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Abstract Nowadays, convolutional neural networks (CNNs) have led the developments of machine learning.

However, most CNN architectures are obtained by manual design, which is empirical, time-consuming, and

non-transparent. In this paper, we aim at offering better insight into CNN models from the perspective of

optimization theory. We propose a unified framework for understanding and designing CNN architectures

with the family of Newton’s methods, which is referred to as Newton design. Specifically, we observe that

the standard feedforward CNN model (PlainNet) solves an optimization problem via a kind of quasi-Newton

method. Interestingly, residual network (ResNet) can also be derived if we use a more general quasi-Newton

method to solve this problem. Based on the above observations, we solve this problem via a better method,

the Newton-conjugate-gradient (Newton-CG) method, which inspires Newton-CGNet. In the network design,

we translate binary-value terms in the optimization schemes to dropout layers, so dropout modules naturally

appear in the derived CNN structures with specific locations, rather than being an empirical training strategy.

Extensive experiments on image classification and text categorization tasks verify that Newton-CGNets

perform very competitively. Particularly, Newton-CGNets surpass their counterparts ResNets by over 4% on

CIFAR-10 and over 10% on CIFAR-100, respectively.
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1 Introduction

In recent years, convolutional neural networks (CNNs) have become the leading machine learning methods
in several real-world application domains, e.g., image recognition [1–6] and text processing [7–10]. In
all, the structure of a CNN model determines its performance, thus designing CNNs is a key problem.
However, most CNN structures, such as ResNet [4] and DenseNet [5], are obtained by manual design,
which is empirical, time-consuming, and lacking theoretical support.

In order to reduce the requirements for human expertise and labor, researchers are increasingly in-
terested in designing neural networks automatically. One main strategy is network architecture search
(NAS) [11–15], which searches for network architectures in a given search space. However, NAS uses a
search strategy, and usually requires some extra computing power for search. In addition, these architec-
tures are inherently obtained by learning from data, and still cannot provide any theoretical insight into
the neural networks either.

Besides, there exist many studies [16–21] devoted to designing neural networks from theoretical deriva-
tion, such as optimization algorithms, which are much more transparent and interpretable compared with
manual design and NAS. These studies are mainly focused on the sparse coding or compressive sensing
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(CS) problems, including signal/image recovery. Mathematically, the purposes of these problems are to
infer the original signal x from its randomized measurements y = Φx, where Φ is a linear projection.
Traditional methods for CS solve a well-defined problem, e.g., minx ‖Φx − y‖22 + λ‖x‖1, where λ‖x‖1 is
the regularization, and employ iterative algorithms to solve it, e.g., the iterative shrinkage-thresholding
algorithm (ISTA) [22], with iteration xk+1 = Tλt(xk − 2tΦT(Φxk − y)), where Tλt is the soft-thresholding
operator. Noting that this iteration resembles a network layer quite well when Tλt is viewed as an ac-
tivation function and Φ is made learnable. Zhang et al. [20] unfolded ISTA iterations and proposed
ISTA-Net.

Generally, we need to point out that this CNN design methodology inspired by optimization algorithms
is an important part in differential programming. A common practice is firstly using an iterative algorithm
to solve a well-defined problem, and then mapping the iterations to a data flow graph, which may
correspond to a deep neural network. After the network structure is obtained, the parameters can be
made learnable to increase the capacity. However, this CNN design methodology is limited to the above-
mentioned sparse coding or CS problems, and cannot be directly applied to more general applications,
where neural networks are used to extract features, such as the image recognition task. This is mainly
because it is difficult to establish a well-defined optimization problem for feature extraction like CS
problems, let alone we wish the derived optimization iterations to resemble network layers in form. Some
studies [23–25] addressed this issue by viewing the forward pass of CNN as sparse coding. However, these
architectures cannot help understand some common CNN architectures, like ResNets, and have a high
computational cost.

Li et al. [26] proposed another approach: they prove that computing with a standard feedforward neural
network (PlainNet), when the weights are fixed and positive semi-definite, is equivalent to minimizing an
objective function using the gradient descent algorithm, and assume that a better optimization algorithm
may correspond to a better neural network architecture. With this new understanding, they use faster
first-order optimization algorithms to minimize this objective function and design better neural network
structures. However, the assumption that weight matrices are positive semi-definite is too strong, whereas
we only need to assume weight matrices to be symmetric in this work.

Specifically, we observe that the PlainNet, when the weights are fixed and symmetric, can also be
viewed as a kind of quasi-Newton method solving a well-defined optimization problem. Furthermore, we
find that residual network (ResNet) can be derived by using an improved quasi-Newton method to solve
this problem. Then, we utilize a better method, the Newton-conjugate-gradient (Newton-CG) method, to
solve the problem, and propose Newton-CGNet, which contains branch structures and dropout modules
naturally. In all, our theory proposes a unified framework for understanding and designing CNNs. Since
that our theory understands some existing CNNs and designs new CNNs with the family of Newton’s
methods, we refer to it as Newton design.

We evaluate Newton-CGNets on both image classification and text categorization tasks. As for image
classification, our models achieve lower classification error rates while using comparable numbers of pa-
rameters with the counterpart ResNets. Furthermore, the results are still competitive even compared with
some advanced variants of ResNet. Without data augmentation, Newton-CGNets perform better than
ResNets and its variants by a large margin. For text categorization, Newton-CGNets outperform VDC-
NNs [9] using fewer parameters, of which two versions exactly correspond to the counterparts PlainNets
and ResNets.

Our contributions are as follows:

• We propose a unified framework for understanding and designing CNNs with the family of Newton’s
methods, which are mainly the second-order optimization methods. ResNet can be derived from our
methodology.

• With our methodology, we translate binary-value terms in the optimization schemes to dropout
layers. Then the specific locations of the dropout modules are naturally determined, rather than being
positioned manually.

