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ABSTRACT

In this paper, a dynamically regularized harmony learning
(DRHL) algorithm is proposed for Gaussian mixture learn-
ing with a favourite feature of both adaptive model selec-
tion and consistent parameter estimation. Specifically, un-
der the framework of Bayesian Ying-Yang (BYY) harmo-
ny learning, we utilize the average Shannon entropy of the
posterior probability per sample as a regularization term be-
ing controlled by a scale factor to the harmony function on
Gaussian mixtures increasing from 0 to 1 dynamically. It is
demonstrated by the experiments on both synthetic and real-
world datasets that the DRHL algorithm can not only select
the correct number of actual Gaussians in the dataset, but
also obtain the maximum likelihood (ML) estimators of the
parameters in the actual mixture. Moreover, the DRHL al-
gorithm is scalable and can be implemented on a big dataset.

Keywords: Gaussian mixtures; model selection; regular-
ization; maximum likelihood.

1. INTRODUCTION

As a flexible and powerful statistical tool for data analy-
sis and information processing, finite mixture model [1] has
found its applications in many problems, such as clustering
analysis, image segmentation and speech recognition. A-
mong these applications, Gaussian mixtures are widely used
and several statistical learning methods have been proposed
to deal with this kind of models, such as the EM algorith-
m [2] and the method of moments [3]. They usually as-
sumed that the number of Gaussians or clusters in a dataset
is pre-known. However, in many instances this key infor-
mation is not available. Then, the selection of an appropri-
ate number of Gaussians, called model selection, must be
made with the parameters learning in mixtures. Thus, the
general Gaussian mixture modeling is actually a compound
modeling problem of both parameter estimation and mod-
el selection, which is a rather complicated and difficult task
[4].

The conventional way for solving this compound mix-
ture modeling problem is to select an optimal number £* of
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Gaussians as the clusters in the dataset via one of the in-
formation, coding and statistical selection criteria such as
Akaike’s Information Criterion [5], Bayesian Inference Cri-
terion (BIC) [6], Minimum Description Length (MDL) [7],
and Minimum Message Length (MML) [8]. However, the
validating process of this method is computationally expen-
sive because we need to repeat the entire parameter learning
process at a large number of possible k.

Since the 1990s, some statistical learning approaches
appeared to solve this problem. Dirichlet processes [9] and
reversible jump Markov chain Monte Carlo (RIMCMC) [10]
are two typical implementations of the first kind of approach-
es which uses stochastic simulations. These stochastic sim-
ulation methods generally relies on intensive sampling and
are very time-consuming. The second kind is the Bayesian
model search based on optimizing the variational bounds
[11]. The third is unsupervised learning on finite mixtures
[12, 13] which introduce certain competitive mechanism in-
to the mixture model such that the model selection can be
made adaptively during parameter learning with a simplified
MML model selection criterion or using the RPCL mecha-
nism.

Alternatively, the Bayesian Ying-Yang (BYY) harmo-
ny learning [14, 15, 16] has also provided a new statistical
learning mechanism that makes model selection adaptively
during parameter learning. It has already been implement-
ed on Guassian mixture learning and several BY'Y harmony
learning algorithms have also been established for Gaussian
mixtures [17, 18, 19]. Although the BYY harmony learning
owns the ability of adaptive model selction, its parameter
estimation has a notable deviation from the ML estimation
which is consistent with true parameters.

In order to solve this deviation problem, we consider
the BYY harmony learning as the ML learning with a reg-
ularization term of average negative Shannon entropy of
the posterior probability per sample using to control the s-
cale or complexity of mixture models. From this point of
view, we propose a dynamically regularized harmony learn-
ing (DRHL) algorithm for Gaussian mixtures by adding a
Shannon entropy regularization term being controlled by a
scale factor to the BY'Y harmony learning. As the scale fac-
tor is increased dynamically from O to 1, our proposed al-
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gorithm transforms from the BYY harmony learning with
adaptive model selection into the conventional maximum
likelihood learning so that the adaptive model selection and
the ML estimation are both obtained at last.

