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a b s t r a c t 

Gaussian Process Functional Regression (GPFR) is a powerful tool in functional data analysis. In practical 

applications, functional data may be generated from different signal sources, and a single GPFR is not 

flexible enough to accurately model the data. To tackle the heterogeneity problem, a finite mixture of 

Gaussian Process Functional Regressions (mix-GPFR) was suggested. However, the number of components 

in mix-GPFR needs to be specified a priori, which is difficult to determine in practice. In this paper, we 

propose a Dirichlet Process Mixture of Gaussian Process Functional Regressions (DPM-GPFR), in which 

there are potentially infinite many GPFR components dominated by a Dirichlet process. Thus, DPM-GPFR 

is far more flexible than a single GPFR, and sidestep the model selection problem in mix-GPFR. We fur- 

ther develop a fully Bayesian treatment for learning DPM-GPFR based on the Variational Expectation- 

Maximization (VEM) algorithm. Experimental results on both synthetic datasets and real-world datasets 

demonstrate the effectiveness of our proposed method. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Gaussian process (GP) [1] is the dominant non-parametric 

ayesian model to learn and infer over temporal data or uncer- 

ain functions, which has been widely used in many fields such as 

achine learning, pattern recognition, and data mining. It consists 

f two basic elements, mean function and covariance function. One 

ttractive property of Gaussian processes is that there are a variety 

f covariance functions for us to choose from, which enable us to 

odel the function with different smoothness and structures. On 

he other hand, the mean function is often assumed to be a linear 

unction of input variables, or even zero for convenience. 

Usually, Gaussian processes are applied to regression and clas- 

ification tasks [2,3] , but they can also be applied to functional 

ata (or batch data) problems [4–6] such as curve prediction, curve 

lustering, etc. . To see the difference between curve prediction 

nd ordinary prediction, we consider the electricity load prediction 

roblem, which is an intuitive and important example throughout 

his paper. Suppose that we have an electricity load dataset, which 

onsists of 100 curves corresponding to 100 days, respectively, and 

ach curve contains 96 ( 24 × 4 ) samples recorded every quarter- 

our during one day. Suppose that we have recorded 48 electricity 

oads of today from 0 0:0 0 to 11:15, and we wish to predict the
∗ Corresponding author. 

E-mail address: jwma@math.pku.edu.cn (J. Ma) . 
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uture trend of today’s electricity load until 23:59. In ordinary pre- 

iction, we only use these 48 samples to predict. However, it is 

easonable to assume that electricity loads of different days have a 

trong correlation and exhibit certain trends, thus the 100 curves 

f historical electricity load records may also be helpful to predict 

oday’s future electricity loads. Therefore, a better choice is to use 

he information from other curves to improve the prediction per- 

ormance, which corresponds to curve prediction. Besides predic- 

ion, we hope to cluster the electricity load curves into groups to 

iscover certain patterns, and this is referred to as the curve clus- 

ering problem. Although we can perform classical clustering al- 

orithms such as k -means and hierarchical clustering to the 96- 

imensional vectors, the time-dependent properties may be de- 

troyed since most clustering algorithms assume the features are 

xchangeable. Furthermore, if there are missing values in these 

urves or the loads are recorded at different times each day, the 

lassical clustering methods are invalid in this circumstance. 

One seminal work of applying Gaussian processes to batch data 

s Gaussian Process Functional Regression (GPFR) [4] . In GPFR, the 

ean function is represented by a linear function of exogenous 

ovariates, and the covariance structure is modeled by a Gaus- 

ian process. When there are no exogenous covariates and the in- 

uts have temporal relationships, GPFR is equivalent to model the 

urves with a single Gaussian process whose mean function is es- 

imated by a linear combination of spline basis functions [7–9] . 

ompared with the Gaussian process model, GPFR enables us to 

earn the non-parametric global trend. Compared with other func- 

https://doi.org/10.1016/j.patcog.2022.109129
http://www.ScienceDirect.com
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ional regression methods [10,11] , GPFR has a more flexible covari- 

nce structure. However, GPFR fails to model heterogeneous/multi- 

odal data accurately [5] . In real applications, the curves may be 

enerated from different signal sources, thus a single GPFR is not 

exible enough to model all the curves, especially when there are 

 variety of evolving trends. Back to the electricity load prediction 

xample, the curves corresponding to winter and summer are very 

ikely to have significantly different trends and shapes. Just as in 

rdinary prediction and clustering tasks, the mixture model is a 

owerful technique to deal with heterogeneity and multi-modality 

12] . Shi and Wang [5] proposed a mixture of Gaussian Process 

unctional Regressions (mix-GPFR). Moreover, Wu and Ma [9] fur- 

her extended it to a Two-layer Mixture of Gaussian Process Func- 

ional Regressions (TMGPFR) for modeling general stochastic pro- 

esses from different sources. 

However, mix-GPFR requires the user to specify the number of 

omponents in advance, which is difficult to determine in practi- 

al applications. An underestimated number of components may 

esult in under-fitting, while an overestimated number of com- 

onents leads to over-fitting, and the performances are usually 

rustrating in both circumstances. One can run the algorithms 

ith different numbers of components and use cross-validation to 

hoose the best one, but this procedure is time-consuming, and 

he obtained result is generally unstable. From the non-parametric 

ayesian perspective, it is possible to infer the necessary number 

f components automatically if the prior distribution over mixing 

roportions is suitable. One of the most prominent distributions 

n Bayesian mixture modeling is the Dirichlet process [13] . The 

irichlet process mixture model can be regarded as an extension 

f the finite mixture model, which allows potentially infinite many 

omponents [14,15] to model the data, and the number of compo- 

ents we need to interpret the observational data is determined 

utomatically. In this work, we propose a mixture model of Gaus- 

ian process functional regressions based on the Dirichlet process, 

nd we refer to this model as DPM-GPFR. We further design an 

ffective learning algorithm for the model based on variational in- 

erence [16] and the EM algorithm [17] . 

The rest of this paper is organized as follows. We introduce no- 

ations and background in Section 2 , including GP, GPFR, Dirich- 

et process, and Variational EM algorithm. We propose the model 

nd derive the variational EM algorithm in Section 3 . To validate 

he effectiveness of DPM-GPFR, we compare it with other compet- 

ng methods on both synthetic datasets and real-world datasets in 

ection 4 . Finally, we draw a brief conclusion and point out several 

ossible directions for future research in Section 5 . 

. Preliminaries 

.1. Gaussian process 

In Gaussian process regression, one assumes a priori that 

he underlying function is generated by a Gaussian process. 

quivalently, this assumption indicates any finite-dimensional dis- 

ribution of samples is Gaussian. Formally, suppose that we 

ave a dataset D = { (x i , y i ) } N i =1 
and let x = [ x 1 , x 2 , . . . , x N ] T

 , y =
 y 1 , y 2 , . . . , y N ] T

 , then we assume y | x ∼ N ( μ, C ) where μ =
 μ(x 1 ) , μ(x 2 ) , . . . , μ(x N )] T and C i j = c(x i , x j ; θ) with covariance

unction c(·, ·; θ) . From the function perspective [1] , we assume 

hat the function relating x i and y i is y (x ) , i.e. , y (x i ) = y i , and it

s a sample path of a Gaussian process, 

 (x ) ∼ GP (μ(x ) , c(x, x ′ ; θ)) . 

ere, we use the squared exponential covariance function which 

as been widely used [9,18] , which is defined as 

(x i , x j | θ) = θ2 
1 exp 

(
−θ2 

2 

(x i − x j ) 
2 

2 

)
+ θ2 

3 δi j , 
2 
here δi j is the Kronecker delta function and θ = [ θ1 , θ2 , θ3 ] . The

ean function is often assumed to be zero or a linear function de- 

endent on x . 

As for prediction, given a new input x ∗ and we want to pre- 

ict the corresponding output y ∗, from the definition of Gaussian 

rocess we immediately know that y ∗|D, x ∗ also obeys a Gaussian 

istribution [1] and 

E [ y ∗|D, x ∗] = μ(x ∗) + c (x ∗, x ) C 

−1 (y − μ) , 

ar (y ∗|D, x ∗) = c(x ∗, x ∗) − c (x ∗, x ) C 

−1 c (x , x ∗) . (1) 

Gaussian process model can also be applied to analyze func- 

ional data. Suppose that we have functional dataset D = {D i } N i =1 
, 

hich consists of N sub-datasets D i = { (x i j , y i j ) } N i j=1 
, and each D i 

an be regarded as a curve, or a finite collection of (input,output) 

airs of certain function. Let the function underlying the i -th curve 

e y i (x ) , i.e. , y i (x i j ) = y i j , then Gaussian process for this functional

ataset assumes 

 i (x ) ∼ GP (μ(x ) , c(x, x ′ ; θ)) , i = 1 , 2 , . . . , N. 

hat is to say, we assume these curves are generated by a common 

aussian process. 

