A BLOW UP FORMULA FOR GYSIN PULL-BACK

NAOYA UMEZAKI, ENLIN YANG, AND YIGENG ZHAO

ABSTRACT. In this note, we prove a blow up formula for Gysin pull-back of cycles by the zero section
of a cotangent bundle (cf. Lemma 3.3). A special case of this formula is used in the proof of the twist
formula for e-factors [6].

1. PRELIMINARIES ON C-TRANSVERSAL CONDITION

Definition 1.1. Let X, Y and W be smooth schemes over a field k. We denote by T¥X < T*X the
zero section of the cotangent bundle T*X of X. Let C be a conical closed subset of T*X, i.e., a closed
subset which is stable under the action of the multiplicative group G,,.

(1) (12, 1.2]) Let h: W — X be a morphism over k. We say that h is C-transversal at w € W if the
fiver ((C xx W) ndh™ (T W)) xww is contained in the zero-section T X x x W < T*X x x W,
where dh: T*X xx W — T*W is the canonical map. We say that h is C-transversal if h is C-
transversal at any point of W.

If h is C-transversal, we define h°C to be the image of C x x W under the map dh: T*X x x
W — T*W. By [5, Lemma 3.1], h°C' is a closed conical subset of T*W .

(2) (|5, Definition 7.1]) Assume that X and C are purely of dimension d and that W is purely of
dimension m. We say that a C-transversal map h: W — X s properly C-transversal if every
irreducible component of C x x W is of dimension m.

(3) ([2, 1.2] and [5, Definition 5.3]) We say that a morphism f: X — Y over k is C-transversal at
z € X if the inverse image df ~*(C) x x x is contained in the zero-section T§Y xy X € T*Y xy X,
where df : T*Y xy X — T*X is the canonical map. We say that f is C-transversal if f is C-
transversal at any point of X.

1.2.  Let X be a smooth scheme purely of dimension d over a field k. Let W be a smooth scheme purely of
dimension m over k. Assume that C' € T*X is a conical closed subset purely of dimension d. Let Z be a
d-cycle supported on C and h: W — X a properly C-transversal morphism. Let prj,: T* X xx W — T*X
be the first projection map. Since pr; is a morphism between smooth schemes, the refined Gysin pull-
back pr}, Z is well-defined in the sense of intersection theory [3, 6.6]. We define h*Z € CH,,(h°C) [5,
Definition 7.1.2] to be

(1.2.1) h*Z := dhy(pr}, Z).

Notice that the push-forward is well-defined since dh: T*X x x W — T*W is finite on C x x W by [2,
Lemma 1.2 (ii)]. Since h is properly C-transversal, every irreducible component of h°C is of dimension
m. Thus CH,,(h°C) = Z,,(h°C). Hence we may regard h*Z as a m-cycle on T*W which is supported
on h°C.

We prove the following commutative property for successively pull-backs.

Lemma 1.3. Let X be a smooth scheme purely of dimension d over a field k. Consider the following
commutative diagram

dew

N

(1.3.1) g

~—C

3
—_

)-<
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between equidimensional smooth schemes over k. Let C < T*X be a conical closed subset purely of
dimension d. Assume that i and f are C-transversal, and g is i°C-transversal. Let Z be a d-cycle
supported on C. Then we have

(1) j is f°C-transversal.
(2) ¢°i°C = j°f°C < T*U and an equality for cycle class g*i*Z = j*f*Z.
Proof. (1) This follows from [5, Lemma 3.4.3].
(2) We have a commutative diagram

T*X <20 X oy W —

(1.3.2) T*X xx Y =~ T*X xx U —"T*W xyw U

W 0 |s

T*Y <———T*Y xy U T*U
g

where the morphisms pry, prg, pr; and pr; are the first projections, df,dg,di,dj are morphisms induced
from f,g,1,J respectively, and v = id x j,u = id x g,r = di x id. In the diagram (1.3.2), there are two
Cartesian squares which are indicated by the symbols “[]’. Then we have