The rest of the paper is organized as follows. We be-
gin with a brief description of the BYY harmony learn-
ing system for Gaussian mixtures in Section 2. Then, we
present the derivation and analysis of the dynamically reg-
ularized harmony learning algorithm for Gaussian mixtures
in Section 3. Section 4 contains the experimental results on
both synthetic and real-world datasets. Finally, we conclude
briefly in Section 5.

2. BYY HARMONY LEARNING OF GAUSSIAN
MIXTURES

The BYY harmony learning system describes each obser-
vation z € 2 C R" and its corresponding inner repre-
sentation y € % C R™ via the two types of Bayesian
decomposition of the joint density: p(x,y) = p(z)p(y|x)
and q(z,y) = q(y)q(x|y), which are called Yang machine
and Ying machine, respectively. Given a sample dataset
D, = {x;}}Y, from the Yang or observable space, the
BYY harmony learning system is trying to extract the hid-
den probabilistic structure of = with the help of y from spec-

ifying all aspects of p(y|z), p(z), ¢(x|y) and ¢(y) by maxi-
mizing the following harmony functional:

H(pllg) = / p(yl2)p(z) ng(zly)a@)ldzdy. (1)

If both p(y|x) and ¢(z|y) are parametric, the BY'Y learn-
ing system is called to have a Bi-directional Architecture
(Bi-Architecture for short). Given a sample dataset D, =
{24}V, the Bi-architecture of the BY'Y harmony learning
system can be specified as follow. The inner representation
yisdiscretein @ = {1,2,--- ,k} (i.e., with m = 1), while
the observation x is continuous from a Gaussian mixture
distribution. On the Ying space, we let ¢(y = j) =m; > 0
with Z?zl m; = 1. This is a prior probability distribution
for Gaussians or clusters of the mixture. On the Yang space,
p(z) is a latent probability density function (pdf) of Gaus-
sian mixture from which D, are generated. Moreover, in
the Ying path, ¢(z|y = j) = q(z|m;, ;) is assumed to be
a Gaussian density function with mean vector m; and the
covariance matrix 3;, while in the Yang path, p(y = j|z) is
constructed under the Bayesian principle by the following
parametric form,

miq(x|m;, %)

q(z[O)

k
ZﬂjQ(z|mjij)a
j=1

p(y = jlr) (2)

q(x|Ok) 3)
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where © = {m;, m;,%;}5_, and ¢(z|Oy) is just a Gaus-
sian mixture model that will approximate the latent p(z) via
the harmony learning on the BYY learning system.

Put all these components into Eq.(1), we have

k

Ep(a) Z

H(pllq) = 1n7qu X|m]72j)] , 4

where

miq(X|m;, %)
iy mia(X|my, )
That is, H(p||q) is the expectation of a function of the ran-
dom variable X subject to p(x). With the sample dataset
D,., we get an estimate of H(p||¢), called harmony func-
tion, as follows:

1 N k
N > hj(a) Infmjq(amg, 55)].

t=1 j=1

&)

hj(X) =

(6)

According to the theoretical and experimental results on
this Bi-architecture of the BYY harmony learning system
for Gaussian mixtures [20, 17, 18, 19], the maximization of
J(©y},) is capable of making model selection adaptively dur-
ing parameter learning when the actual Gaussians or clus-
ters are separated in a certain degree. That is, if we choose
k to be larger than the number (k* ) of actual Gausians or
clusters in the sample data, the maximization of the harmo-
ny function can make £* Gaussians to match the actual ones
and simultaneously eliminate k—k* extra ones. However, as
we mentioned previously, the original BY'Y harmony learn-
ing suffers from inconsistent parameter estimation. So, our
work here is to use the regularization mechanism to trans-
form the BYY harmony learning to the ML learning such
that adaptive model selection and consistent parameter esti-
mation can be made simultaneously.