.2. Gaussian process functional regression 

Shi et al. [4] suggested to use a linear combination of B-spline 

asis functions to estimate the mean function. The correspond- 

ng model is called Gaussian Process Functional Regression (GPFR), 

hich assumes 

 (x ) = μ(x ) + τ (x ) , τ (x ) ∼ GP (0 , c(x, x ′ ; θ)) , 

here μ(x ) is the mean function estimated with B-spline func- 

ions. Theoretically, the models developed in this paper and other 

elated literatures such as [5–7,9] do not rely on a set of specific 

-spline basis functions and can be extended to a set of other 

asis functions straightforwardly, and we choose to use the B- 

pline basis functions here because it is effective for modeling non- 

inear function and can be easily extended to high-dimensional 

ases. Suppose that we have D B-spline basis functions { φd (x ) } D 
d=1 

.

et μ(x ) = 

∑ D 
d=1 b d φd (x ) and � be an N × D matrix with �id =

d (x i ) , b = [ b 1 , b 2 , . . . , b D ] T
 , GPFR can be equivalently written as

 | x ∼ N ( �b , C ) . From the function perspective, this model can be

enoted as 

 (x ) ∼ GPFR (x ; b , θ) . 

The prediction strategy is similar to the Gaussian process 

odel. One distinguishing feature of GPFR is that it can deal with 

unctional data more effectively by capturing their common trend. 

hen applying the GPFR model to a common static regression 

roblem or a conventional time-series regression problem, there is 

nly one sample curve, thus introducing a spline function may lead 

o over-fitting or identification problems. On batch datasets, mul- 

iple realizations of the underlying stochastic process exhibit the 

ommon trend, which can be modeled by the spline function. By 

pplying the GPFR model to batch data, we assume 

 i (x ) ∼ GPFR (x ; b , θ) , i = 1 , 2 , . . . , N, 

urthermore, Shi and Wang [5] extended GPFR to the mixture 

odel of GPFR (mix-GPFR). In mix-GPFR, each curve D i is assumed 

o be generated from one of K GPFRs, given the latent indicator 

ariable z i , 

 i (x ) | z i = k ∼ GPFR (x ; b k , θk ) , i = 1 , 2 , . . . , N . 

mploying neural networks to express GP mean function also en- 

ances the flexibility of GPs. However, compared with spline func- 

ions, neural networks are far more difficult and time-consuming 
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Fig. 1. Graphical models of finite mixture model, infinite mixture model, and DPM-GPFR. 
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o train. On the other hand, the spline function naturally encodes 

rior information about the smoothness of functions, which attains 

 good balance between complexity and flexibility. 

.3. Dirichlet process based mixture model 

Suppose that we have N data-points { y i } N i =1 
, and consider a fi- 

ite mixture model with K components (see Fig. 1 (a)) as follows: 

k ∼ G 0 , k = 1 , 2 , . . . , K 

 i | π ∼ Categorical ( π) , i = 1 , 2 , . . . , N 

 i | z i , θ1 , . . . , θK ∼ F (·| θz i ) , i = 1 , 2 , . . . , N. 

ere, G 0 is the prior distribution for θ, F (·| θ) is the distribu-

ion generating data parametrized by θ, and π denotes the dis- 

ribution of mixing proportions. Since there are K components, 

is a K-vector satisfying 
∑ K 

k =1 πk = 1 , πk ≥ 0 . It is unnecessary 

o constrain K to be finite as long as the mixing proportions π
re well-defined. In the stick-breaking construction, given the scal- 

ng parameter α0 , we draw an infinite collection of random vari- 

bles, v k ∼ Beta (1 , α0 ) and define πk (v ) = v k 
∏ k −1 

l=1 
(1 − v l ) , then it

s easy to verify 
∑ K 

k =1 πk (v ) = 1 − ∏ K 
l=1 (1 − v l ) by induction. Tak- 

ng K → ∞ we know 

∑ ∞ 

k =1 πk (v ) = 1 since 
∏ K 

l=1 (1 − v l ) is a pro-

uction of K variables in (0,1). Thus, we may consider the infinite 

ixture model as follows: 

 k | α0 ∼ Beta (1 , α0 ) , k = 1 , 2 , . . . , ∞ (2) 

k ∼ G 0 , k = 1 , 2 , . . . , ∞ (3) 

 i | π ∼ Categorical ( π(v )) , i = 1 , 2 , . . . , N (4) 

 i | z i , θ1 , . . . , θ∞ 

∼ F (·| θz i ) , i = 1 , 2 , . . . , N. (5) 

he corresponding graphical model is shown in Fig. 1 (b). The in- 

nite mixture model is very similar to the finite mixture model, 

xcept that there are countably infinite { θk } ∞ 

k =1 
and the mixing 

roportions π are defined with the help of Beta random variables 

 v k } ∞ 

k =1 
. 

.4. Variational EM algorithm 

Suppose that y is the observed data, z is the latent variable and 

is the hyper-parameter. The goal of parameter learning is to find 

ut the maximum likelihood estimate of � and obtain the poste- 

ior distribution of z . However, the calculation of marginal likeli- 

ood p(y ;�) is usually intractable. Using the fact that p(y ;�) = 
3 
p(y , z ;�) /p(z | y ;�) , we can decompose the marginal likelihood

ith respect to arbitrary distribution q (z ) as 

og p(y ;�) = 

∫ 
q (z ) log 

p(y , z ;�) 

q ( z ) 
d z −

∫ 
q (z ) log 

p(z | y ;�) 

q (z ) 
d z 

= L (q (z ) ;�) + KL ( q (z ) || p(z | y ;�) ) . 

The first term L (q (z ) ;�) is called evidence lower 

ound (ELBO), which is a lower bound of log p(y ;�) since 

L ( q (z ) || p(z | y ;�) ) ≥ 0 . Following the idea of Minorization- 

aximization, we can maximize L (q (z ) ;�) instead of maximizing 

og p(y ;�) . To achieve this, we maximize L (q (z ) ;�) with re-

pect to q (z ) and � alternately. When � is fixed, because 

og p(y ;�) is a constant, maximizing L (q (z ) ;�) boils down 

o minimizing KL ( q (z ) || p(z | y ;�) ) . We usually make structural 

ssumptions on q (z ) to simplify the problem. The most popular 

ssumption is the mean-field family, which partitions z to groups 

 z 1 , z 2 , . . . , z M 

} and restricts q (z ) factorizes with respect to groups,

 (z ) = 

∏ M 

j=1 q j (z j ) . Let z − j = z − { z j } , q − j (z − j ) = q (z ) /q j (z j ) and

 j = E q j (z j ) 
, E − j = E q − j (z − j ) 

then given q − j (z − j ) , the maximum of

LBO is attained at 

 j (z j ) ∝ exp 

(
E − j 

[
log p(y , z j , z − j ) 

])
. (6) 

e iteratively update q j (z j ) until convergence. Then we fix q (z ) ,

ntegrate out q (z) in L (q (z ) ;�) to obtain the Q-function and max-

mize it with respect to �. Compared with the original EM al- 

orithm, the only difference is that we approximate the posterior 

istribution of latent variables via variational inference [19] rather 

han use the ground-truth posterior. 

