption of a simplified
single-scatterer physical model. We showed that the two imaging func-
tions differ by a scaling factor, which is function of the imaging po-
sition. The basic time-reversal imaging exhibits the near–far problem,
producing a weaker image for the area further away from the imaging
array, whereas the MLE-based imaging is balanced due to the proper
scaling.
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Spectral Density Estimation Using
Sharpened Periodograms
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Abstract—This correspondence introduces the use of sharpened peri-
odograms for spectral density estimation. It is shown analytically that
spectrum estimates obtained from smoothing the sharpened periodograms
enjoy higher order bias reduction when compared with the ordinary
smoothed periodogram estimates. The promising numerical performances
of using sharpened periodograms for spectral density estimation are
illustrated via numerical experiments.

Index Terms—Bias reduction, data sharpening, periodogram smoothing,
sharpened periodograms, spectral density estimation, unbiased risk esti-
mation.

I. INTRODUCTION

In this correspondence, we study the problem of nonparametric spec-
tral density estimation. In particular we propose using the so-called
data sharpening technique [2], [3], [6] to help reduce the estimation
bias. Data sharpening can be seen as a data preprocessing step that
aims to achieve the following. It produces preprocessed data in such
a way that when these preprocessed data are fed into certain standard
and relatively simple estimation methods, the results are improved rel-
ative to the case when the original raw data were used. In other words,
data sharpening can be applied to boost the performances of simple
estimation methods while at the same time preserve the simplicity of
such methods.
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Data sharpening procedures have been constructed and studied in the
contexts of probability density estimation [2], [6] and nonparametric
regression [3]. Here, we extend and improve this technique in the fol-
lowing three directions. First, we apply data sharpening to a different
estimation problem, namely, spectral density estimation, by proposing
a sharpening procedure for preprocessing the periodogram of a sta-
tionary series. Second, unlike those “fixed” sharpening procedures pre-
viously studied in [2], [3], and [6], we introduce a tuning parameter in
this new periodogram sharpening procedure that allows the data to be
“sharpened” to different degrees. “Sharpened periodograms” produced
from this procedure can be smoothed, say, by kernel methods to obtain
nonparametric estimates of the spectrum of the series. Lastly, based on
the idea of unbiased risk estimation, we develop an automatic method
for simultaneously choosing the amounts of smoothing and sharpening.
To the best of our knowledge, no automatic method has been proposed
in the literature for selecting the amount of smoothing for any type of
sharpened data. Furthermore, under some mild regularity conditions,
we show that the estimate obtained from smoothing the sharpened pe-
riodogram enjoys a higher order bias reduction relative to the estimate
obtained from smoothing the raw periodogram.

The rest of this correspondence is organized as follows. Background
material is reviewed in Section II. Section III defines sharpened
periodograms and illustrates its uses for spectral density estimation.
Section IV discusses implementation issues. Theoretical and numerical
results of our work are presented in Sections V and VI, respectively.
Concluding remarks are offered in Section VII. Lastly proofs and
technical details are deferred to the Appendix.

II. BACKGROUND

Suppose x0; . . . ; x2n�1 is a finite-sized realization of a real-valued,
zero-mean stationary process fxtg with unknown spectral density f .
Given the observations xt’s, our aim is to estimate f nonparametri-
cally. This typically starts by computing the periodogram, defined as

I(!)=
1

2��2n

2n�1

t=0

xt exp(�i!t)
2

; i =
p�1; ! 2 [0; 2�):

To simplify notation, write !j = �j=n; fj = f(!j); and Ij = I(!j).
As the spectral density f is symmetric about ! = �, in this corre-
spondence we shall focus on fj for j = 0; . . . ; n � 1. Also, since
f is periodic with period 2�, we have f

�j = fj and I
�j = Ij for

j = 1; . . . ; n � 1.
For the rest of this correspondence, we adopt the following model

for Ij :

Ij = fj�j ; j = 0; . . . ; n� 1 (1)

where the �j ’s are independent standard exponential random variables.
We note that this model is only an approximation and does not reflect
the exact relationship between fj and Ij (e.g., see [1, Ch. 10]). How-
ever, due to its simplicity and accuracy, this model has been used by
many previous authors (e.g., see [8], [9], [11], and [14]).

