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We introduce the notion of a functional variance process to quantify variation in functional data. The functional data are modeled as samples
of smooth random trajectories observed under additive noise. The noise is assumed to be composed of white noise and a smooth random
process—the functional variance process—which gives rise to smooth random trajectories of variance. The functional variance process is
a tool for analyzing stochastic time trends in noise variance. As a smooth random process, it can be characterized by the eigenfunctions
and eigenvalues of its autocovariance operator. We develop methods to estimate these characteristics from the data, applying concepts from
functional data analysis to the residuals obtained after an initial smoothing step. Asymptotic justifications for the proposed estimates are
provided. The proposed functional variance process extends the concept of a variance function, an established tool in nonparametric and
semiparametric regression analysis, to the case of functional data. We demonstrate that functional variance processes offer a novel data
analysis technique that leads to relevant findings in applications, ranging from a seismic discrimination problem to the analysis of noisy
reproductive trajectories in evolutionary biology.
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1. INTRODUCTION

The need to model locally changing variances has long
been recognized in nonparametric regression, generalized lin-
ear modeling, and the analysis of volatility. In these settings,
a variance function is invoked to quantify heteroscedasticity
and to achieve efficient estimation. Often variance functions are
assumed to follow a parametric form, for example, in gener-
alized linear models or quasi-likelihood models (Wedderburn
1974), where the variance is considered a known function of
the mean. In other settings, such as quasi-likelihood regression
models (Chiou and Müller 1999), the variance function is as-
sumed to be a smooth but otherwise unspecified function. Vari-
ance functions play a role in semiparametric regression models
(Müller and Zhao 1995), and their applications include residual
analysis (Gasser, Sroka, and Jennen-Steinmetz 1986), construc-
tion of local confidence intervals under heteroscedasticity and
local bandwidth selection (Müller and Stadtmüller 1987), and,
more generally, statistical model building (Eubank and Thomas
1993). There now exists a sizeable literature on the nonparamet-
ric analysis of variance functions that includes work by Dette
and Munk (1998), Fan and Yao (1998), Yao and Tong (2000),
and Yu and Jones (2004), among others.

In nonparametric variance function estimation, it is assumed
that observed data scatter randomly around a fixed regression
function. The variance function then pertains to the variance of
errors that are added to a smooth mean regression function g,

Yj = g(tj) + ej(tj), j = 1, . . . , J.

Here (tj)j=1,...,J is a grid of design points and v(tj) = var(ej(tj))
is the variance function that typically is assumed to be smooth.
If the predictors are random and the sample consists of bivariate
data (X,Y), then the variance function is defined alternatively
as v(x) = E(Y2|X = x) − [E(Y|X = x)]2.

Although the variance function traditionally is considered
a nonrandom object targeted by function estimation methods

Hans-Georg Müller is Professor, Department of Statistics, University of
California, Davis, CA 95616 (E-mail: mueller@wald.ucdavis.edu). Ulrich
Stadtmüller is Professor, Department of Mathematics, University of Ulm,
89069 Ulm, Germany (E-mail: stamue@mathematik.uni-ulm.de). Fang Yao is
Assistant Professor, Department of Statistics, Colorado State University, Fort
Collins, CO 80523 (E-mail: fyao@stat.colostate.edu). The authors thank the
editor and associate editor for their handling of the manuscript and two referees
for very helpful remarks. Very special thanks are due to a referee for the excel-
lent suggestion to simplify the original approach by introducing a presmoothing
step. This research was supported in part by National Science Foundation grants
DMS-03-54448 and DMS-05-05537.

such as kernel or spline smoothing, increasingly data of a more
complex functional type are collected, and the goal is statistical
analysis for a sample of observed random trajectories. Goals of
analyzing this type of high-dimensional data include defining
the characteristics of a given sample of curves, finding clus-
ters of similar subgroups, and discriminating between differ-
ent types of trajectories. An excellent overview on functional
data analysis has been provided by Ramsay and Silverman
(2002, 2005). In this article we aim to extend the concept of
a variance function to a random variance process that appropri-
ately reflects and quantifies the variation observed in functional
data.

Our study is motivated by a discrimination problem in seis-
mology that has been described by Shumway (2002) (see also
Kakizawa, Shumway, and Tanaguchi 1998). The available data
correspond to time courses of seismic activity as recorded in
array stations, and a major goal is to infer the type of seismic
event that caused the activity. There are two possibilities, ex-
plosion and earthquake. Typical examples of recorded activity
for earthquakes and explosions are shown in Figure 1. Analy-
sis of such data traditionally has been the domain of time series
methodology. We add a new angle by approaching this problem
within the framework of functional data analysis. This is fea-
sible because the data consist of repeated realizations of time
courses of seismic activity. Although discriminant analysis for
functional data focusing on information contained in smooth
random trajectories has been described in work by Hall, Poskitt,
and Presnell (2001) and generally can be based on functional
principal component scores, scrutinizing the time courses in
Figure 1 indicates that relevant information is contained in lo-
cally varying patterns of variation rather than smooth signal tra-
jectories. Aiming to quantify this random variability motivates
us to introduce the concept of a functional variance process.

Because each recorded trajectory is a random process, the
notion of a variance function, as described earlier, is not suffi-
cient to quantify the locally varying variation of each individ-
ual random trajectory, which in itself is a random phenomenon.
Therefore, for these and other data analysis problems involving
curve data with a potentially informative variation structure, an
extension of the usual modeling approaches currently available
for functional data analysis is needed. We are aiming at a model
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Figure 1. Data for Eight Standardized Explosions (first two rows), Seven Standardized Earthquakes (last two rows except for the bottom right
panel), and One Unknown Event (bottom right panel). The first earthquake out of eight earthquakes is not shown. Time unit is .025 seconds.

that includes random components for variation. In this article
we propose such an extension and demonstrate its usefulness
for applications. We show that functional variance processes
lead to sensible procedures for the seismic discrimination prob-
lem compared with other approaches of functional discriminant
analysis and manifest themselves in random trajectories that
quantify variation. One trajectory, corresponding to a realiza-
tion of the variance process, is associated with each realiza-
tion of the underlying random process, as shown in Figure 1.
Functional variance processes generate smooth trajectories and
jointly with pure noise components determine the additive er-
rors in the discretely observed data.

Functional principal component (FPC) analysis is a major
tool for the proposed development. FPC provides dimension
reduction for functional data, where an eigenfunction base is
used to parsimoniously describe observed random trajectories
in terms of a number of random components, the FPC scores.
The eigenfunctions or principal component functions are or-
thonormal functions that have been interpreted as the modes
of variation of functional data (Castro, Lawton, and Sylvestre
1986). Early work on this concept was done by Grenander
(1950) and Rao (1958), and lately it has assumed a central role
in functional data analysis (Rice and Silverman 1991; Jones and
Rice 1992; Ramsay and Silverman 2005; James, Hastie, and
Sugar 2001; Yao et al. 2003).

The basic decomposition of the noise in the data that de-
fines functional variance processes is presented in Section 2.
Estimation of the characteristic eigenfunctions and eigenval-

ues of functional variance processes is described in Section 3,
where estimates of individual trajectories of functional variance
processes are also introduced. Section 4 is devoted to asymp-
totic results on the consistency of estimated residuals (Thm. 1),
providing the basis for constructing trajectories of functional
variance processes and convergence of estimated eigenfunc-
tions and eigenvalues (Thm. 2), as well as convergence of indi-
vidual estimated trajectories (Thm. 3) of the functional variance
process.