. Infinite mixture of Gaussian process functional regressions 

.1. Model design 

Suppose that we have batch data D = {D i } N i =1 
, 

 i = { (x im 

, y im 

) } N i 
m =1 

, and let x i = [ x i 1 , x i 2 , . . . , x iN i ] T
 , y i =

 y i 1 , y i 2 , . . . , y iN i ] T
 . We suppose the function underlying i th curve

s y i (x ) , i.e. , y i (x im 

) = y im 

, ∀ m = 1 , . . . , N i . We utilize an infinite

ixture of GPFRs to model the batch data. The corresponding 

robabilistic graphical model is shown in Fig. 1 (c), and we refer 

his model as DPM-GPFR (Dirichlet Process Mixture of Gaussian 

rocess Functional Regression). In this model, { v k } ∞ 

k =1 
are stick- 

reaking variables and v k ∼ Beta (1 , α0 ) where α0 is the scaling 

arameter. Latent variable z i is the indicator variable indicating 

hich component the i -th curve belongs to. In stick-breaking 

epresentation of Dirichlet process, the prior of z i is a categorical 

istribution with 

p(z i | v ) = v z i 
z i −1 ∏ 

k =1 

(1 − v k ) = 

∞ ∏ 

k =1 

v I (z i = k ) 
k 

(1 − v k ) I (z i >k ) . 

iven indicator z i , the i th curve is assumed to be generated from 

he z i -th component, which is a GPFR model with parameters b c 
i 
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n

T

α

t

nd θz i : 

 i (x ) |{ b k } ∞ 

k =1 , { θk } ∞ 

k =1 , z i ∼ GPFR (x i ; b z i , θz i ) . 

e further impose a multi-variate Gaussian prior on the B-spline 

oefficients b k , i.e. , b k ∼ N (m b , �b ) where m b and �b are regarded

s parameters. Learning b k is similar to learning the coefficients 

n the least square regression problem. Since we expand x to a D 

imensional vector [ φ1 (x ) , . . . , φD (x )] T , the model tends to overfit

s D becomes larger. From the frequentist perspective, a common 

ay to prevent overfitting is to penalize the coefficients b k via � 2 
r � 1 norms. From the Bayesian perspective, penalizing ‖ b k ‖ 2 is 

quivalent to place a Gaussian prior N (0 , σ 2 I D ) over b k , and pe-

alizing ‖ b k ‖ 1 is equivalent to place a Laplacian prior over b k . In

his paper, the prior N (m b , �b ) over b k can be regarded as a gen-

ralized version of � 2 norm regularization. Besides, the parameters 

he prior m b , �b are also learned during the learning process in an 

mpirical Bayes way [20] . The main reason we use a Gaussian prior 

n B-spline coefficients is that this is the conjugate prior, which 

eans the posterior of b k is also Gaussian and we can update the 

arameters of posterior distribution effectively. In addition, � 2 reg- 

larization is so common in machine learning that we believe this 

s a proper choice for the model. Theoretically, we can place ar- 

itrary prior distribution over b k (corresponding to different reg- 

larization terms from the frequentist perspective), however, the 

ther choices do not have the conjugate property, and the infer- 

nce over b k would be much more challenging. In Gaussian pro- 

esses, parameters of covariance functions are usually viewed as 

yper-parameters rather than latent variables and they are esti- 

ated by Type-II maximum likelihood estimation [1,6] . Thus, we 

ssume there are infinite many θk = [ θk, 1 , θk, 2 , θk, 3 ] T
 and update 

hem in M-step of variational EM algorithm. 

The mixture of hierarchical Gaussian processes (MOHGP) 

21] also places a Dirichlet process prior over a mixture of Gaus- 

ian processes. In MOHGP, the mean function of a Gaussian pro- 

ess component is again a Gaussian process. This model was devel- 

ped to cluster structured time series. Since GPs usually perform 

oorly on extrapolation, MOHGP is not suitable for prediction. In 

PM-GPFR, the mean functions are B-spline functions, thus it can 

orecast future trends given a new curve. There are two main dif- 

erences between mix-GPFR and DPM-GPFR. First, the priors over 

ixture proportions are different. Second, mix-GPFR treats b k as 

arameters, while in DPM-GPFR we view b k as latent variables as 

n Fig. 1 c. When D is large, there are too many parameters in mix-

PFR and it tends to over-fit. On the other hand, DPM-GPFR alle- 

iates this problem by placing a prior over b k . Recently, deep GPs 

22] have been an active topic in the Gaussian process community. 

ompared with DPM-GPFR, deep GPs model multi-modality in the 

nput space , while the proposed method models multi-modality in 

he output space . 

.2. Posterior inference and parameter learning 

We employ the variational EM algorithm for learning. In the 

-step, we need to calculate the approximate posterior of latent 

ariables � = { z i } N i =1 
∪ { v k } ∞ 

k =1 
∪ { b k } ∞ 

k =1 
using variational inference.

he complete log-likelihood is 

og p(Y , �| X ;�) = 

∞ ∑ 

k =1 

log p(v k ;α0 ) + 

N ∑ 

i =1 

log p(z i | v ) 

+ 

∞ ∑ 

k =1 

log p(b k ; m b , �b ) 

+ 

N ∑ 

i =1 

log p(y i | x i , z i , { b k } ∞ 

k =1 ; { θk } ∞ 

k =1 ) . (7) 
4

he first three terms are relatively easy: 

log p(v k ;α0 ) = (α0 − 1) log (1 − v k ) + const , 

log p(z i | v ) = 

∞ ∑ 

k =1 

[ I (z i > k ) log (1 − v k ) + I (z i = k ) log v k ] , 

og p(b k ; m b , �b ) = −1 

2 

(b k − m b ) T
 �−1 

b (b k − m b ) − 1 

2 

log | �b | 
+ const . 

s for the last term, let C i,k denotes the covariance matrix of the 

 -th curve using parameters θk and �i denotes the N i × D B-spline 

asis matrix with ( �i ) ld = φd (x il ) , then 

og p(y i | x i , z i , { b k } ∞ 

k =1 ; { θk } ∞ 

k =1 ) 

= 

∞ ∑ 

k =1 

I (z i = k ) 
[

− N i 

2 

log (2 π) − 1 

2 

log | C i,k | 

−1 

2 

(y i − �i b k ) T
 C 

−1 
i,k 

(y i − �i b k ) 
]
. 

he goal is to find out an approximate posterior distribution q ( �) . 

e restrict q ( �) in the mean-field family, and truncate the stick- 

reaking representations at level max _ K , as in [13,23] . Equivalently, 

e fix a level max _ K and let v max _ K = 1 . This implies that mixing

roportions πk are 0 when k > max _ K , and there are at most max _ K 

omponents. With this assumption, the approximate posterior is 

 ( �) = 

max _ K −1 ∏ 

k =1 

q (v k ) 
max _ K ∏ 

k =1 

q (b k ) 
N ∏ 

i =1 

q (z i ) . 

urthermore, due to the property of exponential families 

16,24,25] , we assume q (v k ) is a Beta distribution q (v k ;αk , βk ) ,

 (b k ) is a multivariate normal distribution q (b k ; m k , �k ) and q (z i )

s a categorical distribution q (z i ;ϕ i, 1 , . . . , ϕ i,K ) . With these free

ariational parameters, we apply Eq. (6) to update the variational 

istribution. We first introduce some useful formulas: 

 q (v k ;αk ,βk ) 
[ log v k ] = �(αk ) − �(αk + βk ) , 

 q (v k ;αk ,βk ) 
[ log (1 − v k )] = �(βk ) − �(αk + βk ) , 

 q (b k ;m k , �k ) 
[ b T

 

k 
t ] = m T

 

k 
t , ∀ t ∈ R 

D , 

 q (b k ;m k , �k ) 
[ b T

 

k 
Qb k ] = m T

 

k 
Qm k + tr ( Q �k ) ∀ Q ∈ S 

D 
++ , 

 q (z i ;ϕ i, 1 , ... ,ϕ i, max _ K ) [ I (z i = k )] = ϕ i,k , 

here � is the digamma function, and S 
D ++ denotes the set of D ×

 positive definite matrices. 

For v k , only first two terms in Eq. (7) are involved, and we only

eed to take expectation with respect to { z i } N i =1 
. 

q (v k ;αk , βk ) ∝ exp ( (α0 − 1) log (1 − v k ) 

+ 

N ∑ 

i =1 

E q (z i ;ϕ i, 1 , ... ,ϕ i,K )) [ I (z i > k ) log (1 − v k ) + I (z i = k ) log v k ] 

) 

= 

( 

α0 + 

N ∑ 

i =1 

max _ K ∑ 

l= k +1 

ϕ i, j − 1 

) 

log (1 − v k ) + 

N ∑ 

i =1 

ϕ i,k log v k . 

herefore, we have 

k = 1 + 

N ∑ 

i =1 

ϕ i,k , βk = α0 + 

N ∑ 

i =1 

max _ K ∑ 

l= k +1 

ϕ i, j . 