Under model (1), we have E(Ij) = fj and var(Ij) = f2j . Due
to its unacceptably large variance, Ij is seldom used as an estimate of
fj . In order to reduce the variance and obtain a consistent estimate for
f , one could compute the kernel estimator f̂j for fj by smoothing the
periodogram

f̂j =

2n�1

m=�n

Kh(!m � !j)Im

2n�1

l=�n

Kh(!l � !j);

j = 0; . . . ; n� 1: (2)

In the above, Kh( � ) = (1=h)K(�=h), where the K( � ) is a univariate
kernel function which is often taken as a symmetric density and the

bandwidth h is a nonnegative smoothing parameter that controls the
amount of smoothing. Automatic methods for selecting h can be found,
for example, in [8] and [10]. Notice that f̂j is a function of h, but for
simplicity this dependence is suppressed in its notation. In many other
kernel smoothing problems, the limits of the two summations in (2) are
0 and n�1. However, since in the present setting boundary effects can
be handled by periodic smoothing, the limits are changed from 0 and
(n�1) to (�n) and (2n�1), respectively. Observe that the estimator
f̂j can also be interpreted as a weighted average of the Ij ’s, as it can
be expressed as

f̂j =

2n�1

m=�n

Wm�jIm with Wm�j =
Kh(!m � !j)
2n�1

l=�n
Kh(!l � !j)

: (3)

Also observe that the weights Wm’s sum to unity. Since f̂j can be
expressed a linear combination of Ij , this can also be seen as a form of
the classical Blackman–Tukey estimator.

III. SHARPENED PERIODOGRAMS

It is straightforward to see that, due to the effects of local averaging,
f̂j tends to overestimate (or underestimate) fj whenever fj is near a
local minimum (or maximum). In order to reduce such biases in the
estimation of f , we propose smoothing the sharpened periodogram, to
be defined next, instead of smoothing the periodogram Ij .

For a given 0 � � � 1, we define the corresponding sharpened
periodogram as

~Ij;� = (1 + �)Ij � �f̂j = (1 + �)Ij � �

2n�1

m=�n

Wm�jIm;

j = 0; . . . ; n� 1: (4)

We call � the sharpening parameter. Notice that when � = 0 the
sharpened periodogram ~Ij;0 becomes the original periodogram Ij . We
propose estimating fj by smoothing the sharpened periodogram and
denote the resulting estimator as ~fj;�, as follows:

~fj;� =

2n�1

m=�n

Wm�j
~Im;�

=

2n�1

m=�n

Wm�j (1 + �)Im � �

2n�1

l=�n

Wl�mIl ;

j = 0; . . . ; n� 1: (5)

Under some mild regularity conditions, we have shown in Theorem 1
that, when comparing to the ordinary kernel estimator f̂j as in (2) or
(3), this sharpened estimator ~fj;� is able to reduce the bias to a higher
order while, at the same time, it only inflates the variance by a constant
factor.

In practice, the calculation of ~fj;� requires the selection of two pa-
rameters: i) the bandwidth h (which determines the weightsWm’s) and
ii) the sharpening parameter �. The selection of these two parameters
is critical as the quality of ~fj;� is highly dependent on it. One sensible
way for choosing these parameters is to choose the pair that aims to
minimize the following L2 risk R(h; �):

R(h; �) =
1

n
E

n�1

j=0

(fj � ~fj;�)
2 =

1

n
E kfff � ~fff�k2 (6)

where fff = (f0; . . . ; fn�1)
T ; ~fff� = ( ~f0;�; . . . ; ~fn�1;�)

T , and k � k =
h�; �i is the Euclidean norm associated with the corresponding inner

product. Of course this unknown risk function R(h; �) cannot be di-
rectly minimized. One common strategy to overcome this problem is
first to construct an unbiased estimator for R(h; �) and then choose
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(h; �) as the pair that minimizes the resulting estimator. We have de-
veloped such an estimator, as follows:

R(h;�) =
RSS(h; �)

n

+
1

n

n�1

j=0

2 (1 + �)W0 � �

2n�1

m=�n

W 2
m�j � 1

I2j
2

(7)

where RSS(h; �) = n

j=0(Ij �
~fj;�)

2 is the residual sum of squares.
The first term can be treated as a measure for the bias of ~fj;�, while
the second term is for the variance. It is shown in Theorem 2 (see
Section V) that R(h; �) is an unbiased estimator for R(h;�). We pro-
pose choosing (h; �) as the joint minimizer of R(h; �).