(1.3.3) 9°i°C = dg(pry * (di(pr; ' CO))) = dg(r(u™" (pr; ' C)))
= dg(r(v=(pr;'0))) = dj(w(v ™ (pr}'C)))
= dj(pr; ' (df (pr;'0))) = j° f°C.
(1.3.4) 7 = dg*(pr (i (pr;Z))) = dga(r«(u'(pr; 2)))
= dga(rs (v (pr} 2))) = djs(ws (v (pr} 2)))
= dj (pr (dfs (pr'} 2))) = j* 2
where in (1.3.4) we used the push-forward formula [3, Theorem 6.2 (a)] and the fact that di (respectively

df) is finite on priZ (respectively prIfZ). This finishes the proof.
O

2. LoCALIZED CHERN CLASSES

2.1. Let X be a scheme of finite type over a field k, Z a closed subscheme of X and U = X\Z. Let
K = (Kq,dq)q be a bounded complex of locally free Ox -modules of finite ranks such that K, = 0 for ¢ < 0.
Assume that the restriction K|y is acyclic except at degree 0 and the cohomology sheaf Ho(K)|y is locally
free of rank n — 1. Then for i > n, we have the so-called localized Chern class ¢;5 (K) € CHY(Z — X)
(cf. [1, Section 3], [3, Chapter 18] and [4 2.3]). Consider the following ring (cf. [3, Chapter 17])

(2.1.1) CH*(Z —» X)) = [[CH'(X - X) x [ [ CH'(Z - X).
<n i=n

We regard the total localized Chern class ¢y (K) = ((¢;(K))i<n, (ci3 (K))i=n) as an invertible element of

CH*(Z — X)),
Let F be an Ox-module such that the restriction F|y is locally free of rank n. If F has a finite
resolution & — F by locally free Ox-modules &, of finite ranks, the localized Chern class ¢;% (F) for

i > n is defined as ¢;3 (€,). It is independent of the choice of a resolution.

2.2. The following Lemma 2.3 and Lemma 2.4 are slight generalizations of [4, Lemma 2.3.2] and [4,
Lemma 2.3.4] respectively. We use the same arguments.

Lemma 2.3 ([4]). Let X be a scheme of finite type over a field k. Let D be a Cartier divisor of X
and i: D — X be the immersion. Let E be a locally free (’)D module of rank n. Assume there exist
a locally free Ox-module g of finite rank and a surjection g - 1xE so that the localized Chern class

S (ixE(D)) € CH*(D — X)W is defined. We put CHy(X) = ®;CH;(X), CH(D) = ®;CH;(D) and
put aj(E) = D _ ]()cn k() e CH*(D — D).
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(1) ([4, Lemma 2.3.2]) For any invertible Op-module L, we have

(2.3.1) MalE®L) =D a;(E)er(L).
k=0 Jj=0
(2) ([4, Lemma 2.3.2 and Corollary 2.3.2]) For any oo € CHy(X), we have equalities in CHy(D):
(2.3.2) (5 (ixE(D) = 1) na=c(&)™" > a;(€)D" " nila,
j=1
(2.3.3) (c5(ixsOp)™ —1) na = —i'a.

where i': CHy(X) — CHy(D) denotes the Gysin map.

Proof. (1) See [4, Lemma 2.3.2].

(2) We use the same argument with [4, Lemma 2.3.2]. By deformation to the normal bundle, we may
assume X = P} is a Pl-bundle over D and the immersion i: D — X is a section. Let p: X — D be the
projection. Then & = i*Ex with Ex := p*&. Since the map iy : CH.(D) — CH,(X) is injective, it is
reduced to the equalities for the usual Chern classes ¢(ix&€(D)) and ¢(ixOp) by [4, Proposition 2.3.1.1].
By the exact sequence

(2.3.4) 0 — Ox(=D) —» Ox — i,Op — 0,

we get c(ixOp)~! = ¢(Ox(—D)). Thus (c(ixOp)~' —1) na = —¢;(Ox(D)) na = —i'a. This proves
the equality (2.3.3). Now we prove (2.3.2). By the locally free resolution

(2.3.5) 0— 5X - 5x(D) - Z*S(D) g O7
we have
(2.3.6) c(ix€(D)) —1= c(é'X)_l(c(c‘,’X(D)) —c(€x))

(2.3.1)

0 j=

J

Thus by the definition of Gysin pull-back along a divisor [3, 2.6], we have

—

(2.3.7) (c(ix€(D)) = 1) na=c(&)! (Z aj(E)Dj> na=c&)! (

Jj=1

aj(E)Dj1> it

1

J
]