• Newton-CGNets perform very competitively on both image recognition and text processing applica-
tions.
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2 Related work

There have been extensive studies on the neural network design. The main design strategies include man-
ual design, NAS, and theoretical derivation, including optimization algorithms and ordinary differential
equations (ODEs).

Manual design. The most common design strategy is manual design. As for image recognition,
AlexNet [1] and VGG [2] achieved breakthrough results in the ImageNet classification challenge, with
feedforward CNN structures. Also, many new neural network structures have been proposed, such as
GoogLeNet [3], which contains several branches. ResNet [4] is the first ultra-deep CNN model, where
skip connections are applied to avoid gradient vanishing. Moreover, Huang et al. [5] proposed DenseNet,
where each layer connects to all latter layers, in order to improve the information flow. Nevertheless,
manual design is empirical, imposing high demand for human skills, and always time-consuming.

NAS. In the early stage of neural network design, genetic algorithm [27, 28] based approaches were
taken to find both architectures and weights. However, they perform worse than the hand-crafted
ones [29]. Also, Domhan et al. [30] used Bayesian optimization for network architecture selection. First
adopted in [11], reinforcement learning is the main mechanism to assign a better structure with a higher
reward. Follow-up studies [12, 13] focused on reducing the search space and computational cost. But
they are still time-consuming. Liu et al. [14] proposed differentiable architecture search (DARTS) and
showed remarkable efficiency improvement. However, it is still unable to offer theoretical insight into the
CNN architectures. In addition, NAS uses a search strategy and usually requires some computing power,
while our method does not use any search strategy and computing power.

Derivation from optimization theory. CNNs derived by optimization algorithms are mainly for
image restoration and reconstruction. The ISTA [22] is a popular method for CS. Most of the existing
neural network based methods [16, 18] induced by ISTA have the feedforward structures. Particularly,
Zhang and Ghanem [20] proposed ISTA-Net inspired by ISTA and FISTA-Net inspired by the fast iter-
ative shrinkage-thresholding algorithm (FISTA). Interestingly, the acceleration in FISTA naturally leads
to skip connections in the network design, and FISTA-Net outperforms ISTA-net in experiments, con-
sistent with the performance of their related optimization methods. Besides, the alternating direction
method of multipliers (ADMM) is an efficient algorithm for CS magnetic resonance imaging models. Sun
et al. [19] defined the ADMM-Net over a data flow graph inspired by ADMM. In conclusion, all the
studies mentioned here unfolded optimization iterations to final networks with the practice of differential
programming.

Later, some studies have proposed the interpretations of deep networks as unrolling optimization
algorithms. Papyan et al. [23] showed that the forward pass of the CNN is, in fact, the thresholding pursuit
serving the multi-layer convolutional sparse coding model, and Sun et al. [24] proposed a supervised
deep sparse coding network for image classification. However, it remains unclear why such low-level
sparse coding is needed for the high-level classification task. Chan et al. [25] pointed out that for high-
dimensional multi-class data, the optimal linear discriminative representation maximizes the coding rate
difference between the whole dataset and the average of all the subsets, and proposed ReduNet, which
is derived by using a gradient ascent scheme for optimizing the rate reduction objective. However, they
should use a large batch size for training and have a high computational cost. Also, ReduNet performs
much worse than common models, e.g., ResNets. The closest work to ours is [26], which viewed the
PlainNet as the gradient descent algorithm minimizing an objective function. Then they designed better
neural network structures induced by employing faster first-order optimization algorithms to solve this
objective. However, the assumption on the weight matrices being positive semi-definite is too strong, and
they only used first-order algorithms.

Derivation from ODE. The connection between neural networks and ODEs may be first observed
by [31], where the forward propagation of ResNet can be seen as an Euler discretization of a continu-
ous transformation. Lu et al. [32] proposed a linear multi-step architecture (LM-architecture) which is
inspired by the linear multi-step method solving ODEs. Haber and Ruthotto [33] used this connection
to analyze the stability and well-posedness of deep learning, and developed more stable network archi-
tectures. Furthermore, Chen et al. [34] introduced a continuous neural network. Instead of specifying a
discrete sequence of hidden layers, they parameterized the derivative of the hidden state using a neural
network. However, it cannot induce some operations naturally, such as dropout.
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Table 1 Summary of notations in this paper

Notation Description Notation Description

xk The output of the k-th layer Wk The weight matrix

A The fixed weight matrix Φ The ReLU function

S
n The space of symmetric matrices R

n n-dimensional Euclidean space

S
n
++ The space of positive definite matrices P (x) P ′(x) = Φ(x)

AT The transpose of a matrix (vector) Hk The approximate inverse Hessian matrix

‖ · ‖2 The 2-norm ∇F (x) The gradient of F (x)

∇2F (x) The Hessian matrix of F (x) Diag[·] The generated diagonal matrix

P The projection operator C C = {x|x � 0}

I The identity matrix U U = I − Diag[Φ′(Axk)]

r r = Φ(Axk) − xk Q Q = UTU

b b = UTr gt The gradient

dt The conjugate gradient αt, βt The scalars

N The number of CG iterations (blocks) L The depth of the Newton-CGNet

3 Newton design

3.1 CNN as iterations of optimization

For differential programming, people may firstly use an iterative algorithm to solve a well-defined problem.
Then they map the iterations into a data flow graph that may correspond to a neural network. Finally,
the parameters in iterations can be made variable and learnable. However, for the image recognition
task, we do not have a well-defined optimization problem in advance. Thus, we have to translate a known
CNN structure to the optimization iterations solving an optimization problem firstly, in order to get a
well-defined problem. All the notations in this paper are summarized in Table 1.