3. DYNAMICALLY REGULARIZED HARMONY
LEARNING ALGORITHM

3.1. The Dynamic Regularization Mechanism
According to [21], J(©y) can be divided into two parts,
J(Or) = L(Ok) — On(p(ylz)), @)

where the first part is just the log-likelihood function, i.e.,

N k
00) = & 33t ),
= Jj=1

while the second is the average Shannon entropy of the pos-
terior probability p(y|z) over the sample dataset D = {z;}¥ ;,

®)

k
On (p(ylz)) Z Glz) mp(ilz). )
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According to Eq.(7), if —Op (p(y|x)) is viewed as a reg-
ularization term, the BY'Y harmony learning, i.e., maximiz-
ing J(©y), is a regularized ML learning which has already
been investigated in [22, 23] by scaling the regularization
term with a small positive number. However, since they
keep the regularization scale constant just as in the case of
the BY'Y harmony learning, these investigations also suffer
from inconsistent parameter estimation.

On the other hand, from Eq.(7) we also have

L(Ok) = J(O) + On (p(y]2)), (10)

which indcates that the ML learning is a regularized (BYY)
harmony learning with Oy (p(y|z)) as the regularization
term. To control the regularization,a scale factor A(> 0)
is introduced,

L (k) = J(Bk) + AOn (p(yl|z))- (1)

If A\ =0, Lx(Of) = J(O) is just BYY harmony func-
tion on the Bi-architecture for Gaussian mixtures. If A = 1,
L (©y) is the log-likelihood function of the Gaussian mix-
ture model. That is, with \ increasing from O to 1, maximiz-
ing L) (0Oy) changes from the harmony learning to the ML
learning. Here we try to control the increasing of A appro-
priately to realize adaptive model selection at the previous
learning stage and the ML estimation at the final learning
stage.

3.2. The Fixed-point Learning Algorithm

At each phase of the dynamically regularized harmony learn-
ing with a specific A, we construct a fixed-point algorithm
to maximize Ly (O).

For convenience, we utilize the softmax representation
for m;, ie., m; = e'@j/zilil ebi, j = 1,---k, where
Bj € (—o00,+00),j = 1,---,k. Letting the derivatives
of L(©y) with respect to 8;, m; and X;, respectively, be
zero, we get the following fixed-point (iterative) learning
algorithm:

i = S plile)ri(t) a2

S Y p(ilz)vi(t)
= Z%p(j\wt)w(t)wt; a3
> e P lme); (1)

5, = PO p(j\xt)lj(t)(fvt — 1) (e — my‘)T7 (14)
> imy P(Glwe);(t)
where
) = 1- Z(p(llxt) — 6a) Inmp(wme, Xp)

=1

k
A (p(lze) — 0a) Inp(l|), (15)
=1

where 6;; is the Kronecker function.

In comparison with the conventional EM algorithm for
Gaussian mixtures [2], our proposed fixed-point learning al-
gorithm differs only at the augmenting term ; (¢). It can be
easily verified that when A = 1, v;(t) = 1, the fixed-
point learning algorithm is just the EM algorithm and when
A = 0, the fixed-point learning algorithm returns to the o-
riginal fixed-point BYY learning algorithm of maximizing
the harmony function J(©y).

Actually, v;(t) implements a rival penalized competi-
tive learning (RPCL) mechanism [24]-[25] so that model s-
election can be made adaptively during parameter learning.
At the early learning stage, 7;(¢) < 0 may happen. Accord-
ing to Eq.(15), the mean vectors of j-th Gaussian will move
away from x;. Otherwise, if y;(¢) > 0, the mean vectors of
the j-th Gaussian will be attracted to x;. So, for z;, Gaus-
sians with y; () > 0 are winners while these Gausians with
v;(t) < 0 are losers.

However, the fixed-point learning algorithm cannot guar-
antee the positive definiteness of each covariance matrix
during the iteration since +,(¢) may be negative. In order
to overcome this problem, we use the EM update rule of the
covariance matrixes, i.e., forcing all v;(¢) = 1 in Eq.(14),
in this specific case. In fact, this simplification is applica-
ble and efficient since the competition for adaptive model
selection is mainly among mean vectors and controlled by
the mixing proportions.