Applications of the functional variance process technique
to recorded seismic geophysical and reproductive biological
random trajectories are the theme of Section 5, followed by
concluding remarks. Details about estimation procedures are
compiled in Appendix A, assumptions and notations as needed
for the proofs are given in Appendix B, and proofs and auxiliary
results are provided in Appendix C.

2. DECOMPOSING FUNCTIONAL DATA

The observed data are decomposed into a smooth process
S that is sampled on a discrete dense grid and additive noise.
The noise is assumed to be generated by the smooth functional
variance process V and an independent white noise component.
Individual trajectories of the functional variance process are
modeled through the corresponding FPC scores and eigenfunc-
tions.

The data are generated from a square-integrable process S
that produces a sample of n iid smooth random trajectories Si,
i = 1, . . . ,n. The observed measurements Xij are available on
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(a) (b)

(c) (d)

Figure 2. Components of Functional Variance Processes for the
Earthquakes and Explosions Data [(a) and (b)] and the Egg-Laying Data
[(c) and (d)]. (a) and (c) Smooth estimate of the mean function for the
functional variance process V(t) for earthquakes and explosions data (a)
and egg-laying data (c). (b) Smooth estimates of the first ( —–), sec-
ond ( - - - -), and third ( -·-·-·-) eigenfunctions of V(t) for the earthquakes
and explosions data, accounting for 62.8%, 23.6%, and 7.8% of to-
tal variation. (d) Smooth estimates of the first ( —–), second ( - - - -),
third ( -·-·-·-), and fourth (· · · · · ·) eigenfunctions of V(t) for egg-laying
data, accounting for 48.3%, 21.0%, 11.6%, and 6.7% of total variation.
Time unit is .025 seconds for (a) and (b), and is days for (c) and (d).

a regular dense grid of support points tij on the domain T =
[a1,a2] and are related to S by

Xij = Si(tij) + Rij, i = 1, . . . ,n, j = 1, . . . ,m. (1)

The Rij are additive noise, such that Rij and Ri′k are independent
for all i �= i′, and

ERij = 0, var(Rij) = σ 2
Rij < ∞.

Note that the noise Rij within the same subject or item i may
be correlated. Throughout this article, “smooth” refers to twice
continuously differentiable. The domain of S is assumed to be a
compact interval T = [a1,a2]. We remark that the assumptions
of a dense grid of measurement times and of the same num-
ber of observations m made on each subject can be relaxed, as
discussed in Appendix B after (A2.5).

Focusing on the noise Rij, we assume that squared errors R2
ij

are the product of two nonnegative components, one of which
can be represented as an exponentiated white noise Wij, and
the other as an exponentiated random function V(t), that is,
R2

ij = exp(V(tij)) exp(Wij). As in the case of regression resid-

uals, the squared errors R2
ij can be expected to carry relevant

information about the random variation, and the exponential
factors convey the nonnegativity restriction. The transformed
errors Zij = log(R2

ij) are then additively decomposed into the
two components V(tij) and Wij. The components of this de-
composition are smooth random trajectories corresponding to
realizations of the functional variance process V , which is our
target, on the one hand and to the errors Wij on the other hand.
The Wij are assumed to satisfy

E(Wij) = 0, var(Wij) = σ 2
W , and Wij ⊥ Wik

for j �= k. (2)

Furthermore, W ⊥ V and W ⊥ S, where Q ⊥ T means that ran-
dom variables Q and T are independent.

The decomposition

Zij = log (Rij)
2 = V(tij) + Wij (3)

implies that

E(Zij) = E(V(tij)) = µV(tij), (4)

where the functional variance process V is assumed to have a
smooth mean function µV and a smooth covariance structure

GV(s, t) = cov(V(s),V(t)), s, t ∈ T . (5)

The autocovariance operator associated with the symmetric ker-
nel GV ,

GV( f )(s) =
∫
T

GV(s, t)f (t)dt, (6)

is a linear integral operator with kernel GV mapping a func-
tion f ∈ L2(T ) to the function GV( f ) ∈ L2(T ). It has smooth
eigenfunctions ψk with nonnegative eigenvalues ρk, which are
assumed to be ordered by size, ρ1 ≥ ρ2 ≥ · · · . The covari-
ance surface GV of V can then be represented as GV(s, t) =∑

k ρkψk(s)ψk(t), s, t ∈ T . A consequence is the Karhunen–
Loève decomposition for random trajectories V ,

V(t) = µV(t) +
∞∑

k=1

ζkψk(t), (7)

with FPC scores ζk, k ≥ 1. These are random variables with
Eζk = 0 and var(ζk) = ρk, which can be represented as

ζk =
∫
T

(
V(t) − µV(t)

)
ψk(t)dt. (8)

Observing (4), given the transformed errors Zij, estimates
of µV can be obtained by pooling these errors for all n subjects
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and smoothing the resulting scatterplot. Furthermore, (2) im-
plies that

cov(Zij,Zik) = cov
(
Vi(tij),Vi(tik)

)
= GV(tij, tik), j �= k. (9)

Because the covariance kernel GV is smooth, it can be estimated
from the empirical covariances of the Zij. Here the diagonal
needs to be omitted because it is contaminated by the white
noise error variance σ 2

W . Details on estimating such covariance
surfaces have been given by Staniswalis and Lee (1998) and
Yao, Müller, and Wang (2005). Once µV and GV are available,
the eigenfunctions are obtained by standard procedures (Rice
and Silverman 1991).

Specific examples of how the assumed data structure might
arise are easily constructed. Assume that we have two orthonor-
mal systems on T , φk and ψk, k = 1,2, . . . , both consisting of
smooth functions, and two null sequences λk and ρk such that∑

k λk < ∞ and
∑

k ρk < ∞. Take sequences of random vari-
ables ξk with E(ξk) = 0 and var(ξk) = λk and ζk with E(ζk) = 0
and var(ζk) = ρk, where all of these random variables are inde-
pendent. Selecting any smooth functions µS and µV on T , we
then set

S(t) = µS(t) +
∞∑

k=1

ξkφk(t) and

(10)

V(t) = µV(t) +
∞∑

k=1

ζkψk(t).

Consider random variables Wij and εij, i = 1, . . . ,n, j = 1,

. . . ,m, which are independent among themselves and of all
other random variables such that E(Wij) = 0,var(Wij) = σ 2

W ,
and P(εij > 0) = P(εij < 0) = 1

2 . Observations Xij that satisfy
all of the properties mentioned earlier are then given by

Xij = Si(tij) + sign(εij)
{
exp[Vi(tij) + Wij]

}1/2
. (11)

Bounds on the trajectories of S and V and the first two deriv-
atives of S, as required for some of the asymptotic results,
are easily achieved by choosing all but finitely many of the
λk and ρk to be 0 and using bounded random variables ξk and ζk.

3. ESTIMATION OF MODEL COMPONENTS

The estimation procedures outlined in the previous section
will work if the Zij can be reasonably well estimated from the
available data, which indeed is the case, as we demonstrate
here. As for recovering individual trajectories Vi of the func-
tional variance process, according to (7), this requires obtaining
the FPC scores ζk of V , given in (8). As has been shown by Yao
et al. (2003), these integrals can be approximated by Riemann
sums, substituting V(tij) by Ẑij and µV and ψk by estimates µ̂k

and ψ̂k. Another component of the overall model that is of in-
terest and must be determined is var(Wij) = σ 2

W .
Assume that data Xij are observed on a regular and dense

grid (tij), i = 1, . . . ,n, j = 1, . . . ,m, where i is the subject index
and j is the measurement index, and that (1)–(7) hold. A core
algorithm is principal analysis of random trajectories (PART).
This algorithm is similar to a procedure described by Yao et al.
(2005) (see also Staniswalis and Lee 1998). We provide only

an outline here; for further details on the estimation steps, see
Appendix A.