The most classic CNN structure is feedforward structures, such as AlexNet [1], which establishes the
dominant status of CNNs in the computer vision field. Excluding the final softmax layer, the propagation
from the first layer to the last layer, i.e., the process of extracting features (see Figure 1(a)), can be
expressed as

xk+1 = Φ(Wkxk), (1)

where xk is the output of the k-th layer, Φ is an activation function and we set it as an ReLU. Wk is a
linear transformation implemented by a convolution operation. We call model (1) PlainNet in this paper.
Actually, many neural networks, which implement linear transformations using some special convolutions,
can be naturally categorized into the PlainNets. For instance, VGG [2] uses 3 × 3 convolutions, while
MobileNet [35] uses depthwise and pointwise convolutions. In this work, we focus on designing CNN
architectures (i.e., the patterns of stacking convolutions) from the perspective of optimization theory,
rather than the specific forms of convolutions. Thus, we uniformly denote the linear transformations as
Wk without any distinction in the theoretical derivation.

Following [26], we fix the matrix Wk as A to simplify the analysis, and get the iteration

xk+1 = Φ(Axk). (2)

Furthermore, we have the following observations.

Proposition 1. If A ∈ S
n, x ∈ R

n, Φ is an ReLU, where S
n denotes the space of n-order symmetric

matrices, then the iteration xk+1 = Φ(Axk) solves the optimization problem

min
x�0

F (x) ≡
1

2
xTAx− 1TP (Ax), (3)

via a kind of quasi-Newton method (see the explanation in the Appendix A), where A−1 approximates
the inverse Hessian of F (x). P ′(x) = Φ(x).

Proof.

∇F (x) = A[x− Φ(Ax)], (4)

where ∇F (x) is the gradient of F (x), then

xk+1 = xk −A−1∇F (xk)
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Figure 1 (Color online) (a) PlainNet; (b) Non-bottleneck ResNet. The block with two convolution operations is also called a

non-bottleneck Residual Block in our paper.

= xk −A−1[Axk −AΦ(Axk)]

= Φ(Axk). (5)

Since Φ is an ReLU, xk+1 � 0 is satisfied. Thus iteration (2) does solve the optimization problem (3)
with a kind of quasi-Newton method, where A−1 approximates the inverse Hessian of F (x).

F (x) may not be the only objective function that the iteration (2) minimizes, but choosing F (x) as
(3) seems very natural in form.

To get better insight into our theory, we analyze the gap between A−1 and the inverse Hessian of F (x).
We assume ‖A‖2 < 1. Since

∇2F (x) = A−ADiag[Φ′(Ax)]A, (6)

where ∇2F (x) is the Hessian matrix of F (x), then

[∇2F (x)]−1 = [I −Diag[Φ′(Ax)]A]−1A−1

=

∞
∑

n=0

(Diag[Φ′(Ax)]A)nA−1

= A−1 +

∞
∑

n=1

(Diag[Φ′(Ax)]A)nA−1. (7)

The Neumann series can be expanded because ‖Diag[Φ′(Ax)]A‖2 6 ‖A‖2 < 1.

Obviously, the remaining term
∑∞

n=1(Diag[Φ′(Ax)]A)nA−1 cannot be neglected. On the other hand,
the above quasi-Newton method only has a linear convergence rate (see the proof in the Appendix B),
whereas a good quasi-Newton method may achieve a quadratic convergence rate. Thus A−1 is not a
good enough approximation for the inverse Hessian. Instead, we can approximate the inverse Hessian by
matrices Hk that change over iteration (e.g., Hk = A−1 +

∑m

n=1(Diag[Φ′(Axk)]A)
nA−1, where m is a

given integer). As a result, the iteration scheme becomes

xk+1 = PC[xk −Hk∇F (xk)]

= Φ[xk +HkA(Φ(Axk)− xk)]

= Φ[(I −HkA)xk +HkAΦ(Axk)], (8)

where P is a projection operator and C = {x|x � 0}.
We can obtain the computation structure shown in Figure 1(b), which corresponds to the following

iteration:

xk+1 = Φ
[

W (k)
s xk +W

(k)
1 Φ

(

W
(k)
2 xk

)]

. (9)
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Eq. (9) is obtained by making the coefficient matrices in (8) learnable and variable. The structure in
Figure 1(b) is non-bottleneck ResNet [4]1).

So far, we have translated the PlainNet (1) to an optimization method solving the problem (3), building
a bridge linking CNN models and optimization theory together. We use a more general quasi-Newton
method to solve it, and derive ResNet. From this new understanding, we are able to design more promising
and transparent CNN structures with optimization theory: optimize (3) with better optimization methods
and then inspire better CNN structures2). Our theory explains and designs CNNs with the family of
Newton’s methods, so we call it Newton design.

3.2 Newton-CG method

Observing the problem (3), we notice that the first term of F (x), xTAx/2, is a quadratic term. Particu-
larly, the Newton’s method is very suitable to solve a quadratic problem, which only takes one iteration
to obtain the solution. Thus we speculate that Newton’s method would optimize (3) better, and it will
be verified in Subsection 4.1.3. The iteration scheme of the Newton’s method is as follows:

xk+1 = PC{xk − [∇2F (xk)]
−1∇F (xk)}

= Φ{xk + [I −Diag [Φ′(Axk)]A]
−1[Φ(Axk)− xk]}. (10)

Noting that it is difficult to compute the inverse [I −Diag[Φ′(Axk)]A]
−1 directly, we adopt the conjugate

gradient (CG) method to compute it indirectly. We denote U = I−Diag[Φ′(Axk)]A and r = Φ(Axk)−xk.
Then we just need to compute

y = U−1r, (11)

and y is the solution of the optimization problem

min
y

h(y), (12)

where

h(y) =
1

2
(Uy − r)T(Uy − r) =

1

2
yTUTUy − rTUy +

1

2
rTr. (13)

Again, we denote Q = UTU and b = UTr, and the problem can be rewritten as

min
y

h(y) ≡
1

2
yTQy − bTy +

1

2
rTr. (14)

We use the CG method to solve the problem. The procedure is shown in Algorithm 1, where gt and dt
denote the gradient and the conjugate gradient, respectively.

Algorithm 1 Solving the optimization problem (14) via the CG method

Require: The parameters of the problem: Q and b; the number of iterations: N .

Ensure: The solution of problem (14), y⋆.