For b k , only last two terms in Eq. (7) are involved. Besides, the 

hird term is fixed, and we only need to take expectation of the 
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3

ourth term with respect to { z i } N i =1 
. Ignoring the terms not related

o b k , we obtain 

E q (z i ) [ log p(y i | x i , z i , { b k } ∞ 

k =1 ; { θk } ∞ 

k =1 )] 

= 

max _ K ∑ 

k =1 

ϕ i,k 

(
−1 

2 

b T

 

k 
�ᵀ 

i 
C 

−1 
i,k 

�i b k + y T  
i 

C 

−1 
i,k 

�i b k 

)

= −1 

2 

b T

 

k 

(
ϕ i,k �

ᵀ 
i 

C 

−1 
i,k 

�i 

)
b k + 

(
ϕ i,k �

ᵀ 
i 

C 

−1 
i,k 

y i 
)ᵀ 

b k + const . 

umming up all N terms and the prior term, we have 

og q (b k ; m k , �k ) = log p(b k ; m b , �b ) 

+ 

N ∑ 

i =1 

E q (z i ) [ log p(y i | x i , z i , { b k } ∞ 

k =1 ; { θk } ∞ 

k =1 )] + const 

= −1 

2 

b T

 

k 

( 

�−1 
b + 

N ∑ 

i =1 

ϕ i,k �
ᵀ 
i 

C 

−1 
i,k 

�i 

) 

b k 

+ 

( 

�−1 
b m b + 

N ∑ 

i =1 

ϕ i,k �
ᵀ 
i 

C 

−1 
i,k 

y i 

) ᵀ 

b k + const . 

y completing the square, we obtain the update formula for 

 (b k ; m k , �k ) : 

�k = 

( 

�−1 
b + 

N ∑ 

i =1 

ϕ i,k �
ᵀ 
i 

C 

−1 
i,k 

�i 

) −1 

, 

 k = �k 

( 

�−1 
b m b + 

N ∑ 

i =1 

ϕ i,k �
ᵀ 
i 

C 

−1 
i,k 

y i 

) 

. 

For z i , only the second and fourth terms in Eq. (7) are in-

olved. We need to take expectation of log p(z i | v ) with respect 

o 
∏ max _ K 

k =1 
q (v k ;αk , βk ) and log p(y i | x i , z i , { b k } ∞ 

k =1 
; { θk } ∞ 

k =1 
) with re-

pect to 
∏ max _ K 

k =1 
q (b k ; m k , �k ) . 

 

∏ max _ K 
k =1 q (b k ) 

[ log p(y i | x i , z i , { b k } ∞ 

k =1 ; { θk } ∞ 

k =1 )] 

= 

max _ K ∑ 

k =1 

I (z i = k ) 
[

− N i 

2 

log (2 π) − 1 

2 

log | C i,k | 

−1 

2 

y T  
i 

C 

−1 
i,k 

y i + E q (b k ) 
[ −1 

2 

y i �
ᵀ 
i 

C 

−1 
i,k 

�i b k + ( �ᵀ 
i 

C 

−1 
i,k 

y i ) T
 b k ] 

]
= 

max _ K ∑ 

k =1 

I (z i = k ) 
[

− N i 

2 

log (2 π) − 1 

2 

log | C i,k | − 1 

2 

y T  
i 

C 

−1 
i,k 

y i 

−1 

2 

m T

 

k 
�ᵀ 

i 
C 

−1 
i,k 

�i m k −
1 

2 

tr ( �ᵀ 
i 

C 

−1 
i,k 

�i �k ) + ( �ᵀ 
i 

C 

−1 
i,k 

y i ) T
 m k 

]
With a little abuse of notation, we use N (y ;μ, �) to denote

he probability density of N ( μ, �) at y . Taking exponential of the

bove equation, we immediately get 

xp E 

∏ max _ K 
k =1 q (b k ) 

[ log p(y i | x i , z i , { b k } ∞ 

k =1 ; { θk } ∞ 

k =1 )] 

∝ 

max _ K ∏ 

k =1 

(
N (y i ;�i m k , C i,k ) exp 

(
−1 

2 

tr ( �k �i C 

−1 
i,k 

�ᵀ 
i 
) 
))I (z i = k ) 

. 

he other expectation is 

 

∏ max _ K 
k =1 q (v k ) 

[ log p(z i | v )] 

= 

max _ K ∑ 

k =1 

I (z i > k ) E q (v k ) [ log (1 − v k )] + I (z i = k ) E q (v k ) [ log v k ] 

= 

max _ K ∑ 

k =1 

I (z i = k )[ 

k −1 ∑ 

l=1 

E q (v k ) [ log (1 − v k )] + E q (v k ) [ log v k ]] 
a

5 
= 

max _ K ∑ 

k =1 

I (z i = k ) 

[ 

k −1 ∑ 

l=1 

(
�(βl ) − �(αl + βl ) 

)
+ �(αk ) − �(αk + βk ) 

] 

. 

herefore, the update formula of q (z i ;ϕ i, 1 , . . . , ϕ i,K ) is 

 i,k ∝ N (y i ;�i m k , C i,k ) exp (−1 

2 

tr ( �k �i C 

−1 
i,k 

�ᵀ 
i 
)) 

exp 

( 

k −1 ∑ 

l=1 

(
�(βl ) − �(αl + βl ) 

)
+ �(αk ) − �(αk + βk ) 

) 

. 

In the M-step, we optimize the expected log complete like- 

ihood with respect to parameters � = { m b , �b } ∪ { θk } max _ K k =1 
. Note

hat we keep α0 fixed as in [23] . With the derived distribution 

 ( �) in the E-step, the Q-function is 

 ( �) = 

max _ K ∑ 

k =1 

( log N (m k ; m b , �b ) −
1 

2 

tr ( �k �
−1 
b )) 

+ 

N ∑ 

i =1 

max _ K ∑ 

k =1 

ϕ i,k 

(
log N (y i ;�i m k , C i,k ) 

−1 

2 

tr ( �k �i C 

−1 
i,k 

�ᵀ 
i 
) 
)

+ const . 

We have omitted the terms that is independent with �. Only 

rst two terms (except constant term) are related to m b and �b . 

he derivatives of Q with respect to �b and m b are 

∂Q 

∂ �b 

= 

1 

2 

�−1 
b 

( 

�k + 

max _ K ∑ 

k =1 

(m k − m b )(m k − m b ) T
 

) 

�−1 
b 

−max _ K 

2 

�−1 
b , 

∂Q 

∂m b 

= 

max _ K ∑ 

k =1 

�−1 
b (m k − m b ) . 

Setting the derivatives to zero, we obtain 

�b = 

∑ max _ K 
k =1 ( �k + (m k − m b )(m k − m b ) T

 ) 

max _ K 
, 

 b = 

∑ max _ K 
k =1 m k 

max _ K 
. 

here is no closed-form solutions to estimate { θk } max _ K k =1 
, thus we 

se first-order optimization methods (such as conjugate gradient 

ethods or quasi-Newton methods) to optimize Q ( �) with re- 

pect to { θk } max _ K k =1 
. Note that the objective is separable, thus we 

onsider each θk individually. According to [6] , the gradient of 

 ( �) with respect to θk,s where s = 1 , 2 , 3 is 

∂Q ( �) 

∂θk,s 

= 

N ∑ 

i =1 

1 

2 

ϕ i,k tr 

(
C 

−1 
i,k 

S i,k C 

−1 
i,k 

∂C i,k 

∂θk,s 

)
, 

S i,k = (y i − �i m k )(y i − �i m k ) T
 + �ᵀ 

i 
�k �i − C i,k . (8) 

e can optimize Q ( �) according to the gradients derived above. 

n practice, the truncation level max _ K is usually larger than the 

umber of components needed to model the data. Therefore, we 

an abandon the k th component if 
∑ N 

i =1 ϕ i,k is smaller than a 

hreshold, thus the number of remaining components is reduced 

y 1. In this way, the algorithm automatically selects the proper 

umber of components to fit the data. The complete variational 

M algorithm for DPM-GPFR is summarized in Algorithm 1 . 

.3. Complexity analysis of the variational EM algoritm 

The main bottleneck of the computational cost lies in Line 7 

nd Line 18 in Algorithm 1 . These two lines involve calculating the 
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Algorithm 1: The variational EM algorithm for learning DPM-GPFR. 

while not converged do 

// Variational E-step 
Initialize variational parameters { αk , βk , μk , �k , ϕ 1 ,k , . . . , ϕ N,k } max _ K k =1 

; 

while not converged do 

for k = 1 , 2 , . . . , max _ K do 

if k -th component is remained then 

Update αk = 1 + 

∑ N 
i =1 ϕ i,k , βk = α0 + 

∑ N 
i =1 

∑ max _ K 
l= k +1 

ϕ i, j ; 

Update �k = 

(
�−1 

b + 

∑ N 
i =1 ϕ i,k �

ᵀ 
i 

C 

−1 
i,k 

�i 

)−1 
, m k = �k 

(
�−1 

b m b + 

∑ N 
i =1 ϕ i,k �

ᵀ 
i 

C 

−1 
i,k 

y i 
)
; 

for i = 1 , 2 , . . . , N do 

Update ϕ i,k ∝ N (y i ;�i m k , C i,k ) exp (− 1 
2 

tr ( �k �i C 

−1 
i,k 

�ᵀ 
i 
)) 

exp 

(∑ k −1 
l=1 

(
�(βl ) − �(αl + βl ) 