In a first step, following the suggestion of an anonymous
reviewer, we smooth the scatterplots (tij,Xij), j = 1, . . . ,m,
separately for each trajectory Si; any of a number of avail-
able smoothing methods can be used for this purpose and for
the other subsequent smoothing steps. When using local linear
smoothing, as in our implementation, we may apply a different
bandwidth bS,i for each trajectory; see Appendixes A and B for
further details. We selected bandwidths bS,i by cross-validation,
individually per subject, which yields good results in applica-
tions and avoids biases that may arise when using cross-panel
smoothing techniques, such as pooled cross-validation or an ini-
tial FPC expansion for smooth processes S. The resulting esti-
mates Ŝi(tij) [see (A.1) in App. A] are taken to approximate the
true underlying smooth trajectory Si(tij). Accordingly, we ap-
proximate the errors by the residuals R̂ij = Xij − Ŝi(tij) to obtain
observed transformed residuals

Ẑij = log(R̂2
ij) = log

(
Xij − Ŝi(tij)

)2
,

i = 1, . . . ,n, j = 1, . . . ,m. (12)

In a second step, we then apply the PART algorithm to the
sample of transformed residuals Ẑij, i = 1, . . . ,n, j = 1, . . . ,m,
obtained in the first step. The main steps of the PART algorithm
applied to these data are as follows:

1. Given the sample of all observed transformed residu-
als Ẑij, estimate the mean function µV (4) using a univari-
ate weighted least squares smoother with bandwidth bV

applied to the aggregated scatterplot of all observations;
details are as in (A.2) in Appendix A. The bandwidth bV

is chosen data-adaptively by cross-validation.
2. Estimate the smooth covariance surface GV [see (5)]

by applying two-dimensional smoothing [see (A.3)], fit-
ting local planes by weighted least squares to empirical
covariances, and using bandwidth hV , which in appli-
cations is chosen by cross-validation. The empirical co-
variances from which the covariance surface is obtained
are constructed between all pairs of observations (tij, tij′),
tij �= tij′ , whereas the empirical variances obtained at the
diagonal of the surface are omitted, because these are con-
taminated with the residual variance σ 2

W ; see (2).
3. From estimated covariance surface and mean function,

obtain estimated eigenfunctions and eigenvalues using
discretization and numerical algorithms; see (A.4).

4. Estimate the variance var(Wij) = σ 2
W [see (2)]. This in-

volves a one-dimensional smoothing step along the di-
agonal of the covariance surface, using bandwidth bQW

in the direction of the diagonal, and then obtaining the
estimate σ̂ 2

W as in (A.7). Again, in our data-adaptive
implementation bandwidths, bQW are chosen by cross-
validation.

5. Estimating individual FPC scores ζj [see (8)] by numeri-
cal integration as in (A.5).

The algorithm also provides an estimate of the number
of functional principal components M needed to approxi-
mate processes V , using leave-out-one-curve cross-validation;
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Figure 3. Observed Values of Zij = log(R2
i (tij )) (black) and Estimated Trajectories of Functional Variance Processes V̂i (t) [see (13)] (white) for

Eight Explosions (first two rows), Seven Earthquakes (last two rows except for the bottom right panel), and one Unknown Event (bottom right panel).
The first earthquake out of eight earthquakes is not shown; the order of earthquakes and explosions is as in Figure 1. Time unit is .025 seconds.

see (A.6). Alternative selectors, such as pseudo–Akaike in-
formation and pseudo–Bayes information criteria (Yao et al.
2005), might be used as well.

The output consists of estimated mean function µ̂V , esti-
mated eigenfunctions/eigenvalues ψ̂k and ρ̂k, estimated noise
variance σ̂ 2

W , and estimated FPC scores ζ̂ik. According to (7), if
a number M of approximating components is chosen by the al-
gorithm, then this leads to fitted individual functional variance
process trajectories

V̂i(t) = µ̂V(t) +
M∑

k=1

ζ̂ikψ̂k(t). (13)

Examples of such estimated trajectories are shown in Figure 3.

4. ASYMPTOTIC RESULTS

To develop functional asymptotic results for the components
of the expansion (13) of individual estimated trajectories of
the functional variance process, a preliminary first step is to
derive bounds for the differences between actual transformed
errors Zij [see (3)] and the observed transformed residuals Ẑij

[see (12)] that are becoming available after the initial smooth-
ing step, which aims to recover the smooth trajectories Si. In
what follows, we refer to bandwidths bS for smoothing tra-
jectories Si [see (A.1) in App. A]; the bandwidth sequence
bS represents bandwidths bS,i, which are chosen separately for

each individual trajectory. These bandwidths, bS,i, are tied to
a universal sequence of bandwidths, bS, according to assump-
tion (A2.1), such that the overall sequence, bS, satisfies (A2.2);
these assumptions are listed in Appendix B. Bandwidths bV ,
hV , and bQV are used in the smoothing steps for µ̂V in (A.2),
ĜV(s, t) in (A.3), and Q̂V(t) in (A.7) in Appendix A. These
choices are governed by assumptions (A2.3)–(A2.5).

We obtain the following consistency properties for the ran-
dom trajectories, where m is the number of measurements that
are available for each trajectory. Assumptions (A) and (B) are
given in Appendix B, and the proofs are provided in Appen-
dix C.

Theorem 1. Under conditions (A1), (A2), (B1.1), and (B2.1),
it holds for smoothed trajectories Ŝi(t) that

E
(

sup
t∈T

|Ŝi(t) − Si(t)|
)

= O

(
b2

S + 1√
mbS

)
. (14)

As a consequence of (14), if we apply the PART algorithm
to the observed transformed residuals Ẑij, then we expect to ob-
tain consistent estimates of the components of the functional
variance process, which is our target. The difficulty here is that
we do not observe the actual transformed errors Zij, but observe
only the approximate values Ẑij, corresponding to the trans-
formed residuals from the initial smoothing step.

The next result establishes consistency of the estimates of the
components of the functional variance process, namely the esti-
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mate µ̂V(t) of the mean function µV(t), the estimate ĜV(s, t) of
the covariance function GV(s, t), and estimates ρ̂k and ψ̂k(t) of
eigenvalues ρk and eigenfunctions ψk. These components are
obtained as in (A.2), (A.3), and (A.4) in Appendix A and char-
acterize the functional variance process. Consistent estimation
of these components validates our approach asymptotically. In
addition, consistency of the estimate σ̂ 2

W [see (A.7)] of the noise
variance σ 2

W [see (2)] is also obtained.

Theorem 2. Under conditions (A1)–(A8) and (B1.1)–(B2.2),
it holds for the estimates of the components of the functional
variance process that

sup
t∈T

|µ̂V(t) − µV(t)|

= Op

(
b2

S + 1√
mbS

+ 1√
nbV

)
,

sup
s,t∈T

|ĜV(s, t) − GV(s, t)|
(15)

= Op

(
b2

S + 1√
mbS

+ 1√
nh2

V

)
,

|σ̂ 2
W − σ 2

W |

= Op

(
b2

S + 1√
mbS

+ 1√
nh2

V

+ 1√
nbQV

)
.