1: Select the initial point y0;

2: g0 = ∇h(y0) = Qy0 − b;

3: set d0 = −g0;

4: for t = 0, 1, . . . , N − 1 do

5: αt = −
gTt dt

dT
t

Qdt
;

6: yt+1 = yt + αtdt;

7: gt+1 = ∇h(yt+1) = Qyt+1 − b;

8: βt =
gT
t+1Qdt

dT
t

Qdt
;

9: dt+1 = −gt+1 + βtdt;

10: end for

11: return yN .

Theoretically, the CG method needs at most n iterations to get the solution, where n is the dimension
of the matrix Q. However, n is always very large, thus we always iterate N times (N < n) to approximate
the solution (see line 4).

1) Although Ws is treated as an identity projection in most studies, the original work [4] showed that treating it as a learnable

linear projection also works, and it is a more general form.

2) Li et al. [26] proposed the hypothesis that a better optimization algorithm may correspond to a better neural network

architecture.
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Table 2 Iteration numbers of using quasi-Newton methods and Newton-CG methods to solve the problem (3)

Method Setting Iteration

m = 0 72

Quasi-Newton method m = 1 36

m = 2 24

N = 3 157

N = 4 36

Newton-CG method N = 6 14.5

N = 8 9

N = 10 7

3.3 Numerical experiments

Before unfolding Newton-CG iterations to a CNN architecture, we show the numerical performance of
the above-mentioned three different optimization methods solving the optimization problem (3).

We generate a positive definite matrix Ã ∈ S
n
++ using Ã = CTC, where C ∈ R

n×n have i.i.d. elements

drawn from N (0, 1). Then we get A = γ Ã

‖Ã‖2
, where γ < 1. As a result, we obtain a positive definite

matrix A and ‖A‖2 = γ < 1. On this condition, the zero vector 0 is a local minimum because ∇F (0) = 0

and the Hessian matrix ∇2F (0) = A ≻ 0. The initial point x0 ∈ R
n has i.i.d. elements drawn from

N (0, 1). We terminate iterations when ‖F (xk)−F (0)‖ < ǫ. We set n = 2048, γ = 0.9999, and ǫ = 10−20.
As for the quasi-Newton method

xk+1 = PC [xk −Hk∇F (xk)], (15)

we artificially take the approximation of inverse Hessian Hk = A−1+
∑m

n=1(Diag[Φ′(Axk)]A)
nA−1, where

m is a given integer. Then, the optimization method

xk+1 = xk −A−1∇F (xk) (16)

is equivalent to the case that we set m = 0.
As for the Newton-CG method, we simply use xk to initialize the initial point y0 in Algorithm 1.

Among all the iterative algorithms, we run 10 times and report the median iteration numbers. The
results are listed in Table 2.

The results show that the iterative algorithm (16) takes 72 iterations to solve the given optimization
problem. And when we use matrices Hk, which change over iteration, to approximate the inverse Hessian,
it takes fewer iterations. Concretely, quasi-Newton methods take 36 and 24 iterations when m = 1 and
2, respectively.

When it comes to the Newton-CG method, we find that when N = 3, it needs 157 iterations, which
is far more than that of quasi-Newton methods. This phenomenon is mainly because that if CG method
only iterates a few times, it cannot obtain a good enough solution to approximate the inverse Hessian,
consequently, Newton-CG method performs badly. When we increase N , we find that Newton-CG meth-
ods perform significantly better than quasi-Newton methods: Newton-CG methods take only 14.5, 9, and
7 iterations when N = 6, 8, and 10, respectively.

It seems that quasi-Newton methods will also perform better if we further increase m. However, it is
impossible to increase m in the derived ResNet artificially, because the approximate inverse Hessian Hk

in (8) is obtained by learning, rather than being calculated using a given expression. By contrast, it is
very easy to increase N in our derived Newton-CGNet, which will be introduced in the next subsection.
This makes a big difference between our derived CNNs and ResNets.

3.4 Unfolding Newton-CG iterations to Newton-CGNet

We have shown how to use a better iterative algorithm, Newton-CG method, to optimize (3), and now we
will unfold the iterations to a CNN architecture. Meanwhile, we need to increase the model capacity with
differential programming. Firstly, we consider αt and βt in lines 5 and 8 of Algorithm 1. Here, we treat
them as two learnable scalars, which will be tuned according to the loss function, rather than calculate
them with the given expressions. Obviously, it will enhance the expressive power of the network. Besides,
we simply use xk to initialize the initial point y0 (see line 1 of Algorithm 1).
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Figure 2 (Color online) (a) A Newton-CG Block. It is the forward propagation from xk to xk+1, related to one step of the New-

ton’s method. The grey region is a CG Block, related to one step of the CG method. The forward propagation from yt to gt is in (b).

(b) The forward propagation from yt to gt. It is the implementation of (17) that computes the gradient, with some parameters

made learnable.

In addition, computing the gradient is an important operation (see lines 2 and 7 of Algorithm 1).
Concretely,

g =Qy − b = UTUy − b

= [I −ADiag[Φ′(Axk)]][I −Diag[Φ′(Axk)]A]y − b

= y −Diag[Φ′(Axk)]Ay −ADiag[Φ′(Axk)]y +ADiag[Φ′(Axk)]Ay − b. (17)

Naturally, the forms like Ay can be viewed as convolution operations and the last term b can be simply
viewed as a threshold. As for Diag[Φ′(Axk)], since Φ is an ReLU, Φ′(Axk) is a binary-valued function,
taking 0 or 1 as its values. Moreover, since Diag[Φ′(Axk)] · y = Φ′(Axk) ⊙ y, where ⊙ is a Hadamard
product, we can view the term Diag[Φ′(Axk)] · y as a binary mask, which will be further translated to a
dropout layer in implementation, as will discussed in Subsection 4.1.2.