)
+ �(αk ) − �(αk + βk ) 

)
end 

end 

if 
∑ N 

i =1 ϕ i,k < threshold then 

Disgard k -th comonent; 

end 

end 

end 

// M-step 
for k = 1 , 2 , . . . , max _ K do 

if k -th component is remained then 

Update parameters �b = 

∑ max _ K 
k =1 ( �k +(m k −m b )(m k −m b ) T

 ) 
max _ K , m b = 

∑ max _ K 
k =1 

m k 

max _ K ; 

Using gradient ascent algorithm to optimize Q ( �) with respect to θk according to Eq. (8); 

for i = 1 , 2 , . . . , N do 

Update C i,k with new parameters θk ; 

end 

end 

end 

end 

Fig. 2. Time cost of DPM-GPFR with respect to the dataset size N and the number of observations in each curve M. Here, we set D = 20 , max K = 30 , α0 = 1 . There are for 

dataset size N there are N/ 20 components in total. 
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i
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t

e

o

nverse of an N i × N i matrix, which require O(N 

3 
i 
) . Since we need

o iterate for N times, the total computational cost is approximately 

( 
∑ N 

i =1 N 

3 
i 
) . If we further assume that each D i has an equal length

, then the computational cost is O(NM 

3 ) , which grows linearly to 

ataset size N and cubically to M. However, such theoretical anal- 

sis provides limited information on practical running times, be- 

ause the running time is significantly affected by the number of 

uter EM-iterations and the number of inner variational E-step it- 

rations. From Fig. 2 , we observe that the time cost of DPM-GPFR 

rows with both N and M, but the rate of growth is not exactly 

onsistent with the theoretical results. Usually, the rate of growth 
6 
f time cost with respect to N is larger than O(N) . One possible 

xplanation is when there are more curves, the algorithm is more 

ifficult to converge, thus we need more iterations for the algo- 

ithm to terminate. Besides, the rate of growth of time cost with 

espect to M is smaller than O(M 

3 ) , which is due to fast hardware

mplementation of matrix operations. 

In practice, the parameter α0 and max _ K influence the time cost, 

ecause they affect the number of remaining components during 

he learning process. The prior of stick-breaking variables influ- 

nce the distribution of mixing proportions significantly. Some the- 

retical justifications can help us to better understand this ten- 
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ency. Note that the mean of Beta (1 , α0 ) is 1 
1+ α0 

. When α0 is 

mall, we can expect that { v k } ∞ 

k =1 
are closed to 1, thus πk de-

rease to 0 rapidly since πk = v k 
∏ 

l<k (1 − v l ) , and there tends to

e fewer components. However, when α0 is large, we can expect 

hat { v k } ∞ 

k =1 
are close to 0, and the speed of πk decreasing to 0

s rather slow, so there tend to be more components. In summary, 

he time cost is positively correlated to the scaling parameter α0 

rovided that there are possibly infinite components. Taking into 

ccount the role of max _ K , the situation is more complicated. If α0 

s small, the conclusion remains unchanged, and most mixing pro- 

ortions are concentrating on the first few components. If α0 is 

arge, we do not have enough components to wait for πk decreas- 

ng to 0, so mixing proportions tend to concentrate on the last few 

omponents due to v max _ K = 1 . This is similar to the case when α0 

s small. Therefore, in consideration of max _ K , both large and small 

0 lead to a relatively fewer number of components. 

For big functional data, we consider two cases. In the first case, 

he dataset size N is large. Since the computational cost grows 

inearly to N, thus the proposed method is scalable to N. In the 

econd case, the lengths { N i } N i =1 
are large. Since the computational 

ost grows cubically to N i , we should apply sparse approximation 

echniques in the Gaussian process community [26,27] to reduce 

he cost. 

.4. Prediction strategies 

In the curve prediction problem, a test curve can be 

een as the (N + 1) -th curve, with known observations D N+1 = 

 (x N+1 , j , y N+1 , j ) } T j=1 
. We wish to predict the response y ∗ at a new

nput x ∗ in the (N + 1) -curve. Theoretically, after we obtain esti- 

ated parameters ˆ � and approximate posterior q ( �) , we can pre- 

ict y ∗ via 

p(y ∗| x ∗, D, D N+1 ; ˆ �) 

= 

∫ 
p(y ∗| x ∗, D N+1 , z N+1 , �; ˆ �) 

p(z N+1 |D N+1 , �; ˆ �) q ( �)d z N+1 d �. 

owever, this integral is intractable. Instead of using q ( �) , we use

he mode as a point estimation 

ˆ � of �. First, the probability that 

N + 1) -curve belongs to k th component is 

p(z N+1 = k |D N+1 ; ˆ �, ˆ �) ∝ 

ˆ v k 
k −1 ∏ 

l=1 

(1 − ˆ v l ) N (y N+1 ;�N+1 m k , C N+1 ,k )

ondition on z N+1 = k , we can predict ˆ y (k ) using Gaussian process 

rediction Eq. (1) , 

ˆ 
 

(k ) = φᵀ 
∗ m k + c k C 

−1 
N+1 ,k 

(y N+1 − �N+1 m k ) , 

here φ∗ = [ φ1 (x ∗) , . . . , φD (x ∗)] T and c k = 

 c(x N+1 , 1 , x ∗; θk ) , . . . , c(x N+1 ,T , x ∗; θk )] T . The final prediction is

veraged over max _ K components, 

ˆ 
 ∗ = 

max _ K ∑ 

k =1 

p(z N+1 = k |D N+1 ; ˆ �, ˆ �) ̂  y (k ) . 

e refer to the prediction strategy described above as “fused pre- 

iction”, since we integrate predictions from all components. On 

he other hand, if we set 

ˆ 
 ∗ = 

ˆ y (k ) , where k = arg max 
l=1 , ... , max _ K 

p(z N+1 = l|D N+1 ; ˆ �, ˆ �) , 

hen we call this strategy as “MAP prediction”, since only the com- 

onent corresponding to the MAP estimation of z N+1 is utilized. 

e can also ignore the structured noise and only consider the 

pline mean functions, which gives the “spline prediction”, 

ˆ 
 ∗ = 

max _ K ∑ 

k =1 

p(z N+1 = k |D N+1 ; ˆ �, ˆ �) φᵀ 
∗ m k . 
7 
f we further simplify the predictions via using the MAP estimation 

f z N+1 to make spline prediction, i.e. , 

ˆ 
 ∗ = φᵀ 

∗ m k , where k = arg max 
l=1 , ... , max _ K 

p(z N+1 = l|D N+1 ; ˆ �, ˆ �) , 

e call this prediction strategy “MAP spline prediction”. Unless 

therwise specified, we always use the fused prediction strategy 

n the experiments. 

.5. Practical issues 

Unequal data length. Unequal data length is an important issue 

n batch data. Our method is adaptive and applicable to the un- 

qual data length case since GPFR does not require that the data 

re time-aligned. The main reason is that Gaussian processes are 

owerful at interpolation between observations. Note that these 

 N i } N i =1 
may be different in general, and the samples points { x i } N i =1 

ay also be different. In the Line 6 and Line 19 of Algorithm 1 , we

terate each D i separately and do not need to concatenate { x i } N i =1 

r { y i } N i =1 
together. 

Input range. Different input range is also a practical is- 

ue. In practice, different D i may have different range of x i . 

his is important because it affects how to set knots of B- 

pline basis functions. In practice, we set the left end to be 

1 . 1 ∗ min i =1 , ... ,N ( min j=1 , ... ,N i 
x i, j ) and the right end to be 1 . 1 ∗

ax i =1 , ... ,N ( max j=1 , ... ,N i 
x i, j ) such that the considered interval cov- 

rs all { x i } N i =1 
. 