Lemma 2.4 ([4, Lemma 2.3.4]). Let X and C be regular schemes of finite type over a field k. Let
i: C — X be a closed immersion of codimension c with conormal sheaf N¢jx. Let m: X' — X be the
blow up of X along C, ng: E = C xx X' — C be the induced map and i': E — X' be the closed
immersiton. We put

(2.4.1) d(X,C) = Zlaj(w;ch/X)Eﬂ‘*l - Z:Oaj(WENC/X)Ej.
j= j=
For any o € CHy(X'), we have an equality in CH,(C):
(2.4.2) mps((ch (% x) — 1) na) = c(Neyx) ™! 0 75 (B(X, C) 1 i'a),
If moreover i = w3 for some B € CH,(C), then we have
(2.4.3) s (®(X,0) ni'a) = (=1)¢- (c—1) -8,
(24.4) (e (V) =1 na) = (=1)° (e = 1) - e(Neyx) ™ 0 B.

Proof. Note that the canonical map Q;,/X — i;Q}E/C is an isomorphism. Since £ = P((N¢g/x)") is a
P°~!-bundle over C, we have an exact sequence 0 — Q%E/C — mpNe/x(—1) - Op — 0. Hence, we
have cgl(ﬂk//X) = cg/(i;ﬂENC/X(—l))cif/(i’*(’)E)_l. By the exact sequence 0 - Ox/(—F) —» Ox: —
i,,Op — 0, we get
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By Lemma 2.3, we have
(2.4.6) (e (b Neyx (—1)es (i,0) ™ = 1) na
= (¥ ((,mENe /x (~1) = 1)~ o+ o (I Noyx (1) (e (1,08) ™ = 1) na
9 (-1)) = 1) na— e(mhNeyx (-1) n i'a
(

o (i, TENc/x(B)) — 1) na —cp(rhNeyx) tep(mhNe x (B)) ni'a

2.
( (CE (Z 7TENC/X

49 x

C c
@33, e(mENe/x)™ Z a;(m5Neyx)E "o — Z a;(m5Neyx)E? n z'”a)
Jj=1 j=0

=c(Neyx)™ VA mpe (R(X,0) ni'a).

By [3, Remark 3.2.4, p.55], we have E¢ = —Z;Zl ¢j(mENeyx)E“™I. Assume i'"a = 7%/ for some
B € CH,(C). By [3, Proposition 3.1 (a)], we have 74 (E 75 B) = 0 for j < c—1 and mp«(E“ 7k 3) =
(—1)¢71B. Substituting these identities, we have

(2.4.7) s (®(X,0) ni'a)

=(=1)*"" - (ac(Neyx) — ac—1(Neyx) + ac(Neyx)er(Neyx)) 0 8
Since aC,(NC/X) =1, ac-1(No/x) = ¢+ c1(Neyx) then mp.(®(X,C) ni'a) = (=1)°- (¢ —1) - B and
mex((c (Qxx) =1 na) = (=1)°-(c—1) - e(Ngyx) ™' n . O

3. BLOW UP FORMULA FOR GYSIN PULL-BACK

3.1. Let X be a smooth scheme purely of dimension d over a field k. We denote by Ox: X — T*X the
zero section of the cotangent bundle T7*X. We denote by 0% € CHY(X — T*X) the (refined) Gysin
map [3, 6.2], where CHY(X — T*X) is the bivariant Chow group [3, Definition 17.1]).

3.2.  We recall a method for calculating the Gysin map O!X by using Chern classes. Let X be a regular
scheme separated of finite type over a field. Let £ be a locally free Ox-modules of rank d on X.
Let £ = Spec(Symg,, £Y) be the associated vector bundle of rank d on X with structure morphism
n: B — X. The projective bundle of E is P(£) = Proj(Symg,£Y). We have a closed immersion
P(E) — P(E®1) := P(E® AL) with open complementary E < P(E@®1). Let s: X — E be the zero
section. Let k = 0 be an integer and 3 € CHy(E). For any element 3 € CHy(P(E®1)), if the restriction
of B to CHy(E) equals to 3, then we have [3, Proposition 3.3]

(3.2.1) s'(8) = gx(ca(§) N B),

where £ = % is the universal rank d quotient bundle of ¢*(€ @ 1). For any element o €