Based on the above discussion, we are able to map the Newton-CG iterations to a data flow graph.
Then we make the parameters in the data flow graph learnable and variable and get Newton-CGNet. For
ease of presentation, we call the forward propagation from xk to xk+1, related to one step of Newton’s
method, a Newton-CG Block. Also, we call the forward propagation related to one step of CG method a
CG Block. The forward propagation of a Newton-CG Block is shown in Figure 2, where a CG Block is
denoted in the grey region. In all, a Newton-CGNet is stacked by multiple Newton-CG Blocks, and each
Newton-CG Block is consisted of multiple CG Blocks. Formally, the forward propagation of a Newton-CG
Block (from xk to xk+1) is shown in Algorithm 2.

As shown in Algorithm 2, we implement (17) in lines 3–6, and this schema is shown in Figure 2(b).
Particularly, as the convolution kernels are learnable, we replace some “–” in (17) with “+” in line 6 for
ease of presentation. We use “*” to denote the convolution operation. The total learnable parameters in a

Newton-CG Block are Θk = {W
(1)
t ,W

(2)
t ,W

(3)
t ,W

(4)
t , 0 6 t 6 N − 1;α0, α1, . . . , αN−1;β0, β1, . . . , βN−2}.

Each CG Block is 2-layer deep using 4 convolution kernels. Correspondingly, each Newton-CG block is
2N -layer deep using 4N convolution kernels.

4 Experiments

We evaluate our models on both image classification and text categorization tasks.



Shen Z Y, et al. Sci China Inf Sci June 2023 Vol. 66 162101:9

Algorithm 2 The forward propagation of a Newton-CG Block (from xk to xk+1)

Require: The input: xk; the number of CG Blocks: N ; the convolution kernels: W
(1)
t ,W

(2)
t ,W

(3)
t , and W

(4)
t , 0 6 t 6 N − 1; the

scalars: α0, α1, . . . , αN−1, β0, β1, . . . , βN−2;

1: y0 = xk;

2: for t = 0, 1, . . . , N − 1 do

3: g
(1)
t = Dropout(W

(1)
t ∗ yt);

4: g
(2)
t = W

(2)
t ∗ Dropout(yt);

5: g
(3)
t = W

(4)
t ∗ Dropout(W

(3)
t ∗ yt);

6: gt = yt + g
(1)
t + g

(2)
t + g

(3)
t ;

7: if t = 0 then

8: dt = −gt;

9: else

10: dt = −gt + βt−1dt−1;

11: end if

12: yt+1 = yt + αtdt;

13: end for

14: xk+1 = ReLU(xk + yN );

15: return xk+1.

4.1 Image classification

4.1.1 Datasets

CIFAR. The two CIFAR datasets [36] consist of colored natural images with 32× 32 pixels. CIFAR-10
(C10) consists of images drawn from 10 classes and CIFAR-100 (C100) from 100. The training and the
test set contain 50000 and 10000 images, respectively, and we randomly hold out 5000 training images
as a validation set. We select the model with the lowest validation error during training. We adopt a
standard data augmentation scheme (mirroring/shifting) [37] that is widely used for these two datasets.
We denote this augmentation scheme by a “+” mark at the end of the dataset name (e.g., C10+). For
preprocessing, we normalize the images using the channal means and standard deviations. We report the
test errors.

SVHN. The street view house numbers (SVHN) dataset [38] contains 32 × 32 colored digit images.
There are 73257 images in the training set, 26032 images in the test set, and 531131 images for additional
training. Following common practice [37,39], we use all the training data without any data augmentation,
and a validation set with 6000 images is randomly split from the training set. We select the model with
the lowest validation error during training. We follow [40] and divide the pixel values by 255 so they are
in the [0, 1] range. We report the test errors.

ImageNet. We also conduct experiments on ILSVRC 2012 dataset [41], which contains 1.2 million
training images, 50000 validation images, and 100000 test images with 1000 classes. Following [4,42], we
adopt the standard data augmentation for the training sets. A 224× 224 crop is randomly sampled from
the images or its horizonal flip. Following [40], we report the top-1 and top-5 single-crop error rates on
the validation set.

4.1.2 Architectures and training details for CIFAR and SVHN

Dropout. Firstly, we show the necessity that we should translate the binary mask DiagΦ′(Axk) · y to
a dropout layer. As for the forward propagation, simply treating this term as a parameterized binary
mask does not affect inference. However, for the backward propagation, since Φ′(Axk) is a binary-
valued function, the gradient w.r.t. the parameters A is always zero, so that A is difficult to update.
Consequently, it does not make sense to simply translate Diag[Φ′(Axk)] · y to a learnable binary mask.

From another point of view, during the training phase with stochastic gradient descent (SGD), the
input xk is random, so Diag[Φ′(Axk)] is also a random binary mask, which resembles the dropout module
quite well. Thus in implementation, we alternatively translate the term Diag[Φ′(Axk)] to a dropout layer
for ease of training.

In order not to cause misunderstanding, we have to emphasize that the term Diag[Φ′(Axk)] is not
exactly the same as a dropout layer, because this term is inherently determined by A and xk, whereas the
dropout is a completely random binary mask. In all, we provide a novel approach to deal with the binary
masks derived in the differential programming field, rather than derive the dropout modules theoretically.
One advantage of our methodology is in that dropout can naturally be introduced into CNN structures
by analogy, and have specific locations from the theoretical derivation. By contrast, Zagoruyko et al. [40]
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also added dropout modules to Wide ResNet at similar locations. However, their strategy is empirical.

Architectures. In order to faciliate the analysis and comparison, we design the architecture of
Newton-CGNets based on ResNets. As shown in Figure 2, the Newton-CGNet contains branch structures.
Thus with the same depth, it contains twice more convolution kernels than the ResNet. Naturally, we
modify two Residual Blocks

[

conv1
conv2

]

× 2 to one CG Block
[

conv1; conv2; conv3
conv4

]

(corresponding to the
topology in Figure 2(b)).