Considering eigenvalues ρk of multiplicity 1, ψ̂k can be chosen
such that

sup
t∈T

|ψ̂k(t) − ψk(t)| p−→ 0, ρ̂k
p−→ ρk. (16)

The rates of convergence of the estimated eigenvalues ρ̂k

and eigenfunctions ψ̂k can be obtained as supt∈T |ψ̂k(t) −
ψk(t)| = Op(αnk + α∗

nk) and |ρ̂k − ρk| = Op(αnk + α∗
nk), where

αnk and α∗
nk are defined in (C.1) in Appendix C, using defini-

tions (B.1) and (B.2).
Another central result provides consistency for individually

estimated trajectories V̂i [see (13)] of functional variance trajec-
tories Vi, such as those drawn in Figure 3. We proceed by first
establishing the consistency of estimates ζ̂ik [see (A.5)] of indi-
vidual FPCs ζik of functional variance processes V . This result
provides asymptotic justification for the proposed estimates of
individual trajectories of functional variance processes.

Theorem 3. Under conditions (A1)–(A8) and (B1.1)–(B2.2),
it holds for the estimates of the FPCs of functional variance
processes V that

sup
1≤k≤M

|ζ̂ik − ζik| p−→ 0, (17)

where for the number of components in expansion (13), M =
M(n) → ∞, as n → ∞. Furthermore, for estimated trajecto-
ries V̂i(t) of the functional variance process V , it holds that for
1 ≤ i ≤ n,

sup
t∈T

|V̂i(t) − Vi(t)| p−→ 0. (18)

We note that for the convergence in (16), the conditions
on the number of observed trajectories n and on the num-
ber of points m at which each trajectory is sampled must

satisfy n,m → ∞ under conditions (A2) and (A3), whereas
for the convergence of (17), the number of included compo-
nents also must satisfy M(n) → ∞ and, furthermore, condi-
tions (A5)–(A8) must hold. These conditions amount to upper
limits on the speed at which M(n) → ∞. To conclude this
section, we remark that the rates of convergence of estimated
trajectories V̂i in (18) depend on properties of the underlying
processes S and V and can be determined as supt∈T |V̂i(t) −
Vi(t)| = O(ϑ

(1)
in + ϑ

(2)
in ), where the O(·) terms hold uniformly

in 1 ≤ i ≤ n and ϑ
(1)
in and ϑ

(2)
in are random variables as defined

in (C.9) in Appendix C.

5. APPLICATIONS OF FUNCTIONAL
VARIANCE PROCESSES

5.1 Earthquake and Mining Exploration Series

The series in Figure 1 represent typical earthquake and
mining explosion seismic data from a suite of eight earth-
quakes and eight explosions and an event of unknown mech-
anism originating on the Scandinavian peninsula, as recorded
by seismic arrays. We standardized each series by dividing
by the sample standard deviation for the entire series before
analysis. The general problem of interest for these data is to
distinguish or discriminate between waveforms generated by
earthquakes and those generated by explosions. Note that both
series contain two phases, the initial body wave [so-called
“arrivals” (t = 1, . . . ,1,024)] and the secondary shear wave
(t = 1,025, . . . ,2,048).

Ratios and amplitudes of the two components, as well as
spectral ratios in different frequency bands, have been used in
previous attempts at feature-based discriminant analysis (see,
e.g., Kakizawa et al. 1998). Shumway (2002) proposed using
time-varying spectra for classification and clustering of non-
stationary time series. Our proposal is to apply functional data
analysis methods to perform discriminant analysis. This can
be done in the standard way by targeting the smooth random
process S(t) [see (1)] and its decomposition into eigenfunctions
and FPC scores, as in (10), using, for example, the estimation
methods described by Rice and Silverman (1991).

Because for these data the major information of interest ap-
pears to reside in the random variation, the application of the
newly introduced functional variance process is of interest.
Three eigenfunctions are chosen by cross-validation [see (A.6)]
to represent the dominant modes of variation for V . The es-
timated mean function µV(·) and estimated first three eigen-
functions for the functional variance process V are displayed in
Figures 2(a) and 2(b), with the mean function on the left and the
eigenfunctions on the right. The first eigenfunction is broadly
associated with the size of the body wave, whereas the sec-
ond eigenfunction forms two contrasts, one between the early
and late phases of the body wave and the other between the
early and late phases of the shear wave. The third eigenfunction
also forms two contrasts, which are more clearly expressed and
emphasize somewhat earlier times compared with the second
eigenfunction. Another quantity of interest is the constant vari-
ance of the white noise process W , estimated here as σ̂ 2

W = 3.07,
using (A.7). We note that in practice, with discrete data such as
the explosions and earthquake data, it may be that in (12) the

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
 L

ib
ra

ri
es

] 
at

 0
0:

23
 0

3 
M

ar
ch

 2
01

2 



Müller, Stadtmüller, and Yao: Functional Variance Processes 1013

(a) (b)

Figure 4. Representation of the First Two Estimated Functional Prin-
cipal Component Scores, PC2 versus PC1, Obtained for the Smooth
Processes Si (a) and for the Functional Variance Processes Vi (b), for
Earthquakes and Explosions Data (+, earthquakes; ◦, explosions; ∗, un-
known event).

term (Xij − Ŝi(tij))2 is 0, and thus we added .001 to the squared
residuals R̂2

ij before taking the log.
The estimates for the trajectories Vi for the same data shown

in Figure 1 are depicted in Figure 3. These estimated random
trajectories correspond to realizations of the functional variance
process and visually reflect the local variation of the data when
compared with the corresponding panels of Figure 1. An early
peak in the variance process trajectories is quite noticeable for
the earthquakes, whereas it is largely absent for the explosions.

Estimates ζ̂ik, k = 1,2, i = 1, . . . ,15 [see (A.5)], of the first
two FPC scores [see (8)] of processes V , presented in Fig-
ure 4(b), show a clear separation between the two types of
events. The corresponding estimates of the first two FPC scores
of a more traditional FPC analysis of processes S (Rice and
Silverman 1991, implemented here following Yao et al. 2003)
are shown in Figure 4(a). We see that the pattern of the FPC
scores obtained for the variance processes Vi is much more
striking than that obtained for processes Si. This clearly in-
dicates that using the scores obtained for functional variance
processes Vi here leads to a more illuminating analysis.

Visually, the second versus first FPC scores of S, shown in
Figure 4(a), do not distinguish between explosions and earth-
quakes, indicating that processes S, which are the commonly
used basis for FPC analysis, do not contain much informa-
tion for discriminating between the two groups. In contrast,
the scores (ζ̂i1, ζ̂i2) obtained for functional variance processes
clearly distinguish explosions and earthquakes; a line can be
drawn to separate the two groups. In fact, the leave-one-out
misclassification error for logistic discriminant analysis based
on the scores for S led to 7 misclassifications (out of 15 events),
whereas the scores for the functional variance process led to 0
misclassifications, thus demonstrating the usefulness of the
functional variance process approach.

The last event from an unknown origin is classified as an ex-
plosion if we use the scores from S, and as an earthquake based

on the scores ζ̂ik, k = 1,2, for the functional variance process
trajectories Vi(t). Because the classification based on functional
variance processes is clearly more reliable, we conclude from
this analysis that the unknown event is an earthquake.

5.2 Egg-Laying Data

To illustrate the application of functional variance processes
to a biological problem, we selected 359 medflies from a study
of 1,000 female medflies described by Carey, Liedo, Müller,
Wang, and Chiou (1998) with lifetimes no less than 40 days,
and investigated the dynamics of the number of eggs laid daily
during the first 40 days. The estimated trajectories S obtained
from the initial smoothing step for eight randomly selected flies
are shown in the top eight panels of Figure 5. The shapes of
the egg-laying curves vary quite a bit, but a general feature is a
more or less rapid increase in egg-laying activity followed by a
more protracted decline.