CH.(X) = @,CH;(X), we denote by {a},; the dimension j part of «, ie., the image of a by the
projection CHy(X) — CH;(X). Let ¢(§) be the total Chern class of £, then we can write (3.2.1) as
follows

(3.2.2) s'(B) = {qu(c©) n B)},_,-

By the Whitney sum formula for Chern classes [3, Theorem 3.2], we have

(3.2.3) c(&) = c(q*E) - C(OIP’(E®1)(_1))71'

Thus the formula (3.2.2) can be written in the following way

(3.2.4) = {ax(c(g*E) 0 c(Op(ean) ( N B,y
= { ) N gs(c OP(E@l)( n B)}k,d

where the last equality follows from the projection formula [3, Theorem 3.2].

Lemma 3.3. Let X and Y be smooth and connected schemes over a field k and leti: Y — X be a closed
immersion of codimension c¢. Let m: X — X be the blow up of X along Y. Let C < T*X be a conical
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closed subset purely of dimension d = dim X and let Z be a d-cycle supported on C'. Suppose w and i are
properly C-transversal. Then we have an equality in CHy(X):

(3.3.1) 7 (05(7*2)) = 04 (2) + (~1)° - (¢ — 1) - ix (04 (i*2),

For the definition of the Gysin map 0., see Subsection 3.1.

Proof. Let Y be the exceptional divisor of 7: X — X with projection map 7 : Y >Y. Leti: Y — X be
the closed immersion. We have a commutative diagram

pr ~ ~ ~ di ~
THX <7 T¥X xx X T*X x4 V —— > T*¥

T T ]

pr ~ dm ~ i ~ ~ di ~
P(T*X @1) =< P(T*X xx X ®1) — > P(T*X P1) <—— P(T*X Xz V@1 — — >=PT*Y@1)

(3.3.2) "l . q’l / ) . y /

where pr, and pr; are the first projections, dm: T%X x x X > T*X (respectively di : T*X ><)7}~/ — T*f/)
is the map induced by 7: X > X (respectively Y — Y), the maps pt,,, dr, pr; and di are the maps
induced by pr,, dr, pr; and di respectively, all other maps are either the canonical projection morphisms
or open immersions. In (3.3.2), we use the symbol ‘]’ to mean the square is a Cartesian diagram. For
example, the most left-bottom square in (3.3.2) is Cartesian since ¢’ is proper and P(T*X x x Xo 1) has
dense i image inP(T*X®1) xx X. Note also that the map di is only well-defined on the open subscheme
T*X X3 Y, but this is enough for our purpose (cf. [5, Lemma 6.4]).

For any o € CHy(T*X), we denote by @ € CHy(P (T*X @ 1)) an extension of « (cf. 3.2). We
choose an extension Z € CHy(P(T*X @ 1)) of Z. Then pr.(Z) is an extension of pr’ Z. Since 7 is
C-transversal, the push-forwards dmy(prhZ) and dry(pt,(Z)) are well-defined, and dry(pF, (Z)) is an
extension of drmy (pr} Z).

Since 7 is smooth, thus 7 is ¢°C-transversal by [5, Lemma 3.4.1]. By Lemma 1.3, i is w°C-transversal
and we have

(3.3.3) THR*Z =¥t 7.
: 1 .0l
The following exact sequence (Z*QY v Q% /X)
(3.3.4) 0— Q) = Q% = 0,0}, —0
gives a resolution of Z*QY v by locally free sheaves of finite rank. Thus the localized Chern class
Cky (Z*Q?/Y) € CH*(Y — X) is well-defined for & > 1 (cf. Subsection 2.1). In order to simplify
oc oc P(T*X®1 :
the notation, we put ck (Z*Q;/Y) = ckff(z*Qf,/Y) and cl°¢(p* Z*Q;/Y) = kIP’ET*)??;?@l)(p Z*Q%/Y).