Generally, we use L-{N1, N2, N3} to denote the Newton-CGNet architecture which contains 3 Newton-
CG Blocks with L-layer depth totally. And each Newton-CG Block contains N1, N2, and N3 CG Blocks,
respectively.

Training details. All the models are trained using SGD and a Nesterov momentum [43] of 0.9
without dampening. During the training phase, we find that our models can converge stably when we
adopt common settings used in existing CNNs. Specifically, we adopt the weight initialization method
in [44] for convolutional layer and use Xavier initialization [45] for the fully connected layer. On CIFAR
and SVHN we train our models using batch size 128 for 300 and 40 epochs, weight decay of 5 × 10−4

and 10−4, respectively. The initial learning rate is set to 0.1 and is divided by 10 at 50% and 75% of the
total number of training epochs. We add an ReLU after conv3 of each CG Block to supplement some
nonlinearity3). We adopt batch normalization (BN) [46] after each convolution kernel. Following [44],
we perform a linear projection to match the dimensions for addition operation whenever in need, with
a 1 × 1 convolution kernel. We use 0.2 dropout rate on C10+ and C100+, 0.3 dropout rate on SVHN,
and 0.4 dropout rate on C10 and C100, respectively. Since the dropout module is an integral part of the
Newton-CGNet, rather than merely a training strategy, we can adopt dropout fairly. All the learnable
scalars are initialized as 1.0. We report the median of 5 runs.

4.1.3 Newton-CGNets vs. ResNets

As we have shown in Table 2, compared with quasi-Newton methods, Newton-CG methods perform worse
than quasi-Newton methods when the interior CG methods iterate only a few times and perform better
when the CG methods iterate enough times. Naturally, it is interesting to explore how their derived
CNNs perform. In fact, the number of the CG Blocks in each Newton-CG Block relates to the number of
the CG iterations, thus we explore the performance of Newton-CGNets via changing the number of the
CG Blocks.

We now evaluate our models on C10+. We take L-{N1, N2, N3} as 10-{1, 1, 2}, 16-{2, 2, 3}, 22-{3, 3, 4},
28-{4, 4, 5}, 56-{9, 9, 9}, and 82-{13, 13, 14}, and get Newton-CGNet-10, 16, 22, 28, 56, and 82, respectively.
On one TITAN Xp GPU, these models take 9, 15, 21, 26, 52, and 75 s for training for one epoch, 1,
2, 2.5, 3, 7, and 11 s for inference, respectively. For fair comparison, we compare the performance of
Newton-CGNets with its counterpart ResNets using comparable numbers of parameters and also run
ResNets for 300 epochs. The results are listed in Table 3. The error rates resulted from ResNets are
slightly better than that reported in [4], due to more training epochs.

We plot the results in Figure 3(a) and observe that when using a few CG Blocks (N3 6 5), Newton-
CGNets perform worse than its counterpart ResNets. And when we use more CG Blocks (N3 > 9),
Newton-CGNets perform better. To be specific, with comparable numbers of parameters, Newton-CGNet-
56 and 82 surpass ResNet-110 and 164 by 0.38% and 0.67%, respectively. This phenomenon is very
similar to that shown in Table 2. To conclude, as for this image recognition task, iterative algorithms
(quasi-Newton methods and Newton-CG methods) and their derived CNN models (ResNets and Newton-
CGNets) show the similar pattern: the better an iterative algorithm approximates the inverse Hessian,
the better the iterative algorithm solves the optimization problem, also, the better its derived CNN model
performs.

In addition, we investigate the sensitivity of some important hyperparameters for model training,
including learning rate and weight decay, based on Newton-CGNet-56. As shown in Figure 4, when the
learning rate is 0.1, our model performs well when the weight decay is between 10−4 and 10−3. When
the weight decay is 5 × 10−4, our model performs well when the learning rate is between 0.2 and 0.02.
To conclude, our model can perform stably when the weight decay and learning rate are around 5× 10−4

and 0.1, respectively.

3) This modification is necessary, because a Newton-CG Block is nearly a linear model otherwise. We make the modification

as minor as possible in order to maintain the derived scheme.
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Table 3 Test error rates (%) on C10+ using ResNets and Newton-CGNets (median of 5 runs)

Method Depth Params Error (%) Method Depth Params Error (%)

ResNet

20 0.27M 7.67

Newton-CGNet

10 0.29M 9.25

32 0.46M 6.83 16 0.48M 7.21

44 0.66M 6.31 22 0.68M 6.44

56 0.85M 6.02 28 0.87M 6.14

110 1.73M 5.73 56 1.70M 5.35

164 2.62M 5.57 82 2.62M 4.90
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Figure 3 (Color onine) (a) Newton-CGNets perform worse than ResNets using a few CG Blocks, and outperform ResNets using

more CG Blocks; (b) training curves on C10+ and C100+. Dashed lines denote training errors, and solid lines denote test errors.
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Figure 4 (Color onine) (a) Test error rates of Newton-CGNet-56 with the learning rate of 0.1 and different weight decay (wd);

(b) test error rates of Newton-CGNet-56 with the weight decay of 5 × 10−4 and different learning rates (lrs).

Actually, since that the performance of a CNN model is dependent on multiple factors, such as datasets
and training strategies, it is difficult to accurately predict how the derived CNN models perform. However,
Newton design provides an optimization perspective to help analyze and explain the performance of the
derived CNN models qualitatively, and then guide us to use the derived CNNs more efficiently, e.g., using
enough CG Blocks. By contrast, we cannot analyze the CNN models obtained by manual design or NAS
in this way.

4.1.4 Newton-CGNets vs. competitive models

Using enough CG Blocks, we compare our derived Newton-CGNets with some more competitive models
on three datasets, C10, C100, and SVHN, respectively. The test error rates are listed in Table 4.