Generalization on new sources. We consider the case that the 

PM-GPFR needs to make predictions on an unseen new source 

atch which has not been used for training. A GPFR source con- 

ists of a mean function and a Gaussian process noise. Temporar- 

ly, we ignore the GP part since the mean function plays a more 

mportant role in prediction. The problem boils down to: how well 

an we approximate an unseen new trend function μ∗(x ) based 

n seen and learned mean functions μ1 (x ) , . . . , μK (x ) ? According 

o the model assumption, we may further write these mean func- 

ions as a linear combination of D B-spline basis functions, i.e. , 

k (x ) = φ(x ) T b k and μ∗(x ) = φ(x ) T b ∗. Using the fused prediction

trategy, the obtained predicting function is a linear combination 

f { μk (x ) } K 
k =1 

. i.e. , ˆ μ(x ) = 

∑ K 
k =1 λk μk (x ) . Let λ = [ λ1 , . . . , λK ] T

 , B =
 b 1 , b 2 , . . . , b K ] , then ˆ μ(x ) can be rewritten as φ(x ) T B λ. For sim-

licity, we assume { b k } K k =1 
are linearly independent. Intuitively, the 

erformance would be satisfying if μ∗(x ) is similar to { μk (x ) } K 
k =1 

.

n this case, ˆ μ(x ) is able to approximate μ∗(x ) well. The key-point 

s to measure the similarity between sources. The � 2 norm be- 

ween μ∗(x ) and ˆ μ(x ) is 

 μ∗(x ) − ˆ μ(x ) ‖ 

2 
2 = 

∫ 
(μ∗(x ) − ˆ μ(x )) 2 d x 

= 

∫ 
( φ(x ) T  b ∗ − φ(x ) T  B λ) 2 d x 

= 

∫ (
b T

 

∗ ( φ(x ) φ(x ) T  ) b ∗ − 2 λᵀ 
B T

 φ(x ) φ(x ) T  b ∗

+ λᵀ 
B T

 φ(x ) φ(x ) T  B λ
)
d x 

= b T

 

∗ Wb ∗ − 2 λᵀ 
B T

 Wb ∗ + λᵀ 
B T

 WB λ, (9) 

here W = 

∫ 
φ(x ) φ(x ) T d x , i.e. , [ W ] i j = 

∫ 
φi (x ) φ j (x )d(x ) . This is a

eighted least square problem, and the optimal value is (b ∗ −
 λ� ) T

 W (b ∗ − B λ� ) , where λ� = (B T

 WB ) −1 B T

 Wb ∗. From this equa-

ion, we can see that the approximation performance is deter- 

ined by the distance from b ∗ to the vector space spanned by 

 b 1 , . . . , b K } , with a weighted inner product 〈 b ∗, b k 〉 = b T

 

∗ Wb k . In

ractice, however, there are other factors that influence the result. 

irst, once D is given, we can only express the mean functions with 

 linear combination of D B-spline basis functions. How well can 

e approximate these mean functions depends on their intrinsic 
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roperties and the choice of D . Second, the GP noise also influ- 

nces the performance, especially when the signal-noise ratio is 

ow. Third, when we use the fuse prediction strategy, the weights 

alculated as in Section 3.4 are not guaranteed to be λ� . There- 

ore, the above analysis provides us some insights on the perfor- 

ance of DP-GPFR and related methods on data generated by a 

ew source, but the practical performance also depends on many 

ther factors. 

Standardization. As for standardizing the batch data, we do not 

tandardize x i . For y i , we choose to standardize them using 

in _ y = min 

i =1 , ... ,N 
( min 

j=1 , ... ,N i 
y i, j ) , max _ y = max 

i =1 , ... ,N 
( max 

j=1 , ... ,N i 
y i, j ) , 

y i j ← 

y i j − min _ y 

max _ y − min _ y 
. 

ther standardization methods can also be used. 

Feature selection. Side-information may help to characterize 

he evolving patterns of the batch data. There may be some other 

ovariates besides x . This direction has been explored by many ex- 

ellent previous works [5,6] . In general, automatic relevance deter- 

ination (ARD) and penalizing regression coefficients are the most 

mportant feature selection techniques in this area, and they can 

e applied in our model straightforwardly. 

.6. Possible variants 

Each component of the DPM-GPFR model consists of two parts, 

he B-spline mean function, and the Gaussian process noise. One 

atural problem is: whether both parts are necessary? To solve this 

roblem, we can consider two simple variants: 

• DPM-GP: eliminating the B-spline mean functions in DPM- 

GPFR, i.e. , each curve is generated by a Gaussian process with 

zero mean function. 
• DPM-FR: eliminating the Gaussian process noises in DPM-GPFR, 

i.e. , each curve is generated by the mean function with inde- 

pendent identically distributed Gaussian noises. 

Besides, the scaling parameter α0 in DPM-GPFR is treated as a 

yper-parameter. Similar to [28] , we can further impose a Gamma 

rior Gamma (η1 , η2 ) on α0 . In the variational E-step, the approxi- 

ate posterior of α0 is also a Gamma distribution Gamma (η1 , η2 −
 K 
k =1 (�(βk ) − �(αk + βk ))) . We refer to this model as DPM- 

PFR α0 
. 

We can also extend the Dirichlet process prior on latent vari- 

bles to the Pitman-Yor process [28] . This can be achieved by sam- 

ling variables v k from Beta (1 − δ, α0 + kδ) in Eq. (2) , where δ
s a parameter. Compared with the Dirichlet process, the Pitman- 

or process prior enjoys the power law property. We refer to this 

odel as PYP-GPFR. 

Variational tempering technique [29] can be utilized in 

he inference process. Given a finite collection of tempera- 

ures 1 = T 1 < T 2 < . . . < T M 

, we can assign a temperature vari-

ble t i to the i th curve D i and deform its likelihood as 

p(y i | x i , z i , { b k } ∞ 

k =1 
; { θk } ∞ 

k =1 
) p(z i | v )) 1 /t i . This is equivalent to re-

eight log-likelihood terms in Eq. (7) by 1 
t i 

. We refer to this model 

s DPM-GPFR-VT. 

. Experiments 

.1. Dataset description and experimental settings 

We conduct experiments on both synthetic datasets and real- 

orld datasets. Since the DPM-GPFR model involves potentially 

nfinite components, it is difficult to generate synthetic datasets 

ased on it. Instead, we use the mix-GPFR model with K com- 

onents to generate these datasets, with each component consist- 

ng of 20 curves for training and 10 curves for testing. We have 
8 
00 observed samples in each curve, randomly positioned in the 

nterval [ −3 , 3] . For a testing curve, the first half of the sam-

les are known and the task is to predict the rest points. We 

et K = 3 , 4 , . . . , 10 to obtain 8 datasets with different number of

omponents, and we refer to them as S 3 , S 4 , . . . , S 10 , respectively.

or each component, the curves are generated by a mean function 

ogether with Gaussian process noises. The mean functions and 

yper-parameters of the Gaussian processes are listed in Table 2 . 

hese mean functions are specially designed to cover various com- 

on properties of functions, such as periodicity, monotonicity, and 

ymmetry, and the parameters of Gaussian processes correspond 

o varying length scales, noise levels, etc. . The dataset with K com- 

onents involves the first K rows of Table 2 . Therefore, it becomes 

arder and harder to cluster the curves and make predictions as 

e increase K. 

We use the electricity load dataset issued by the Northwest 

hina Grid Company and the drosophila development dataset 

21,30] . The electricity dataset records electricity loads in 2009 and 

010 every 15 min. Therefore, daily electricity loads can be re- 

arded as a curve with 96 samples. We split the dataset accord- 

ng to the year, and refer to them as Electricity 2009/2010, respec- 

ively. Each sub-datasets consists of 200 curves for training and 165 

urves for testing. The drosophila dataset records the gene expres- 

ion of six species of Drosophila, measured at two hour intervals 

uring embryonic development. Among the 500 records, 300 are 

sed for training and 200 are used for testing. 

We compare DPM-GPFR with several competing methods, 

hich are summarized as follows: 

• GP: a single Gaussian process with zero mean function to 

model batch data, as stated in Section 2.1 . 
• GPFR: a single Gaussian process with B-spline mean function to 

model curves, as stated in Section 2.2 . 
• mix-GP: an output-mixture of Gaussian processes with zero 

mean functions to model batch data. 
• mix-GPFR: an output-mixture of Gaussian processes with B- 

spline mean functions to model batch data. 
• MOHGP: a Dirichlet process based mixture of Gaussian pro- 

cesses with Gaussian process mean functions [21] . 
• Variants of DPM-GPFR as mentioned in Section 3.6 . 

GPFR, mix-GPFR and DPM-GPFR involve B-spline mean func- 

ions, and we set D = 20 on synthetic datasets and D = 30 on

eal-world datasets. For GP and GPFR, we learn the parameters 

ia Type-II maximum likelihood estimation, which maximizes the 

arginal likelihood via the conjugate gradient method. For mix-GP 

nd mix-GPFR, we learn the parameters via the hard-cut EM algo- 

ithm [31] . We denote the estimated number of components as ˆ K . 

or DPM-GPFR, we have three main hyper-parameters: the scaling 

arameter α0 , the truncation level max _ K , and the number of knots 

 . Unless otherwise specified, we set max _ K = 30 and α0 = 1 . The

ensitivity of these hyper-parameters is analyzed in Section 4.6 . 