The above idea of data sharpening has been applied to the context
of nonparametric function estimation by [3]. However, in [3], the au-
thors only considered the case when � = 1 and did not provide any
automatic method for choosing h. Thus, in addition to extending the
data sharpening technique to periodogram smoothing, we have also ad-
vanced the sharpening technique by i) allowing the extent of sharpening
to be varied via the introduction of the sharpening parameter � in the
sharpening formula (4) and ii) making the whole estimation procedure
completely automatic through the development of a practical method
for choosing (h; �).

IV. IMPLEMENTATION ISSUES

In summary, the sharpened estimator ~fj;� can be computed by the
following steps.

1) Preselect a two-dimensional grid � = [hmin; . . . ; hmax] �
[�min; . . . ; �max] as the search space for the minimization of
R(h; �).

2) Calculate the periodogram I0; . . . ; In�1.
3) For each (h; �) 2 �, calculate ~fj;� using (5) and then R(h;�)

using (7).
4) Denote the pair of (h; �) that minimizes R(h; �) over � as

(h0; �0). The final estimator is obtained by (5) with h = h0 and
� = �0.

Lastly, we compare the computational requirements of the unsharp-
ened estimator f̂j (2) and the sharpened estimator ~fj;� (5). First, we
note that the length of time, say �, required for computing f̂j for
a given h is roughly the same as the time for computing ~fj;� for a
given pair of (h; �). Denote, respectively, that numbers of elements
in [hmin; . . . ; hmax] and [�min; . . . ; �max] as Nh and N�. Typically
a “best” h for calculating f̂j is defined as the optimizer of some
criterion. If this criterion is to be optimized over [hmin; . . . ; hmax]
by a grid search, then the computation time for calculating f̂j with
an automatic selected h is approximately Nh�. Similarly, the com-
putation time for calculating ~fj;� with an automatic selected pair of
(h; �) is approximately NhN��. Therefore, the computational time
for calculating the sharpened estimator ~fj;� is roughly N� times the
computational time for the unsharpened estimator f̂j . In practice, we
use � = [0:0; 0:1; . . . ; 1:0], i.e., N� = 11.

V. THEORETICAL PROPERTIES

This section summarizes our theoretical findings. Proofs are deferred
to the Appendix.

We first derive and compare the asymptotic biases and variances of
the unsharpened estimator f̂j defined in (3) and the sharpened estimator
~fj;� defined in (5). We show that it is possible to reduce the bias of ~fj;�
to a higher order when comparing to the bias of f̂j , while the variance
of ~fj;� is only inflated by a multiplicative constant.

We begin with the asymptotic bias and variance of f̂j . We require the
following assumptions for the spectral density f( � ), the kernel func-
tion K( � ), and the sequence of bandwidths h = h(n), as follows:

A1) the second derivative of f( � ); f (2)( � ), is bounded on [0; 2�);
A2) K is a compactly supported, symmetric probability density

with �2K = u2K(u)du < 1; kKk2 = K2(u)du < 1,
and the first derivative K(1)( � ) is bounded on its support;

A3) h ! 0; nh ! 1 and lim inf nh2 > 0, as n ! 1.
Lemma 1: Under the assumptions A1)–A3)

Bias(f̂j) =
1

2
�2Kf

(2)
j h2 + o(h2)

Var(f̂j) =
kKk2f2j
nh

+ o
1

nh
(8)

where f̂j is defined in (2).
Next, we consider the sharpened estimator ~fj;�. We first replace as-

sumptions A1) and A2) with the following:

A1y) the fourth derivative of f( � ); f (4)( � ), is bounded on
[0; 2�);

A2y) in addition to the conditions in A2), �4(K) =
u4K(u)du < 1.