Newton-CGNets vs. advanced variants of ResNets. On the dataset with data augmenta-
tion, Newton-CGNet-82 results in 4.90% on C10+ and 23.87% on C100+, outperforming its counterpart
ResNet-164 by 0.67% on C10+ and 2.74% on C100+, respectively. And the results are at least compara-



Shen Z Y, et al. Sci China Inf Sci June 2023 Vol. 66 162101:12

Table 4 Test error rates (%) on CIFAR and SVHN datasets (median of 5 runs)a)

Method Depth Params C10 C10+ C100 C100+ SVHN

ResNet [4]
110 1.73M 12.06 5.73 41.83 26.93 1.80

164 2.62M 11.68 5.57 38.65 26.61 1.75

ResNet with stochastic depth [39] 110 1.7M 11.66 5.23 37.80 24.58 1.75

Wide ResNet with dropout [40] 16 2.7M – 5.24 – 23.91 1.64

ResNet (pre-activation) [42] 164 2.62M 11.26 5.46 35.58 24.33 –

MobileNet [35] 15 3.26M 8.70 6.89 28.96 27.33 1.77

FractalNet with dropout/drop-path [47] 21 38.6M 7.33 4.60 28.20 23.73 1.87

HB-Net [26] 110 1.7M 8.66 5.04 36.4 23.93 –

ReduNet [26] 18 11.5M – 7.00 – – –

Newton-CGNet (ours)

56 1.7M 7.06 5.35 28.23 24.55 1.65

82 2.62M 6.80 4.90 27.06 23.87 1.57

110 3.45M – 4.66 – 23.44 –

a) The best results are highlighted in bold.

ble with all the listed variants of ResNet, including Wide ResNet [40], ResNet with stochastic depth [39]
or pre-activation [42]. We furthermore increase the number of CG Blocks and obtain a CNN architecture
over 100-layer deep. Concretely, we take L-{N1, N2, N3} as 110-{18, 18, 18} and get Newton-CGNet-
110. The behaviors of Newton-CGNet-110 are shown in Figure 3(b), indicating that this model can be
optimized without difficulty.

On the dataset without data augmentation, our models perform even better. To be specific, Newton-
CGNet-82 results in 6.80% on C10, 27.06% on C100, and 1.57% on SVHN, significantly surpassing its
counterpart ResNet-164 by 4.88% on C10, 11.59% on C100, and 0.18% on SVHN, with comparable
numbers of parameters, respectively. In addition, our models outperform all the listed variants of ResNet
significantly.

Newton-CGNets vs. MobileNets. Inherently, the MobileNet [35] can be naturally categorized
into PlainNets, where the linear transformation is implemented using much more efficient depth-wise
separable convolutions. Considering that the reported MobileNet architecture uses 5 downsampling
layers (convolutions of stride 2) to process the input size of 224× 224, whereas the images in CIFAR and
SVHN are only of size 32 × 32, directly employing that setting will result in very low resolution (1 × 1)
after the last convolution. So we remove the first three dowmsampling and preserve the last two, in
consistent with the setting of Newton-CGNets for fair comparison. As shown in Table 4, Newton-CGNet-
82 perform better than MobileNet on all tasks using fewer parameters (2.62M vs. 3.26M), even though
we only employ conventional convolutions, which shows great superiority of our architecture.

Newton-CGNets vs. FractalNets. FractalNet [47] employs fractal architecture instead of residual
connections to build DNNs, and achieve much more competitive results. Compared with it, Newton-
CGNets perform comparably when using data augmentation (4.66% vs. 4.60% on C10+ and 23.44%
vs. 23.73% on C100+), and better without data augmentation (6.80% vs. 7.33% on C10, 27.06% vs.
28.20% on C100, and 1.57% vs. 1.87% on SVHN), using less than 10% parameters, which indicates great
parameter efficiency of our method.

Newton-CGNets vs. other optimization-inspired networks. Our method significantly out-
performs ReduNet (4.66 vs. 7.00 on C10+), which is designed by solving a rate reduction objective.
Also, ReduNet needs to use a large batch size (about 1000), so it has a much higher computational cost.
Compared with HB-Nets, our models achieve comparable results on C10+ and C100+, and perform
much better on C10 and C100. Noting that HB-Nets are essentially inspired by a first-order optimization
method, while ours are by a second-order method, the better performance also indicates that a faster
optimization method would help design a better network architecture.

4.1.5 Training details and results for ImageNet

Also, we get the Newton-CGNet architecture for ImageNet by modifying ResNet. Particularly, the
ResNets with 50, 101, and 152 layers are stacked by multiple “bottleneck” building blocks, different from
the non-bottleneck residual blocks derived in our paper (see Figure 1(b)). As for ResNet-18, each group
of convolution kernels only contains 2 residual blocks. As discussed in Subsection 4.1.3, Newton-CGNets
with a few CG Blocks do not perform well. Thus it dose not make sense to modify ResNet-18 to the
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Table 5 The top-1 and top-5 single-crop error rates (%) on the validation set of ImageNet dataset (median of 5 runs)

Method Depth Params Top-1 error (%) Top-5 error (%)

Wide ResNet 18 25.9M 27.06 9.00

ResNet 34 21.8M 26.73 8.65

Newton-CGNet 34 21.7M 25.98 8.23

Table 6 Large-scale text categorization datasets used in our experiments

Dataset Train Test Classes Average words Categorization task

AG news 120k 7.6k 4 45 English news categorization

Sogou news 450k 60k 5 578 Chinese news categorization

DBPedia 560k 70k 14 55 Ontology classification

Yelp review polarity 560k 38k 2 153 Sentiment analysis

Yelp review full 650k 50k 5 155 Sentiment analysis

Yahoo! answers 1400k 60k 10 112 Topic classification

Amazon review full 3000k 650k 5 93 Sentiment analysis

Amazon review polarity 3600k 400k 2 91 Sentiment analysis

Newton-CGNet. Consequently, we choose ResNet-34 as our basic model.
For ResNet-34, the numbers of the residual blocks with different output sizes are 3, 4, 6, and 3, re-

spectively. In order not to get too shallow Newton-CG blocks, we only modify the third group of
convolution kernels to a Newton-CG block, with the other parts unchanged. In addition, in order
to utilize enough CG blocks without introducing more parameters, we specifically reduce the param-
eters in each CG block. Concretely, the residual blocks

[

3 × 3, 256
3 × 3, 256

]

× 6 are modified to the CG blocks
[

3× 3, 64; 3× 3, 64; 3 × 3, 256
3 × 3, 128

]

× 6, composing a Newton-CG block. Correspondingly, the method of com-
puting gt is modified to

gt = yt + [g
(1)
t , g

(2)
t , g

(3)
t ], (18)

where [g
(1)
t , g

(2)
t , g

(3)
t ] refers to the concatenation of the feature-maps produced in three branches. It is

not contradictory to the derivation in lines 3–6 of Algorithm 2, because this equals to the case that some

channels of W
(1)
t ,W

(2)
t , and W

(4)
t are fixed to be zeros.