.2. Evaluation metrics 

We evaluate the performance from two aspects: curve predic- 

ion and curve clustering. Curve prediction concerns whether we 

an effectively predict the values at unknown inputs in the test- 

ng curves. We use the Rooted Mean Square Error (RMSE) between 

redicted values and ground-truths to measure the prediction per- 

ormance. Besides, testing R-squared ( R 2 ) is also used for evaluat- 

ng the prediction performance. Curve clustering concerns whether 

e can reveal the mixture structure underlying the data. Besides 

he Adjusted Rand Index (ARI) [32] , we also propose several novel 

etrics to further analyze the clustering results. 

efinition 1 (Generalized Classification Accuracy Rate) . Suppose 

hat there are N samples, let c(i ) ∈ { 1 , . . . , K} be the ground-truth
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Table 1 

List of notations and symbols used in Section 3 . 

Notations Descriptions 

D = {D i } N i =1 
, D i = { (x im , y im ) } N i m =1 

D is the batch dataset, and D i is the i-the curve consisting of x i = [ x i 1 , x i 2 , . . . , x iN i ] T
 

and y i = [ y i 1 , y i 2 , . . . , y iN i ] T
 , where N i is the number of observations in the i -th curve. 

v = { v k } ∞ k =1 
Stick-breaking variables, v k ∼ Beta (1 , α0 ) . 

α0 The scaling parameter of the Dirichlet process. 

z i The latent indicator variable associated with D i . 
GPFR (x ; b k , θk ) The k -th Gaussian process functional regression (GPFR) component. Here, b k is the 

coefficient of B-spline basis functions, and θk = [ θk, 1 , θk, 2 , θk, 3 ] T
 are the parameters. 

N (m b , �b ) The prior distribution for { b k } ∞ k =1 
. N denotes multivariate Gaussian distribution, and 

m b , �b are the mean and covariance matrix respectively. 

max _ K The truncation level. 

πk The mixing proportion of the k -th GPFR component. 

X , Y X is the concatenation of { x i } N i =1 
; Y is the concatenation of { y i } N i =1 

�, � � = { z i } N i =1 
∪ { v k } ∞ k =1 

∪ { b k } ∞ k =1 
denotes all latent variables, while 

� = { πk , θk } ∞ k =1 
∪ { m b , �b } denotes all parameters. 

{ φd (x ) } D 
d=1 

, �i { φd (x ) } D 
d=1 

denotes D B-spline basis functions, �i ∈ R N i ×D is the B-spline basis matrix, 

i.e. , the (l, d) -th element of �i is φd (x il ) . 

C i,k C i,k is the covariance matrix of x i calculated by parameters θk , i.e. , the (p, q ) -th 

element of C i,k is c(x ip , x iq ; θk ) . 

αk , βk The variational parameters of v k . We use Beta (αk , βk ) to approximate the posterior 

distribution of v k . 
m k , �k The variational parameters of b k . We use N (m k , �k ) to approximate the posterior 

distribution of b k . 

ϕ i, 1 , . . . , ϕ i,K The variational parameters of z i . We use Categorical (ϕ i, 1 , . . . , ϕ i,K ) to approximate the 

posterior distribution of z i . 

� The digamma function. 

D N+1 = { (x N+1 , j , y N+1 , j ) } T j=1 
, x ∗, y ∗ D N+1 denotes a testing curve, while { (x N+1 , j , y N+1 , j ) } T j=1 

are known samples and the 

aim is to predict the response y ∗ at x ∗
z N+1 , φ∗, c k z N+1 denotes the indicator variable of the testing curve, and 

φ∗ = [ φ1 (x ∗) , . . . , φD (x ∗)] T and c k = [ c(x N+1 , 1 , x ∗; θk ) , . . . , c(x N+1 ,T , x ∗; θk )] T . 

Table 2 

Mean functions and hyper-parameters of Gaussian processes 

of the synthetic datasets. 

Mean function Hyper-parameters of GPs 

θ1 θ2 θ3 

x 2 0.500 2.000 0.150 

(−4(x + 1 . 5) 2 + 9) I (x < 0) 

+(4(x − 1 . 5) 2 − 9) I (x ≥ 0) 
0.528 2.500 0.144 

8 sin (1 . 5 x − 1) 0.556 3.333 0.139 

sin (1 . 5 x ) + 2 x − 5 0.583 5.000 0.133 

−0 . 5 x 2 + sin (4 x ) − 2 x 0.611 10.000 0.128 

−x 2 0.639 10.000 0.122 

(4(x + 1 . 5) 2 − 9) I (x < 0) 

+(−4(x − 1 . 5) 2 + 9) I (x ≥ 0 
0.667 5.000 0.117 

5 cos (3 x + 2) 0.694 3.333 0.111 

cos (1 . 5 x ) − 2 x + 5 0.722 2.500 0.106 

0 . 5 x 2 + cos (4 x ) + 2 x 0.750 2.000 0.100 
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abels and ˆ c (i ) ∈ { 1 , . . . , ˆ K } be the clustering result, then the gener-

lized classification accuracy rate is defined as 

CAR (c, ̂  c ) = max 
f : { 1 , ... , ̂ K }→{ 1 , ... ,K} 

∑ N 
i =1 I ( f ( ̂  c (i )) = c(i )) 

N 

. 

efinition 2 (Earth Mover’s Distance) . Suppose that there are N

amples, let c(i ) ∈ { 1 , . . . , K} be the ground-truth labels and ˆ c (i ) ∈
 1 , . . . , ˆ K } be the clustering result. Let n k,l = |{ i : c(i ) = l and ˆ c (i ) =
 }| and consider the following optimization problem: 

in 

F k,l 

1 

N 

ˆ K ∑ 

k =1 

K ∑ 

l=1 

F k,l D k,l , (10) 

ˆ K 
 

k =1 

F k,l = 

ˆ K ∑ 

k =1 

n k,l , 

K ∑ 

l=1 

F k,l = 

K ∑ 

l=1 

n k,l , F k,l ≥ 0 
t

9

f D k,l = 1 − n k,l / 
∑ K 

l=1 n k,l , the solution of Eq. (10) is defined to be

MD-I (c, ̂  c ) ; If D k,l = 1 − n k,l / 
∑ ˆ K 

k =1 n k,l , the solution of Eq. (10) is

efined to be EMD-II (c, ̂  c ) . 

heorem 1. 

1. GCAR (c, ̂  c ) equals to 1 if and only if ˆ c (i ) � = ˆ c ( j) for any c(i ) � =
c( j) . 

2. EMD-I (c, ̂  c ) equals to 0 if and only if ˆ c (i ) � = ˆ c ( j) for any c(i ) � =
c( j) . 

3. EMD-II (c, ̂  c ) equals to 0 if and only if ˆ c (i ) = ˆ c ( j) for any c(i ) =
c( j) . 

Intuitively, GCAR and EMD-I evaluate how well the algorithm 

istinguishes elements that belong to different com ponents, while 

MD-II evaluates whether similar elements are assigned to the 

ame cluster. GCAR and EMD-I prefer fine structures, while EMD-II 

refers coarse structures. As two extreme examples, ˆ c (i ) = i leads 

o GCAR (c, ̂  c ) = 1 and EMD-I (c, ̂  c ) = 0 , and ˆ c (i ) = 1 leads to EMD-

I (c, ̂  c ) = 0 . 

.3. Prediction performances 

The prediction performances of the proposed and competing 

ethods on synthetic datasets and real-world datasets are shown 

n Table 3 and Table 4 , respectively. All the records are averaged 

ver 10 runs. From these tables, we observe that a single Gaus- 

ian process is not flexible enough to model the data. By in- 

roducing the B-spline mean function, the RMSE reduces signifi- 

antly, especially on real-world datasets. Similar observation also 

olds for mix-GP/mix-GPFR and DPM-GP/DPM-GPFR. This demon- 

trates the necessity of using functional regression. Besides, mix- 

PFR performs much better than a single GPFR, thus it is vital 

o introduce the mixture structure to model the data. On real- 

orld datasets, although occasionally mix-GPFR outperforms DPM- 

PFR marginally, the results of mix-GPFR are very sensitive to the 

hoice ˆ K , which is a major challenge in finite mixture models. The 

ime consumption of mix-GPFR with large ˆ K is relatively high, and 
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Table 3 

Average RMSEs (Rooted Mean Square Errors), R-Squared ( R 2 ) indices and running times (in seconds) with standard deviations of the proposed and competing methods on synthetic datasets S 3 − S 10 . 