The estimated mean function µ̂V [see (A.2)] for the func-
tional variance processes V and the first four eigenfunctions
for these processes are depicted in Figures 2(c) and 2(d). Here
four components were chosen by leave-out-one-curve cross-
validation [see (A.6)]. As mentioned before, we note that in
practice it may happen that in (12), the term (Xij − Ŝi(tij))2 is 0,
and thus we added 1 to the squared residuals R̂2

ij before taking
the log.

A major component of variation in the egg-laying curves
is seen to occur (more or less) along the direction of the
mean egg-laying curve; that is, the mean function and the
first eigenfunction appear somewhat aligned. The second eigen-
function emphasizes an early sharp peak in variation and then
forms a contrast with protracted high values, and the higher-
order eigenfunctions align with more complex contrasts, while
also emphasizing the initial rise. The variance of the noise
process W(t) using (A.7) is found to be σ̂ 2

W = 1.78.
The eight estimated variance process trajectories V̂i for the

eight flies whose egg-laying trajectories are displayed in the top
panels of Figure 5 are shown in the bottom panels of this fig-
ure. They typically increase rapidly from 0 up to a high level,
and then tend to stay at that level with only a slight decline.
This seems to imply that the behavior after the initial peak is
quite different between processes S and V . Although the trajec-
tories of smooth components S for the most part monotonically
decline after the initial egg-laying peak, the trajectories of the
variance processes remain more or less constant and elevated,
with individual variations.

These findings provide some evidence that the variance struc-
ture of these data is not of a simple Poisson type, as could have
been surmised based on the concept of the data as counts. What
we see instead is that as the average counts decrease, their in-
dividual variability relative to the mean count increases as flies
age. The observed high variability of the reproductive activity
of older flies may be a characteristic of the aging process itself.
It reflects surprisingly large oscillations in old-age reproduction
of medflies. Although the overall reproductive activity of flies
declines with age, it becomes less predictable at the individual
level due to these large oscillations.

6. DISCUSSION AND CONCLUSIONS

Functional variance processes are a new tool in the emerging
field of functional data analysis. They extend the notion of a
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Figure 5. Observed Egg-Laying Counts (•) and Smoothed Individual Trajectories Ŝi for Eight Medflies for the First 40 Days of Age, With the Band-
widths Chosen by Leave-One-Out Cross-Validation for Each Subject (top two rows), and Observed Values for Zij = log(R2(tij )) (•) and Estimated
Smooth Random Trajectories V̂i (13) of the Functional Variance Process for the Same Eight Medflies (bottom two rows).

variance function as it is commonly used in semiparametric and
generalized regression modeling to the case of functional data
and random variance trajectories. As we have demonstrated,
this concept and its associated statistical tools are useful to gain
an understanding of complex functional data, including longi-
tudinal data and panels of time series, and may provide novel
insights into the structure of such data. In our approach, func-
tional variance processes are characterized by their mean and
eigenfunctions, which convey information about the underly-
ing data structure. An individual trajectory of this process is
obtained for each observed longitudinal data series and is char-
acterized by its FPC scores. These quantities are shown to be
estimable with consistent estimators.

The functional variance process approach leads to a repre-
sentation of each longitudinal series by two trajectories. The
first of these is the trajectory Si corresponding to the smooth
process S, which has been the traditional target of FPC analysis
and which we approximate for our purposes here by an initial
smoothing step. Alternatively, the trajectories Si could be rep-
resented in the form of an FPC analysis of the process S, es-
pecially if summarizing the trajectories Si into a few random
coefficients is desired; we note that our theoretical analysis can
be extended to cover this case. The second trajectory charac-
terizing the data is Vi, corresponding to the realization of the
smooth functional variance process. These trajectories can be
visualized and interpreted in a meaningful way in applications.
The FPC scores of the functional variance process are useful for

functional modeling and may serve as input for classification or
functional regression.

Although our algorithms lead to relatively stable and easily
applicable procedures that can be implemented in a fully au-
tomatic data-adaptive way, further investigations into the prac-
tical effects of smoothing parameter choices and longitudinal
designs will be of interest. We note that changing the num-
ber of included components, the smoothing parameters, or the
manner in which the smooth processes S are handled (e.g., in a
presmoothing step as described in this article or, alternatively,
by another FPC analysis) will lead to changes in the estimated
FPC scores and estimated trajectories of the functional vari-
ance process. In the application to seismic data, we found that
the discriminating ability of the FPC scores was not particu-
larly sensitive to these choices. Generally, how big a role these
choices will play will depend on the final goal of the analysis.

Another area of future research is the development of infer-
ence procedures for variance processes in both asymptotic and
practical situations. A possibility for practical applications is to
derive inference from a functional bootstrap. Theoretical devel-
opments along these lines will depend on a careful analysis of
the properties of the FPCs for variance processes. Functional
variance processes are likely to play a significant role in gen-
eralized functional modeling, where they may be included as
additional predictor or response processes in functional regres-
sion models. They also serve a valuable purpose in functional
discriminant analysis, as has been demonstrated for the seismic
data example. In analogy to the situation in nonparametric and
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Müller, Stadtmüller, and Yao: Functional Variance Processes 1015

semiparametric regression, functional variance processes may
be useful in obtaining more efficient functional methodology,
in constructing confidence regions, and, more generally, for in-
ference in functional models. Functional models with variance
processes as response may be of special interest in applications
where changes in variance over time are of prime interest, such
as in modeling volatility for financial market data.

APPENDIX A: ESTIMATION PROCEDURES

Let κ1(·) and κ2(·, ·) be nonnegative univariate and bivariate kernel
functions used as weights for locally weighted least squares smoothing
in one and two dimensions that satisfy assumptions (B2.1) and (B2.2).
Let bV = bV (n) and hV = hV (n) be the bandwidths for estimating µV
in (4) and GV in (5) in steps 1 and 2 of the PART algorithm applied to
the transformed residuals Zij.

Local linear scatterplot smoothers (Fan and Gijbels 1996) for es-
timating individual trajectories Si, i = 1, . . . ,n, from data (tij,Xij),
j = 1, . . . ,m, with bandwidths bS,i are obtained through minimizing

m∑
j=1

κ1

(
tij − t

bS,i

)
{Xij − βi,0 − βi,1(t − tij)}2 (A.1)

with respect to βi,0 and βi,1. The resulting estimates are Ŝi(tij) =
β̂i,0(tij). Note that individual bandwidths bS,i are tied to an overall
bandwidth sequence bS in assumption (A2.1).