Theorem 1: Under the assumptions A1y), A2y) and A3)

Bias( ~fj;�) =
1

2
(1� �)�2Kf

(2)
j h2

+
1

4

1

6
(1� �)�4(K)� ��4K f

(4)
j h4 + o(h4) (9)

Var( ~fj;�) = (1 + �)2
kKk2f2j
nh

+ o
1

nh
(10)

where f̂j;� is defined in (5).
From (9), one can see that, for the sole purpose of bias reduction,

the best choice for � is � = 1. Such a choice of � gives Bias( ~fj;1) =
��4Kf

(4)
j h4=4+o(h4); that is, Bias( ~fj;�) is reduced toO(h4). How-

ever, instead of fixing � = 1, in practice we advocate allowing the data
to select � through the minimization of (7). It is because (9) is only an
asymptotic expression and also the variance term (10) increases as �
increases.

Finally, we have established the following property of our risk esti-
mator R̂(h; �).

Theorem 2: Under the model (1), the risk estimator R̂(h; �) defined
in (7) is an unbiased estimator of the risk function R(h; �).

VI. NUMERICAL EXPERIMENTS

This section reports results of numerical experiments that were con-
ducted for evaluating the finite sample performance of the sharpened
estimator ~fj;�.

Altogether three testing spectra and four different sample sizes were
used. The three testing spectra are the mobile radio communication
example of [9], the broadband MA(3) and the narrowband ARMA(4,4)
examples of [13]. These three testing spectra are displayed in Fig. 1,
and their complete specifications can be found in [9], [13]. The four
sample sizes were n = 128; 256; 512 and 1024. For all experiments,
the following kernel function was used: K(x) = (3=4)(1� x2); x 2
[0; 1]. It is the optimal kernel of order (0, 2) derived in [4]. It is optimal
in the sense that, under certain regularity conditions, it minimizes the
L2 distance between the true and the estimated f .

For each combination of testing spectrum and sample size (in total
there are 12 such combinations), 200 independent series were simu-
lated, and the corresponding periodograms were computed. Then, from
each periodogram, the sharpened estimator ~fj;� (5) was computed,
where the pair of free parameters (h; �) was chosen as the joint min-
imizer of the risk estimator R̂(h;�) (7). For comparison purposes,
the unsharpened estimator f̂j defined in (3) was also computed twice,
with the following two bandwidths. The first one was chosen using the
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Fig. 1. Three testing spectra used in the numerical experiments. From top to
bottom: The mobile radio communication example of [9], the broadband MA(3)
example of [13], and the narrowband ARMA(4,4) example of [13].

Kullback–Leibler (KL) distance-based method of [7] while the second
was the generalized cross-validation (GCV) method of [10]. Lastly, we
also applied the recent cepstrum thresholding technique of [5] (see also
[12]) to obtain a fourth estimate of f .

For each estimated spectrum, we calculated the corresponding mean-
squared error (MSE), i.e., (1=n) (fj� ~fj;�)

2, for the sharpened esti-
mate and similarly for the other three unsharpened estimates. The aver-
aged MSEs together with their standard errors for each of the 12 com-
binations of experimental setups are tabulated in Table I. To summarize
the relative performances of the above four estimators, we ranked them
in the following manner. First, paired t-tests were applied to test if the

difference between the averaged MSE values of any two estimators is
significant or not. The significance level used was 1.25%. If the aver-
aged MSE value of a method is significantly less than the remaining
three, it will be assigned a rank 1. If the averaged MSE value of a
method is significantly larger than one but less than two methods, it will
be assigned a rank 2, and similarly for ranks 3 and 4. Methods having
nonsignificantly different averaged MSE values will share the same av-
eraged rank. The resulting rankings are also tabulated in Table I.

The following empirical conclusions can be drawn. First, as the
sample size increases, the performances of all estimators improve.
Second, as the overall averaged pairwise t-test rankings for the pro-
posed sharpened estimator, the KL estimator of [7], the GCV estimator
of [10], and the cepstrum thresholding estimator of [5] are 1.08, 2.5,
2.42, and 4.0, respectively, there is some evidence suggesting that the
proposed sharpened estimator is preferred. Third, for the mobile radio
communication spectrum, the performances of the proposed estimator
is much better than the rest, especially for largen. It is most likely due to
the sharp spike feature of the spectrum, which, as a result of smoothing,
can potentially cause large bias and the sharpening has successfully
reduced it. Lastly, we want to comment on the poor performance of the
cepstrum thresholding approach. As with most cepstrum approaches,
this estimator aims to obtain a good estimate for the log of the spectrum;
hence, it has a tendency to oversmooth sharp features in the spectrum.