We initialize the learning rate as 0.1, with the batch size of 256. We set the dropout rate as 0.2. For
using dropout, we train our model for 100 epochs and drop the learning rate by 0.1 at epoch 30, 60, and
90. The other training details are the same as that for CIFAR and SVHN. We report the median of 5
runs, and the results are shown in Table 5. The top-1 and top-5 single-crop error rates resulted from
Newton-CGNet-34 are 25.98% and 8.23%. With comparable numbers of parameters and the same depth,
Newton-CGNet-34 surpasses ResNet-34 by 0.75% and 0.42% for top-1 and top-5 single-crop error rates,
respectively. This indicates that our proposed models can also be applied on large datasets. In future
work, we will study how to modify the bottleneck structure to our Newton-CG block.

4.2 Text categorization

As for text processing, we evaluate our Newton-CGNet on 8 freely available large-scale datasets intro-
duced by [8] which cover several text categorization tasks, including English/Chinese news categoriza-
tion, ontology classification, sentiment analysis and topic classification. The number of training examples
varies from 120k to 3.6M, and the number of classes is comprised between 2 and 14. The more detailed
description is listed in Table 6.

VDCNN [9] is a representative model that utilizes deep CNNs (over 6 layers) for text processing. All
processing is done at the character level which is the atomic representation of a sentence, same as pixels
for images. Particularly, two versions of VDCNN (with and without short connections) can be naturally
categorized into ResNets and PlainNets, where the linear transformation is implemented using temporal
convolutions with kernel size 3. Because PlainNets and ResNets are exactly involved in our theoretical
framework, we set VDCNN as the baseline.

For fair comparison with VDCNN, we also process texts at the character level, and design the archi-
tecture of Newton-CGNet based on VDCNN. To be specific, our model begins with a look-up table that
generates a 2D tensor of size (f0, s) that contain the embeddings of the s characters, where s is fixed to
1024. We first apply one layer of 64 convolutions of size 3, followed by a stack of temporal Newton-CG
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Table 7 Test error rates (%) on the 8 datasets (median of 5 runs)a)

Method Depth Params AG Sogou DBP. Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

VDCNN (without shortcut) [9]
20 9.1M 8.88 3.54 1.4 4.5 36.07 27.51 37.39 4.41

32 9.5M 8.73 3.36 1.29 4.28 35.74 26.57 37.00 4.31

VDCNN (with shortcut) [9]
20 9.1M 8.47 4.09 1.27 4.62 37.07 27.65 38.11 4.38

32 9.5M 8.26 3.96 1.26 4.43 36.57 27.36 37.86 4.22

Newton-CGNet (ours) 12 8.2M 7.87 3.31 0.98 4.11 35.41 26.28 36.94 3.92

a) The best results are highlighted in bold. All the models use max pooling for downsampling between convolutional layers.

blocks for the feature maps of different resolutions. The networks contain 3 max pooling operations
(halving the temporal resolution each time by 2), resulting in 3 levels of 128, 256 and 512 feature maps.
The output of the final Newton-CG block is downsampled using k-max pooling, and then the resulting
features are feed into a three layer fully connected (FC) classifier with softmax outputs. The number
of hidden units is set to 2048, and k to 8 in all experiments. We use temporal batch normalization to
regularize our network.

We train our models using SGD and a Nesterov momentum of 0.9 without dampening for 100 epochs,
with a batch size of 128, and a weight decay of 5 × 10−5. The initial learning rate is set to 0.1 and is
divided by 10 at 50% and 75% of the total number of training epochs. The dropout rate is set to 0.1.

In experiments, we observe that only setting one CG Block for each resolution of feature maps is
enough to result in very competitive results, showing great superiority of our method. Specifically, as
shown in Table 7, Newton-CGNets outperform two versions of VDCNN on all the listed categorization
tasks yet use fewer parameters (8.2M vs. 9.1M+). That a 12-layer deep model (9 convolutional layers +
3 FC layers) is enough is because that it has been very deep for the text categorization task.

5 Conclusion

In this work, we have proposed a unified framework for understanding and designing CNNs with the family
of Newton’s methods, which is referred to as Newton design. The core of our theory is using better
methods to solve a given optimization problem, and then design CNNs with the iterative algorithms.
Extensive experiments on image classification and text categorization have shown the superiority of our
method. In addition, our theory generates dropout layers naturally, enriching the diversity of inspired
CNNs.

In our work, we only design the Newton-CGNet with the Newton-CG method. Actually, there are
many kinds of Newton’s methods in optimization theory. For example, we can use a rank one correction
formula, DFP or BFGS algorithm to approximate the inverse Hessian, and adopt damped Newton’s
method instead of Newton’s method. In future work, we plan to explore more CNN structures with
Newton design.

Actually, this optimization theory based design methodology can be naturally extended to other appli-
cations with various objectives, as it is easy to derive their iterative algorithms. However, the difficulty
is in that most derived iterations do not resemble network layers quite well like the iterations of CS
problems, thus it is difficult to unfold them to neural networks. This is the main limitation of optimiza-
tion theory based design and accounts for why most related works are focused on CS problems. We will
explore more possibilities in the future.
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