For estimating µV , the first step in the PART algorithm, we also use
local linear smoothing by minimizing

n∑
i=1

m∑
j=1

κ1

(
tij − t

bV

){
Ẑij − β0 − β1(t − tij)

}2 (A.2)

with respect to β0 and β1, leading to µ̂V (t) = β̂0(t). Let Gi(tij1 , tij2 ) =
(Ẑi(tij1)− µ̂V (tij1 ))(Ẑi(tij2)− µ̂V (tij2)), and define the local linear sur-
face smoother for GV (s, t) by minimizing

n∑
i=1

∑
1≤j1 �=j2≤m

κ2

(
tij1 − s

hV
,

tij2 − t

hV

)

× {
Gi

(
tij1 , tij2

) − f
(
β, (s, t),

(
tij1 , tij2

))}2
, (A.3)

where f (β, (s, t), (tij1 , tij2 )) = β0 + β11(s − tij1) + β12(t − tij2 ), with

respect to β = (β0, β11, β12), yielding ĜV (s, t) = β̂0(s, t).
The estimates of {ρk,ψk}k≥1 correspond to the solutions {ρ̂k,

ψ̂k}k≥1 of the eigenequations∫
T

ĜV (s, t)ψ̂k(s)ds = ρ̂kψ̂k(t), (A.4)

with orthonormality constraints on {ψ̂k}k≥1 and positive definiteness
constraints (for the latter, see Yao et al. 2003). We use a simple discrete
integral approximation to estimate the first M FPC scores ζik (8),

ζ̂ik =
m∑

j=2

(
Ẑij − µ̂V (tij)

)
ψ̂k(tij)(tij − ti,j−1),

i = 1, . . . ,n, k = 1, . . . ,M. (A.5)

Let µ̂
(−i)
V and ψ̂

(−i)
k be the estimated mean and eigenfunctions af-

ter removing the data for the ith subject. Leave-out-one-curve cross-
validation aims to minimize

CVV (M) =
n∑

i=1

m∑
j=1

{
Ẑij − V̂(−i)

i (tij)
}2

, (A.6)

with respect to the number of included components M, where

V̂(−i)
i (t) = µ̂

(−i)
V (t) + ∑M

k=1 ζ̂
(−i)
ik ψ̂

(−i)
k (t) and ζ̂

(−i)
ik is obtained

by (A.5). The proposed estimates for individual smooth trajectories Vi
are then given by (13).

For the estimation of the white noise variance σ 2
W , we first fit a

local quadratic component orthogonal to the diagonal of GV , and a
local linear component in the direction of the diagonal. Denote the
diagonal of the resulting surface estimate by Ĝ∗

V (t) and a local linear

smoother focusing on diagonal values {GV (t, t)+σ 2
W } by Q̂V (s), using

bandwidth bQV . As T = [a1,a2], let |T | = a2 − a1 and T1 = [a1 +
|T |/4,a2 − |T |/4]. Then we obtain the estimate

σ̂ 2
W = 1

|T1|
∫
T1

{Q̂V (t) − Ĝ∗
V (t)}+ dt (A.7)

if σ̂ 2
W > 0 and σ̂ 2

W = 0 otherwise. To attenuate boundary effects, re-
moving intervals of lengths |T |/4 near both boundaries was empiri-
cally found to produce good results (Yao et al. 2003).

APPENDIX B: ASSUMPTIONS AND NOTATIONS

Processes S and V are assumed to be twice continuously differen-
tiable and to have the following properties:

(A1) There exists a constant C > 0 such that trajectories of
processes S and V satisfy

sup
t

∣∣S(ν)(t)
∣∣ < C for ν = 0,1,2 and

sup
t

|V(t)| < C.

Recall that bS,i = bS,i(n), bV = bV (n), hV = hV (n), and

bQV = bQV (n) are the bandwidths for estimating Ŝi [see (A.1)], µ̂V

[see (A.2)], ĜV [see (A.3)], and Q̂V (t) [see (A.7)]. We develop as-
ymptotics as the number of subjects n and the number of observations
per subject m both tend to infinity, under the following assumptions on
the smoothing parameters:

(A2.1) Regarding bandwidths bS,i, there exists a common se-
quence of bandwidths bS such that for constants c1 and c2,
0 < c1 < infi bS,i/bS ≤ supi bS,i/bS < c2 < ∞.

(A2.2) m → ∞, bS → 0, and mb2
S → ∞.

(A2.3) bV → 0, bQV → 0, nb4
V → ∞, nb4

QV
→ ∞, lim supn n ×

b6
V < ∞, and lim supn nb6

QV
< ∞.

(A2.4) hV → 0, nh6
V → ∞, and lim supn nh8

V < ∞.

(A2.5) lim supn n1/2bV m−1 < ∞, lim supn n1/2bQV m−1 < ∞,

and lim supn n1/2hV m−1 < ∞.

The time points {tij}i=1,...,n;j=1,...,m at which the observations are
sampled are considered to correspond to a dense regular design and
are the same for all subjects. The results can be easily extended to the
case of more irregular designs, as detailed later. We assume that for
all i and j = 1, . . . ,m − 1, tij < ti,j+1 and that there exists a smooth
design density f satisfying

∫
T f (t)dt = 1 and inft∈T f (t) > 0 that gen-

erates the time points tij according to tij = F−1(
j−1
m−1 ), where F−1 is

the inverse of F(t) = ∫ t
a1

f (s)ds. These assumptions reflect the notion
of a dense regular design. They can be further relaxed at additional
notational expense. For example, we may include situations where the
design densities generating the times tij depend on the subject i, as long
as there exist constants c1 and c2 such that all of these design densi-
ties fi are uniformly smooth and satisfy 0 < c1 < infi inft∈T fi(t) <

supi supt∈T fi(t) < c2. Furthermore, the number of measurements Ni
made on the ith subject may differ from subject to subject, as long as
there is a sequence m → ∞ such that for suitable constants c1 and c2,
0 < c1 < infi

Ni
m < supi

Ni
m < c2 < ∞; our analysis focuses on the case

where Ni = m, so that we refer only to m in the following, whereas the
more general cases are covered by analogous arguments.
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The assumptions imply that for �n = max{tij − ti,j−1 : j = 2,

. . . ,m}, it holds that

(A3) �n = O(m−1), as n,m → ∞.

Assume that the fourth moments of the Xij and Zij are uniformly
bounded for all t ∈ T , that is,

(A4) supj E[X4
ij] < ∞ and supj E[Z4

ij] < ∞.

Background on linear operators in Hilbert space as needed for the
following can be found in, for example, Courant and Hilbert (1989).
Define the operator ( f ⊗ g)(h) = 〈 f ,h〉g for f ,g,h ∈ H, and denote
the separable Hilbert space generated by the Hilbert–Schmidt opera-
tors on H by F ≡ σ2(H), endowed with the inner product 〈T1,T2〉F =
tr(T1T∗

2 ) = ∑
j〈T1uj,T2uj〉H and the norm ‖T‖2

F = 〈T,T〉F , where
T1,T2,T ∈ F, T∗

2 is the adjoint of T2, and {uj : j ≥ 1} is any complete
orthonormal system in H. The covariance operator GV defined in (6)
and its estimate ĜV , generated by kernels GV [see (5)], respectively
ĜV [see (A.3)], are Hilbert–Schmidt operators. Let Ii = { j :ρj = ρi}
and I ′ = {i : |Ii| = 1}, where |Ii| denotes the number of elements in
Ii. Let PV

j = ∑
k∈Ij

ψk ⊗ ψk and P̂V
j = ∑

k∈Ij
ψ̂k ⊗ ψ̂k denote the

true and estimated orthogonal projection operators from H to the sub-
space spanned by {ψk : k ∈ Ij} and {ψ̂k : k ∈ Ij}. For fixed j, let

δV
j = 1

2
min{|ρl − ρj| : l /∈ Ij}, (B.1)

and let �
δV

j
= {z ∈ C : |z − ρj| = δV

j }, where C represents the set

of complex numbers. The resolvents of GV and ĜV are denoted by
RV and R̂V , that is, RV (z) = (GV − zI)−1 and R̂V (z) = (ĜV − zI)−1.