3.3. The Dynamic Evolution of A

We further discuss the dynamic evolution of A with time T’
during the learning process. According to our regularization
mechanism, \ should be very small and increase slowly at
the early learning stage to realize adaptive model selection.
Then, at the sequent stage, A can go to 1 at a quicker speed
and the algorithm will finally converge to a ML solution.
So, it is crucial to check whether the adaptive model selec-
tion has accomplished and when to change learning stage.

In order to detect the turning point, we introduce the
Shannon entropy of mixing proportions in Gaussian mix-
tures, H, = — Z?Zl m;Inm;. Obviously, H is sensitive
to the structure of a mixture model. If model selection is
not completed, the difference of H, between two iterations
is considerable. Otherwise, the difference should be very
small. This motivates us to adopt the absolute change rate
of H, between two iterations, defined by

_ |H7r(T) B Hﬂ‘(T B 1)

h7f (T) Hﬂ- (T) |’

(16)

as an indicator of model selection. 7' is time, i.e., the num-
ber of iterations The whole learning process is divided into
two learning stages according to a given threshold €1 (> 0)
of this indicator. That is, if A, (T) > &1, A(T) increases at
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low speed; otherwise, it increases at high speed. Since A(T")
is assumed to increase exponentially, its dynamic evolution
process is given as follow,

Ag * 77{»
Ao x ()"

if hﬂ(T) > €1,

it ho(T) <&, U7

)\(T) B { UPR)
where Ay (being a very small positive constant) is initial
value of \, 71, 12 are two positive constants with constraint
that 1 < 71 < 792, and T is the turning point such that
hx(T*) > hg and h,(T*+1) < ho. When X reaches 1, we
fix it until the iteration converges.

3.4. The Complete DRHL Algorithm

We finally summary our proposed DRHL algorithm. Firstly,
we should choose the parameters of the algorithm properly.
As mentioned previously, \g, 171, 172 and £, must be care-
fully selected to make the evolution of A\(7") dynamic. 6y
is a threshold value to filter out Gaussians with very smal-
I mixing proportions during the parameter learning process,
while €5(> 0) is a threshold value to terminate the iteration.
If A = 1 and the absolute increment of the log likelihoods
is smaller than 5, we affirm the convergence of the algo-
rithm. In our learning paradigm, k is flexible. However, it
should be larger than the number (k* ) of actual Gaussian-
s or clusters in the dataset. As for the initial setting of the
parameters Oy, i.e., 0\ = {70 m? $0}|5_, some tradi-
tional clustering method may be helpful. For example, m{
can be selected through a RPCL procedure [25] and then 7
and 3¥ can be estimated accordingly.

After initializing all the parameters, ©y will be updated
in each phase of A(7") via the fixed-point learning algorithm
given by Eqgs (12)-(14). At the end of each learning phase,
the Gaussians with the mixing proportions less than A, are
annihilated immediately. After A(7") reaches 1, the algo-
rithm goes on until the log likelihood function reaches its
maximum value or its absolute increment is less than e5.

Since the DRHL algorithm at each learning phase be-
comes the fixed-point learning algorithm which has the sim-
ilar update rules as the EM algorithm, we can use the data
summarization techniques suggested for the EM algorithm
for Gaussian mixtures in [26] to make it scalable and be im-
plemented on a big dataset. Therefore, the DRHL algorithm
can be scalable and used on a big dataset.

4. EXPERIMENTAL RESULTS

In this section, various experiments are carried out on both
synthetic and real-world datasets to demonstrate the per-
formance of the dynamically regularized harmony learning
(DRHL) algorithm for Gaussian mixtures. Moreover, it is
compared with some typical existing learning algorithm-
s. In these experiments, we always select e; = le — 5,

1161

(©)

(d

Fig. 1. Four synthetic datasets for simulation experiments.
(@). &1, (b). S2, (0). S3, (d). Sa.

gg = le—>5,m; = 1.005,A9 = 0.001 72 = 2 and Oy = 0.05.
The other parameters will be specified in the particular ex-
periments.