Similarly, we denote by c'°° the total localized Chern class. Applying the Whitney sum formula for
(localized) Chern classes (cf. [1, Proposition 3.1]) to the exact sequence (3.3.4), we get

(3.3.5) o(Q%) = e(x* Q) - d°°(i Q;/Y) e(m* Q%) + e(m* QL) - (¢ Qly/y) 1).
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We will simply denote by O(1) for O
calculations. We have

P(T*?@l)(l) (and also for Op(7# x@1)(1) and so on) in the following

(3:24

(3.3.6) 7 (05(7*2)) ’{w* (cm;?)mp* (c(0<—1))—1m%*ﬁ;7))}0
(3.3.5)

20 s (e k) - 02 ) 0 pe ((O(-1) ! 0 dmprLZ) ) |
@ { (Ql ) N Ty ( loc(l*Qy/y) N P ( (O(-1))~ mﬁ*ﬁlr?))}o
= {c QL) N (p* (c((’)(— NtA d7r*pr Z))}O

{ (QX) N Ty (( IOC(;*Q;/Y ) N Px (C(O ﬁ%*ﬁ;zn}

(3.3.7) tem.2.4 {c(QX) N 7y (ps (c(O LA %*ﬁ;f))}o
¢ {in (el o c<NY/X> . (@(X, Y) 7 (pu (OC1) " F B2,

0

0

where (a) follows from the projection formula [3, Theorem 3.2].
We calculate the first term of (3.3.7). Using projection formula [3, Theorem 3.2] and [3, Proposition
17.3.2], we have

(3.3.8) { (%) N7y (p* (c(@(—l))_1 o) %*ﬁiT?))}o

o

)
) 0 madi (c(O(=1) 7 NPT Z)

) N ety (c(PTFO(=1)) " N DR Z) },
) 0 mdPT (c(O(=1)) ' n Z) ],

) N el (c(O(-1))"1 " Z)},

® {c(Q)) N (c(O(-1))"" n 2)},

where (b) follows from [3, Proposition 6.7] since 7 is a blow-up.
Now we calculate the second term of (3.3.7). First, by push-forward [3, Theorem 6.2(a)] and the
projection formula [3, Theorem 3.2], we have

(3:3.9) i (i ((O(=1)) ! DT 7)) = p,EE (e(O(=1) ™" dmsr Z)
= Pl (c(O(=1)) 7" A Pridmapth Z) = radis (c(O(—1))7" A pridrsprh Z)
= Txdiy (c(dZ O(-1))"" n ﬁ%*ﬁ!j) =1y (C(O(—l))*l A E*ﬁ%@;z)

=Ty (c((’)(—l))_1 N %*ﬂ*Z)

P2 ((O(=1) T A FEEZ)
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Consider the following commutative diagram induced from the morphism 7: Y Y.

TYY < T xy ¥ —————T*Y

Tr l
pi;r il

P(T*Y @1) <—— P(T*Y xy Y @ 1) —Z= P(T*Y @ 1)

(3.3.10) . O 5 /

Y - Y
i O i
X X

Since di4PTLi*Z is an extension of #*i*Z to P(T*Y @ 1), thus (3.3.9) equals to

(3.3.11) # (b ((O(=1)) 1 2 TP 7)) = 1 (c(O(—1)) ~ Trapre )
1y ((O(-1) 7" A PRFZ) = radis (PE2(O(-1) ™! 0 PFL*2)
o dF A ((O(-1) 7 A Z)

where we used the projection formula [3, Theorem 3.2] in step (c), and (d) follows from [3, Proposition
17.3.2]. By the commutative diagram (3.3.10) and the push-forward formula [3, Theorem 6.2], we have

(3.3.12) PR 4Pl = S, PTs = T8y = T* 4.

By (3.3.11) and (3.3.12), the second term of (3.3.7) equals to

(3.3.13) {is (c(i*Q%) N e(Ny/x) ™" 7y (R(X,Y) i’ (s (c(O(=1)) " ndmeDTr 2)))) },
= {ix (c( i*QY) ne(Ny)x)~ LA fg (<I>(X,Y N 75y (c(O(-1)) nz*Z)))}O

(zi(B)(_1>c (c—1) {Z* ( *QX) N C(Ny/x) 'n Sx (C(O(_1>)_1 mﬁ))}o

( 1) (e—1 {z* ( () N sy (C(O(—l))*1 mﬁ))}o

U291 (e 1) 004 (2).
where the step (1) follows from c(i*QY ) - ¢(Ny,x) ™! = ¢(Q}) since we have an exact sequence
(3.3.14) 0 — Ny/x — i*Q%x — Q) — 0,

where Ny x is the conormal sheaf associated to the the regular immersion i: ¥ — X.
Finally, by (3.3.6), (3.3.8) and (3.3.12), we get (3.3.1). This finishes the proof. O

(1)
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