Let

A
δV

j
= sup

{‖RV (z)‖F : z ∈ �
δV

j

}
(B.2)

and M = M(n) denote the numbers of components, corresponding
to the eigenfunctions that are included to approximate V(t), that is,

V̂i(t) = µ̂V (t) + ∑M(n)
m=1 ζ̂imψ̂m(t) [see (13)]. Denote by ‖π‖∞ =

supt∈T |π(t)| the sup-norm for an arbitrary function π(·) with sup-
port T . We assume that mean functions µV and eigenfunctions ψj
are smooth, that is, twice continuously differentiable. The sequences
M = M(n) are assumed to depend on n and m and in such a way that
as n → ∞,

(A5) τn = ∑M
j=1(δV

j A
δV

j
‖ψj‖∞)/(

√
nh2

V − A
δV

j
) → 0, as M =

M(n) → ∞;
(A6)

∑M
j=1 ‖ψj‖∞ = o(min{√nbV ,

√
m }) and

∑M
j=1 ‖ψj‖∞ ×

‖ψ ′
j ‖∞ = o(m).

We note that assumptions (A5) and (A6) do not require that eigen-
functions ψj or their derivatives be uniformly bounded, but rather
their growth be bounded as the index j increases. Defining θm =
b2

S + (
√

mbS)−1, processes V are assumed to have the following prop-
erties:

(A7) E{[supt∈T |V(t) − V(M)(t)|]2} = o(n), where V(M)(t) =
µV (t) + ∑M

k=1 ζkψk(t).

(A8) For any 1 ≤ i ≤ n, θm
∑M

k=1 ‖ψk‖2∞ = op(1) and γn =∑M
k=1(δV

k A
δV

k
‖ψk‖∞)/(θ−1

m − A
δV

k
) → 0 as n → ∞.

For given t = tij, t1 = tij1 , and t2 = tij2 , for some i, j, j1, and j2, let
g(x; t) denote the density function of Xij and let g2(x1, x2; t1, t2) de-
note the density of (Xij1 ,Xij2 ). Similarly, let f (z; t) and f2(z1, z2; t1, t2)

denote the densities of Zij and (Zij1 ,Zij2). We assume these densities
can be extended to smooth families of densities g(·; t), f (·; t), t ∈ T ,
and g2(·; t1, t2), f2(·; t1, t2), t1, t2 ∈ T , that satisfy the following regu-
larity conditions:

(B1.1) (d2/dt2)g(x; t) and (d2/dt2)f (z; t) exist and are uniformly
continuous on � × T .

(B1.2) (d2/dt�1
1 dt�2

2 )g2(x1, x2; t1, t2) and (d2/dt�1
1 dt�2

2 )f2(z1, z2;
t1, t2) exist and are uniformly continuous on �2 × T 2, for
�1 + �2 = 2,0 ≤ �1, �2 ≤ 2.

The assumptions for kernel functions κ1 :� → � and κ2 :�2 → �
are as follows. Fourier transforms of κ1(u) and κ2(u, v) are denoted
by χ1(t) = ∫

e−iutκ1(u)du and χ2(t, s) = ∫
e−(iut+ivs)κ2(u, v)du dv.

Then we require the following:

(B2.1) The kernel κ1 is a compactly supported symmetric density
function, ‖κ1‖2 = ∫

κ2
1 (u)du < ∞, such that this density

has finite variance. Furthermore, χ1(t) is absolutely inte-
grable, that is,

∫ |χ1(t)|dt < ∞.
(B2.2) Kernel κ2 is a compactly supported density function,

‖κ2‖2 = ∫ ∫
κ2

2 (u, v)du dv < ∞, and κ2 is a symmetric ker-
nel function with mean 0 and finite variance in both argu-
ments u and v. In addition, χ2(t, s) is absolutely integrable,
that is,

∫ ∫ |χ2(t, s)|dt ds < ∞.

APPENDIX C: PROOFS

Proof of Theorem 1

Because W is independent of both S and V , we may factor the proba-
bility space � = �1 ×�2. We write E∗ for expectations with regard to
the probability measure on �2 only. Given the data for a single subject
(i.e., for a specific realization of S and V), this corresponds to fixing a
value ω1 ∈ �1. For each fixed ω1, we note that Rj = Rj(ω1) [omitting
the index i in Rij in (1) and in the formulas that follow] are mutually in-

dependent in �2 for different j, with E∗(Rj) = 0 and supj E∗(R2
j ) < C1

for a suitable constant C1. Combining assumption (A1) with the argu-
ments given in the proof of lemma 3 and theorem 2 of Schuster and
Yakowitz (1979) for kernel estimators, which are easily extended to
local linear smoothing in the regular fixed-design case, checking that
the assumptions for these results are satisfied, we obtain that

E∗(
sup
t∈T

|Ŝ(t) − S(t)|
)
(ω1) = O

(
b2

S + 1√
mbS

)
(ω1).

Studying the dependency of the right side on ω1, we find that only
bounds on |S(ν)(ω1)|, ν = 0,1,2, and on |V(ω1)| play a role. Under
(A1), these bounds are uniform in all ω1; therefore,

sup
ω1∈�1

E∗(
sup
t∈T

|Ŝ(t) − S(t)|
)
(ω1) = O

(
b2

S + 1√
mbS

)
,

which implies the result (14).
For the following proofs, we need Lemma C.1. Denote the estimates

for process V that would be obtained from input data {tij,Zij} (i.e.,
based on the unknown true rather than estimated transformed residu-
als) by µ̃V , G̃V , σ̃ 2

W , ψ̃k , ρ̃k , and ζ̃ik , defined analogously to (A.2),
(A.3), (A.4), and (A.5) and let

αnk =
δV

k A
δV

k√
nh2

V − A
δV

k

and α∗
nk =

δV
k A

δV
k

θ−1
m − A

δV
k

, (C.1)

where θm = b2
S + (

√
mbS)−1 and δV

k and A
δV

k
are as in (B.1) and (B.2).

Lemma C.1. Under assumptions (A2.1)–(A2.3), (A3)–(A5), and
(B1.1)–(B2.2),

sup
t∈T

|µ̃V (t) − µV (t)| = Op

(
1√
nbV

)
and

(C.2)

sup
s,t∈T

|G̃V (s, t) − GV (s, t)| = Op

(
1√
nh2

V

)
.
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Considering eigenvalues ρk of multiplicity 1, ψ̂k can be chosen such
that

sup
t∈T

|ψ̃k(t) − ψk(t)| = Op(αnk) and

(C.3)
|ρ̃k − ρk| = Op(αnk),

where αnk → 0 as n → ∞, k fixed, αnk is defined in (C.1), and
the Op(·) terms in (C.3) hold uniformly over all 1 ≤ k ≤ M. As a con-
sequence of (C.2),

sup
t∈T

|σ̃ 2
W (t) − σ 2

W (t)| = Op

(
max

{
1√
nh2

V

,
1√

nbQV

})
. (C.4)

Under (A1)–(A7) and (B1.1)–(B2.2),

sup
1≤k≤M

|ζ̃ik − ζik| p−→ 0 and

(C.5)

sup
t∈T

∣∣∣∣∣
M∑

k=1

ζ̃ikψ̃k(t) −
∞∑

k=1

ζikψk(t)

∣∣∣∣∣
p−→ 0,

as the number M of included components M = M(n) → ∞ as n → ∞.

Proof of Lemma C.1. Results (C.2), (C.3), and (C.5) are immediate
from lemma 1 and theorem 1 of Yao and Lee (2006). Note that σ̃ 2

W (t) =
{Q̂V (t)−G̃∗

V (t)}+, where the estimate Q̂V (t) targets {GV (t, t)+σ 2
W (t)}

and the estimate G̃∗
V (t) targets GV (t, t) with the same rate as G̃V (t).