VII. CONCLUDING REMARKS

In this correspondence, we have developed a new method for spectral
density estimation via the smoothing of sharpened periodograms. We
have shown theoretically that the smoothing of sharpened periodograms
can reduce the bias to a higher order while at the same time only in-
flate the variance by a constant multiple. Using the idea of unbiased risk
estimation, we have also constructed a method for choosing the two
free tuning parameters involved in the estimation procedure, namely
the bandwidth that determines the amount of smoothing and the sharp-
ening parameter that controls the extent for sharpening. Numerical re-
sults suggest that sharpened estimates are superior to their unsharpened
counterparts. One possible extension of the current work is to adopt
other smoothing methods, such as wavelet shrinkage, to smooth the
sharpened periodograms. This would require the development of new
methods for bandwidth and sharpening parameter selection.

APPENDIX

PROOFS

Proof of Lemma 1: We first show that A1) and A2) imply that,
when n ! 1

2n�1

m=�n

W 2
m�j =

kKk2

nh
+ o

1

nh

2n�1

m=�n

Wm�j(!m � !j)
2 = �2Kh

2 + o(h2): (11)

Let sl(!j ;h) = (�=n) 2n�1
m=�n(!m � !j)

lKh(!m � !h), where
Kh( � ) = (1=h)K(�=h). SinceK(1) is bounded on its compact sup-

port, say [�M;M ], for large n; sl(!j ;h) can be well approximated by

sl(!j ;h) =
2�

��

(y � !j)
lKh(y � !j)dy + o(1=n)

= hl
(2��! )=h

(���! )=h

ulK(u)du+ o(1=n)

= hl
M

�M

ulK(u)du+ o(1=n) = �l(K)hl + o(1=n)

where �l(K) = ulK(u)du. Analogously, let s�l (!j;h) =
(�=n) 2n�1

m=�n(!m � !j)
lK2

h(!m � !h), one has s�l (!j;h) =
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TABLE I
AVERAGE MSES AND PAIRWISE t-TEST RANKINGS (IN ITALICS) OBTAINED FROM THE NUMERICAL EXPERIMENTS. NUMBERS IN PARENTHESES ARE STANDARD

ERRORS, MULTIPLIED BY 10 , OF THE MSES. THE FOUR ESTIMATORS WERE SHARP—THE PROPOSED SHARPENED ESTIMATOR, KL—THE UNSHARPENED

ESTIMATOR WITH KL CHOICE OF BANDWIDTH [7], GCV—THE UNSHARPENED ESTIMATOR WITH GCV CHOICE OF BANDWIDTH [10], AND CEPS—THE

CEPSTRUM THRESHOLDING APPROACH OF [5]. NOTICE THAT FOR BROADBAND MA(3) WITH n = 128, ALTHOUGH THE OVERALL AVERAGED

MSE OF SHARP IS LARGER THAN THOSE OF KL AND GCV, THE PAIRWISE t-TEST HAS ASSIGNED IT A RANK OF 1

�l(K
2)hl�1 + o(1=n). Note from A3) lim inf nh2 > 0 which allows

o(1=n) to be replaced by o(h2); 2n�1
m=�nW

2
m�j = s�0(!j ; h)=

fns0(!j ;h)g and 2n�1
m=�nWm�j(!m � !j)

2 = s2(!j; h)=
s0(!j; h); hence, (11) is proved.

We now derive (8). A direct application of the Taylor expansion gives

fm = fj + (!m � !j)f
(1)
j +

1

2
(!m � !j)

2f
(2)
j + o(n�2):

For convenience, we shall write “ 2n�1
m=�n” as “

m
” in the sequel

unless defined otherwise. Thus

Bias(f̂j) =
m

Wm�jfE(fm�m)� fjg

=
m

Wm�j(fm � fj)

=
m

Wm�j (!m � !j)f
(1)
j

+
1

2
(!m � !j)

2f
(2)
j + o

1

n2

=
1

2
�2Kf

(2)
j h2 + o(h2)

Var(f̂j) = Var
m

Wm�jIm =
m

W 2
m�jf

2
m

=
m

W 2
m�j fj + (!m � !j)f

(1)
j + o

1

n

2

=
m

W 2
m�jf

2
j + o

1

nh
=

kKk2f2j
nh

+ o
1

nh
:

Proof of Theorem 1: Under assumptions A1y) and A2y), by sim-
ilar derivation of Lemma 1, and by applying the Taylor expansion up
to the term h4, it is straightforward to show that

f̂m = fm +
1

2
�2Kf

(2)
m h2 +

1

24
�4(K)f (4)m h4 +Rn;m

where �4(K) = u4K(u)du, and Rn;m is the remaining term sat-
isfying E(Rn;m) = o(h4) and Var(Rn;m) = Of1=(nh)g. This im-
plies that the sharpened periodograms can be expressed by

~Im;� = f(1 + �)�m � �gfm �
1

2
��2Kf

(2)
m h2

�
1

24
��4(K)f (4)m h4 � �Rn;m: (12)

One also has f (2)m = f
(2)
j + (!m � !j)f

(3)
j + (!m � !j)

2f
(4)
j =2 +

o(n�2), and f (4)m � f
(4)
j = o(1). Therefore

Bias( ~fj;�)

=
m

Wm�j Ef(1 + �)�m � �gfm �
1

2
��2Kf

(2)
m h2

�
1

24
��4(K)f (4)m h4 � �E(Rn;m)� fj

=
m

Wm�j fm � fj �
1

2
��2Kf

(2)
m h2

�
1

24
��4(K)f (4)m h4 + o(h4)

=
m

Wm�j

1

2
(!m � !j)

2f
(2)
j +

1

24
(!m�!j)

4f
(4)
j

�
1

2
��2Kh

2 f
(2)
j +

1

2
(!m � !j)

2f
(4)
j + o(n�2)

�
1

24
��4(K)f

(4)
j h4 + o(h4)

=
1

2
(1� �)�2Kf

(2)
j h2

+
1

4

1

6
(1� �)�4(K)� ��4K f

(4)
j h4 + o(h4):

The asymptotic variance of ~fj;� is given by

Var(f̂j)

= Var
m

Wm�j f(1 + �)�m � �gfm �
1

2
��2Kf

(2)
m h2

�
1

24
��4(K)f (4)m h4 � �Rn;m

=
m

W 2
m�j(1 + �)2f2m + o

1

nh

=
m

W 2
m�j(1 + �)2 fj + (!m � !j)f

(1)
j

2

+ o
1

nh

= (1 + �)2
kKk2f2j
nh

+ o
1

nh
:
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Proof of Theorem 2: First, we stress that the unbiasness
stated in this theorem only holds under model (1). The proof be-
gins by noting that EfRSS(h; �)g = Ef

j
(Ij � ~fj;�)

2g =

j
E(I2j � 2Ij ~fj;� + ~f2j;�). Since the �j ’s are independent standard

exponentials, then E(Ij) = fj ; E(I
2

j ) = E(f2j �
2

j ) = 2f2j . From (3)
and (5), one has ~Ij;� = (1 + �)Ij � �

m
Wm�jIm and

~fj;� = (1 + �)

2n�1

m=�n

Wm�jIm � �

2n�1

m;k=�n

Wm�jWk�mIk:

Then

E(Ij ~fj;�)

= E (1 + �)fj�j
m

Wm�jfm�m

� �E(fj�j
m;k

Wm�jWk�mfk�k)

= (1 + �) fj
m 6=j

Wm�jfm + 2W0f
2

j

� � 2
m

W
2

m�jf
2

j + fj
k 6=j

Wm�jWk�mfk

= (1 + �)W0 � �

m

W
2

m�j f
2

j + fj

� (1 + �)
m

Wm�jfm � �

m;k

Wm�jWk�mfk

= (1 + �)W0 � �

m

W
2

m�j f
2

j + fjE( ~fj;�):

Therefore

Ef(Ij � ~fj;�)
2g

= 2f2j � 2 (1 + �)W0 � �

m

W
2

m�j f
2

j

+ fjE( ~fj;�) +E( ~f2j;�)

= Ef(fj � ~fj;�)
2g

� 2 (1 + �)W0 � �

m

W
2

m�j � 1 f
2

j ;

and

EfRSS(h;�)g

= nR(h;�)�

n�1

j=0

2 (1 + �)W0 � �

m

W
2

m�j � 1 f
2

j :

Thus, R̂(h;�) defined in (7) is an unbiased estimator of R(h;�).
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