4.1. Simulation Experiments
4.1.1. The Synthetic Datasets

We begin to generate four typical synthetic datatsets from
mixtures of four or three bivariate Gaussian distribution-
s on the plane coordinate system (i.e., d = 2). Clearly,
these Gaussian distributions were either sphere-shaped or
ellipse-shaped. As shown in Fig.1, the covariance matri-
ces of Gaussian distributions are designed to demonstrate
different degrees of overlap among Gaussians (i.e., cluster-
s). Moreover, the four datasets are also generated with e-
qual or unequal mixing proportions. The specific parame-
ters for these four datasets are listed in Tablel, where m;,
¥ = (a; ©)2x2, Ti, N; denote the mean vector, covariance
matrix, mixing proportion, and number of samples of the
1-th Gaussian, respectively.

4.1.2. Simulation Results and Comparisons

The DRHL algorithm is conducted on each of these four
synthetic datasets with k& = 2k*. For illustration, a group
of typical experimental results are shown in Fig. 2. These
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Table 1. The values of the parameters of the four synthetic datasets.

The dataset Gaussian m; oty aly(ohy) aby e N;
S1 Gl (2.50,0) 0.50 0.00 0.50 0.25 400
(N=1600) G2 (0,2.50) 0.50 0.00 0.50 0.25 400
G3 (-2.50,0) 0.50 0.00 0.50 0.25 400

G4 (0,-2.50) 0.50 0.00 0.50 0.25 400

So Gl (2.50,0) 0.45 -0.25 0.55 0.34 544
(N=1600) G2 (0,2.50) 0.65 0.20 0.25 0.28 448
G3 (-2.50,0) 1.00 0.10 0.35 0.22 352

G4 (0,-2.50) 0.30 0.15 0.80 0.16 265

Ss Gl (2.50,0) 0.10 -0.20 1.25 0.50 600
(N=1200) G2 (0,2.50) 1.25 0.35 0.15 0.30 360
G3 (-1,-1) 1.00 -0.80 0.75 0.20 240

Sy Gl (2.50,0) 0.28 -0.20 0.32 0.34 68
(N=200) G2 (0,2.50) 0.34 0.20 0.22 0.28 56
G3 (-2.50,0) 0.50 0.04 0.12 0.22 44

G4 (0,-2.50) 0.10 0.05 0.50 0.16 32

figures tell that £* Gaussians (demonstrated by their contour
lines) are finally recognized and each estimated Gaussian
matches the actual one accurately.

0.2789(0.0373,2.53)

02505(0.00798.251) -,

48.-00133)

-2} 0.2498(-25, -2

0.25(0.0221,-25)

EY 3 -2 o 2 4 6 E3 - -2 o 2 4

(@) (b)

0.3006(0.087,2.54)

0.1999(-1.14,-0.903)

. 04995252-00217)

0.34(2.48,0.00101]]

() (d)

Fig. 2. Simulation Results of the DRHL algorithm on the
four synthetic datasets, respectively.

We further compared the DRHL algorithm with the MML-
based unsupervised learning algorithm particularly for Gaus-
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sian mixtures [12], being referred to as CEM? for short.
Actually, CEM? has been considered as a typical and pow-
erful learning algorithm for the Gaussian mixture learning
with adaptive model selection in literature. To show the sta-
bility and accuracy of converged results, we implement both
CEMQ( with the stop criterion € = 10~%) and the DRHL al-
gorithm on each of above four datasets for 50 times with d-
ifferent randomly selected initial parameters. We then com-
pute the frequencies of correct model selection (CMS) and
average runtime of these two algorithms over 50 trials on
each dataset. The experimental results are listed in Table 2.
Obviously, the DRHL algorithm considerably outperforms
CEM? on both correct model selection and runtime.