Analogous to the convergence of µ̃V (t), supt∈T |Q̃V (t) − QV (t)| =
Op(n−1/2b−1

QV
), where bQV is the bandwidth used in the smoothing

step for Q̂V (t). From (C.3) and the foregoing result, we may conclude
that Q̃V (t) ≥ G̃∗

V (t) uniformly in t, with probability converging to 1 as
the sample size n increases. This leads to (C.4).

Proof of Theorem 2

Noting that θm = b2
S + (

√
mbS)−1, we find that for Ẑij [see (12)],

E
(

sup
1≤j≤m

|Ẑij − Zij|
)

= O(θm). (C.6)

Let θim = sup1≤j≤m |Ẑij − Zij|. Because linear smoothers, including
those based on local polynomial fitting, are weighted averages, be-
cause (C.6) implies that Eθim → 0, and because θim are iid across all
subjects, we have θ̄n = Op(θm)

p→ 0, where θ̄n = ∑n
i=1 θim/n. It fol-

lows that

sup
t∈T

|µ̂V (t) − µ̃V (t)| = Op(θm),

(C.7)
sup

s,t∈T
|ĜV (s, t) − G̃V (s, t)| = Op(θm),

and |σ̂ 2
W − σ̃ 2

W | = Op(θm). In view of (C.2) and (C.4), this implies (15).
Analogous to the derivation of (C.3), we conclude that

sup
t∈T

|ψ̂k(t) − ψ̃k(t)| = Op(α∗
nk) and

(C.8)
|ρ̂k − ρ̃k| = Op(α∗

nk)

for sufficiently large n, where α∗
nk is as in (C.1), implying (16).

In preparation for the next proof, consider the random variables

ϑ
(1)
in and ϑ

(2)
in , using the auxiliary quantities δV

k [see (B.1)], A
δV

k
[see (B.2)], θm in the line below (C.1), �n [see (A3)], τn [see (A5)],
and γn [see (A8)],

ϑ
(1)
in = θm

M∑
k=1

‖ψk‖2∞ + γn

m∑
j=2

|Zij|(tij − ti,j−1) +
M∑

k=1

δV
k A

δV
k
|ζik|

θ−1
m − A

δV
k

and

ϑ
(2)
in = τn

{
‖Vi‖∞‖V ′

i‖∞�n +
m∑

j=2

|Wij|(tij − ti,j−1)

}

+
M∑

k=1

‖ψk‖∞
(

1√
nbV

+ √
�n

)
+

M∑
k=1

δV
k A

δV
k
|ζik|

√
nh2

V − A
δV

k

+ �n

M∑
k=1

‖ψk‖∞‖ψ ′
k‖∞(‖Vi‖∞ + ‖V ′

i‖∞)

+ sup
t∈T

∣∣∣∣∣
∞∑

k=M+1

ζikψk(t)

∣∣∣∣∣. (C.9)

Proof of Theorem 3

Without loss of generality, assume that ‖ψk‖∞ ≥ 1, which implies
that τ̃n = sup1≤k≤M δV

k A
δV

k
/(

√
nh2

V − A
δV

k
) → 0 in view of (A5) and

γ̃n = sup1≤k≤M δV
k A

δV
k
/(θ−1

m − A
δV

k
) → 0 in view of (A8). For suf-

ficiently large n and m and positive constants C1 and C2 that do not
depend on i and k, recalling that ζ̃ik = ∑m

j=2(Zij − µ̃V (tij))ψ̃k(tij) ×
(tij − ti,j−1) and using (A8), (C.3), (C.7), and (C.8),

max
1≤k≤M

|ζ̂ik − ζ̃ik|

≤ sup
1≤k≤M

{∣∣∣∣∣
m∑

j=2

(
Ẑij − Zij + µ̃V (tij) − µ̂V (tij)

)
ψ̂k(tij)(tij − ti,j−1)

∣∣∣∣∣

+
∣∣∣∣∣

m∑
j=2

(Zij − µ̃V (tij))
(
ψ̂k(tij) − ψ̃k(tij)

)
(tij − ti,j−1)

∣∣∣∣∣
}

≤
[

sup
1≤j≤m

|Ẑij − Zij| + sup
t∈T

|µ̂V (t) − µ̃V (t)|
]
|T |

×
(

max
1≤k≤M

‖ψk‖∞ + τ̃n + γ̃n

)

+ max
1≤k≤M

sup
t∈T

|ψ̂k(t) − ψ̃k(t)|

×
{

|T |
(
‖µV‖∞ + sup

t∈T
|µ̃V (t) − µV (t)|

)

+
m∑

j=2

|Zij|(tij − ti,j−1)

}

≤ C1θim max
1≤k≤M

‖ψk‖∞ + γ̃n

{
C2 +

m∑
j=2

|Zij|(tij − ti,j−1)

}

p−→ 0, (C.10)

where we observe that
∑m

j=2 |Zij|(tij − ti,j−1) = Op(1) by taking

expectations. Analogously to (C.5), we obtain max1≤k≤M |ζ̃ik −
ζik| p→ 0, from which (17) follows.

To prove (18), noting that

sup
t∈T

{∣∣∣∣∣
M∑

k=1

ζ̂ikψ̂k(t) −
∞∑

k=1

ζikψk(t)

∣∣∣∣∣
}

≤ sup
t∈T

{∣∣∣∣∣
M∑

k=1

ζ̂ikψ̂k(t) −
M∑

k=1

ζ̃ikψ̃k(t)

∣∣∣∣∣
}
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+ sup
t∈T

{∣∣∣∣∣
M∑

k=1

ζ̃ikψ̃k(t) −
∞∑

k=1

ζikψk(t)

∣∣∣∣∣
}

≡ Qi1(n) + Qi2(n),

it is sufficient to show that Qi1(n)
p→ 0 and Qi2(n)

p→ 0. Analogously

to the derivation of (C.5), we have Qi2(n)
p→ 0 under (A1)–(A7), and

indeed Qi2(n) = O(ϑ
(2)
in ), where the O(·) term holds uniformly in

1 ≤ i ≤ n. Focusing on Qi1(n),

Qi1(n) ≤ sup
t∈T

{ M∑
k=1

|ζ̂ik − ζ̃ik| · |ψ̂k(t)|

+
M∑

k=1

|ζ̃ik| · |ψ̂k(t) − ψ̃k(t)|
}

. (C.11)

Similarly to (C.10), the first term on the right side of (C.11) is bounded
by

C1θim

M∑
k=1

‖ψk‖2∞ + γ̃n

{
C2 +

m∑
j=2

|Zij|(tij − ti,j−1)

}
p−→ 0.

The second term on the right side of (C.11) has an upper bound,
Op{∑M

k=1 δV
k A

δV
k

E|ζik|/(θ−1
m − A

δV
k
)}. As E{∑M

k=1 δV
k A

δV
k

E|ζik|/
(θ−1

m − A
δV

k
)} ≤ ∑M

k=1 δV
k A

δV
k

√
ρk/(θ

−1
m − A

δV
k
) ≤ γn, by observing

ρk → 0, the second term also converges to 0 in probability, and in

fact Qi1(n) = Op(ϑ
(1)
in ), where the Op(·) terms are uniform in i. The

result (18) follows, that is, supt∈T |V̂i(t) − Vi(t)| = Op(ϑ
(1)
in + ϑ

(2)
in ),

where again the Op(·) terms are uniform in 1 ≤ i ≤ n.

[Received December 2004. Revised December 2005.]
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