In addition to model selection and runtime, we also com-
pare the DRHL algorithm with the CEM? algorithm on the
accuracy of parameter estimation. For each parameter 6;,
we define Ad; as the average absolute error of |§; — 6| over
50 trials. For each dataset, we compute the total average
absolute error per each parameter called TAE. Actually, the
TAEs of the two algorithms on the four datasets are list-
ed in Table 3. It can be found that the DRHL and CEM?
algorithms have almost the same accuracy on parameter es-
timation. However, for the fourth type of datasets which
demonstrates small sample data, the accuracy of the DRHL
algorithm is remarkably better than that of the CEM? algo-
rithm.

The DRHL algorithm is further compared with the BY'Y
annealing algorithm (BYY-AEM) [27]. While the DRHL
and BYY-AEM algorithms had the similar performance on
adaptive model selection, the DRHL algorithm leads to a
more accurate parameter estimation. Actually, the TAEs of
the BYY-AEM algorithm on the four datasets are respec-
tively 0.0204, 0.0243, 0.0386 and 0.0322, which are slightly
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Table 2. The comparison of the DRHL and CEM? algorithms on model selection and runtime.

DRHL CEM?
Datasets
CMS Frequency runtime(s) CMS Frequency runtime(s)
S 100% 526 84% 11290
So 100% 856 56% 1825
S3 100% 145 72% 4317
Sy 96% 460 56% 554

Table 3. The comparison of the DRHL and CEM? algo-
rithms on parameter estimation accuracy.

Dataset DRHL CEM?
S1 0.0204 0.0204
Sa 0.0171 0.0172
Ss 0.0363 0.0363
Sy 0.0308 0.0715

higher than those of the DRHL algorithm.

4.2. Unsupervised Classifications of Iris and Wine Data

We further apply the DRHL algorithm to the unsupervised
classifications of the Iris and Wine data from UCI Machine
Learning Repository [28]. The Iris dataset contains three
classes, Iris Versicolor, Iris Virginica and Iris Setosa, and

5. CONCLUSIONS

We have investigated the relationship between the BY'Y har-
mony learning and the ML learning and bridged them us-
ing a regularization term—the average Shannon entropy of
the posterior probability per sample. Based on such a reg-
ularization mechanism, we construct the dynamically reg-
ularized harmony learning (DRHL) for Gaussian mixtures.
By controlling the scale factor of this regularization term to
dynamically increase from O to 1, the DRHL algorithm s-
tarts from the BYY harmony learning with a capability of
adaptive model selection, and then gradually transforms to
the conventional maximum likelihood learning to obtain a
consistent parameter estimation. Moreover, the DRHL al-
gorithm is scalable and can be used on a big dataset with
certain data summarization technique. Experimental results
demonstrate that, on both synthetic and real-world datasets,
the DRHL algorithm can not only select the correct num-
ber of actual Gaussians in a dataset, but also obtain the ML
estimates of the parameters in the mixture.
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vectors measuring the plants morphology. In our experi-
ments on the Iris data, we set the initial value of k£ as 6
and the initial values of the other parameters as in simula-
tion experiments. Generally, the DRHL algorithm stopped
at k* = 3 with the optimal classification accuracy 96.7%
(Only five from 150 samples are misclassified). However, it
is possible that the DRHL algorithm converges to k* = 2.
Since there are two Iris sub-classes which are strongly over-
lapped, some literatures also accept £* = 2.

The Wine dataset is 13-dimensional and consists of 178
samples of three wines. In this case, we preprocess this
dataset by the principal component analysis (PCA) dimen-
sion reduction technique [29] and choose only the first three
principle components. The DRHL algorithm is conducted
on the preprocessed data with the initial value of k as 6.
Experimental results demonstrate that the DRHL algorithm
always converges with £* = 3 and the accuracy of classifi-
cation can reach at 98.3% (Only three samples are misclas-
sified).
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