Method S 3 S 4 S 5 

RMSE R 2 Time RMSE R 2 Time RMSE R 2 Time 

GP 4 . 6923 ± 0 . 0 0 0 0 −0 . 1378 ± 0 . 0 0 0 0 0 . 59 ± 0 . 15 4 . 5986 ± 0 . 0 0 0 0 −0 . 1905 ± 0 . 0 0 0 0 0 . 57 ± 0 . 02 4 . 5716 ± 0 . 0 0 0 0 −0 . 0951 ± 0 . 0 0 0 0 0 . 79 ± 0 . 02 

mix-GP 4 . 5823 ± 0 . 0067 −0 . 1280 ± 0 . 0028 3 . 06 ± 0 . 33 4 . 2613 ± 0 . 0349 −0 . 1237 ± 0 . 0117 4 . 71 ± 0 . 34 4 . 1541 ± 0 . 0286 −0 . 0153 ± 0 . 0071 6 . 03 ± 0 . 95 

GPFR 4 . 6051 ± 0 . 0 0 0 0 0 . 0782 ± 0 . 0 0 0 0 1 . 01 ± 0 . 05 4 . 5634 ± 0 . 0 0 0 0 −0 . 0739 ± 0 . 0 0 0 0 0 . 84 ± 0 . 05 4 . 4592 ± 0 . 0 0 0 0 −0 . 1975 ± 0 . 0 0 0 0 0 . 97 ± 0 . 07 

mix-GPFR 1 . 1378 ± 0 . 0 0 0 0 0 . 9247 ± 0 . 1008 2 . 07 ± 0 . 05 0 . 7225 ± 0 . 0 0 0 0 0 . 9361 ± 0 . 0928 3 . 08 ± 0 . 06 0 . 9437 ± 0 . 1625 0 . 9044 ± 0 . 0690 5 . 67 ± 3 . 25 

DPM-FR 0 . 5316 ± 0 . 0280 0 . 9837 ± 0 . 0014 56 . 89 ± 6 . 42 0 . 5790 ± 0 . 0123 0 . 9757 ± 0 . 0014 66 . 44 ± 2 . 18 0 . 6160 ± 0 . 0038 0 . 9751 ± 0 . 0016 74 . 14 ± 5 . 06 

DPM-GP 4 . 5814 ± 0 . 0153 −0 . 1174 ± 0 . 0125 75 . 19 ± 48 . 67 4 . 2365 ± 0 . 0257 −0 . 1201 ± 0 . 0267 46 . 22 ± 42 . 14 4 . 1543 ± 0 . 0163 −0 . 0356 ± 0 . 0248 43 . 98 ± 20 . 59 

DPM-GPFR 0 . 4802 ± 0 . 0045 0 . 9870 ± 0 . 0 0 07 67 . 67 ± 5 . 61 0 . 5324 ± 0 . 0027 0 . 9800 ± 0 . 0002 96 . 92 ± 9 . 01 0 . 5832 ± 0 . 0024 0 . 9783 ± 0 . 0 0 01 135 . 34 ± 15 . 92 

DPM-GPFR-VT 0 . 4776 ± 0 . 0 0 06 0 . 9874 ± 0 . 0 0 01 75 . 59 ± 18 . 97 0 . 5322 ± 0 . 0 0 04 0 . 9802 ± 0 . 0 0 03 108 . 55 ± 11 . 15 0 . 5836 ± 0 . 0 0 09 0 . 9783 ± 0 . 0 0 01 165 . 56 ± 14 . 42 

DPM-GPFR α0 
0 . 4772 ± 0 . 0 0 07 0 . 9873 ± 0 . 0 0 03 75 . 95 ± 7 . 99 0 . 5324 ± 0 . 0 0 09 0 . 9800 ± 0 . 0001 89 . 39 ± 29 . 02 0 . 5822 ± 0 . 0018 0 . 9784 ± 0 . 0 0 02 135 . 35 ± 11 . 74 

PYP-GPFR 0 . 4771 ± 0 . 0015 0 . 9872 ± 0 . 0 0 06 69 . 69 ± 7 . 63 0 . 5334 ± 0 . 0024 0 . 9800 ± 0 . 0003 100 . 67 ± 6 . 03 0 . 5826 ± 0 . 0013 0 . 9785 ± 0 . 0 0 04 133 . 93 ± 16 . 01 

Method S 6 S 7 S 8 
RMSE R 2 Time RMSE R 2 Time RMSE R 2 Time 

GP 4 . 4533 ± 0 . 0 0 0 0 −0 . 3096 ± 0 . 0 0 0 0 0 . 89 ± 0 . 03 5 . 3324 ± 0 . 0 0 0 0 −0 . 5298 ± 0 . 0 0 0 0 0 . 85 ± 0 . 05 4 . 8416 ± 0 . 0 0 0 0 −0 . 2657 ± 0 . 0 0 0 0 1 . 18 ± 0 . 05 

mix-GP 4 . 1588 ± 0 . 0108 −0 . 2760 ± 0 . 0043 8 . 59 ± 3 . 03 4 . 9060 ± 0 . 0052 −0 . 3983 ± 0 . 0081 18 . 98 ± 6 . 24 4 . 5017 ± 0 . 0210 −0 . 2132 ± 0 . 0036 31 . 23 ± 13 . 06 

GPFR 4 . 2163 ± 0 . 0 0 0 0 −0 . 3813 ± 0 . 0 0 0 0 1 . 57 ± 0 . 33 5 . 2768 ± 0 . 0 0 0 0 −0 . 5153 ± 0 . 0 0 0 0 1 . 25 ± 0 . 06 4 . 7652 ± 0 . 0 0 0 0 −0 . 2450 ± 0 . 0 0 0 0 1 . 89 ± 0 . 05 

mix-GPFR 0 . 9587 ± 0 . 0715 0 . 8248 ± 0 . 1948 9 . 11 ± 8 . 73 1 . 3309 ± 0 . 3587 0 . 8848 ± 0 . 0957 18 . 07 ± 12 . 94 0 . 8627 ± 0 . 2280 0 . 8326 ± 0 . 1174 14 . 90 ± 7 . 82 

DPM-FR 0 . 6316 ± 0 . 0111 0 . 9646 ± 0 . 0011 77 . 39 ± 2 . 93 0 . 6834 ± 0 . 0056 0 . 9647 ± 0 . 0013 79 . 94 ± 5 . 48 0 . 6723 ± 0 . 0114 0 . 9683 ± 0 . 0015 89 . 24 ± 5 . 21 

DPM-GP 4 . 1657 ± 0 . 0106 −0 . 2796 ± 0 . 0040 69 . 12 ± 30 . 45 4 . 8759 ± 0 . 0132 −0 . 3755 ± 0 . 0101 103 . 18 ± 35 . 41 4 . 4845 ± 0 . 0065 −0 . 2101 ± 0 . 0093 168 . 50 ± 40 . 82 

DPM-GPFR 0 . 6049 ± 0 . 0045 0 . 9679 ± 0 . 0 0 04 216 . 87 ± 54 . 95 0 . 6466 ± 0 . 0028 0 . 9692 ± 0 . 0 0 04 263 . 47 ± 50 . 85 0 . 6450 ± 0 . 0036 0 . 9717 ± 0 . 0 0 04 234 . 73 ± 21 . 14 

DPM-GPFR-VT 0 . 6003 ± 0 . 0019 0 . 9681 ± 0 . 0 0 03 224 . 04 ± 20 . 54 0 . 6420 ± 0 . 0010 0 . 9693 ± 0 . 0 0 03 275 . 83 ± 25 . 93 0 . 6458 ± 0 . 0038 0 . 9714 ± 0 . 0 0 06 310 . 71 ± 26 . 05 

DPM-GPFR α0 
0 . 6032 ± 0 . 0036 0 . 9679 ± 0 . 0 0 04 199 . 23 ± 28 . 22 0 . 6462 ± 0 . 0048 0 . 9691 ± 0 . 0 0 05 235 . 97 ± 30 . 30 0 . 6459 ± 0 . 0046 0 . 9716 ± 0 . 0 0 03 257 . 59 ± 29 . 62 

PYP-GPFR 0 . 6017 ± 0 . 0033 0 . 9675 ± 0 . 0 0 05 190 . 65 ± 16 . 34 0 . 6452 ± 0 . 0031 0 . 9694 ± 0 . 0 0 03 239 . 71 ± 42 . 28 0 . 6462 ± 0 . 0040 0 . 9714 ± 0 . 0 0 05 247 . 75 ± 23 . 84 

Method S 9 S 10 

RMSE R 2 Time RMSE R 2 Time 

GP 4 . 6994 ± 0 . 0 0 0 0 −0 . 3199 ± 0 . 0 0 0 0 1 . 07 ± 0 . 01 4 . 6713 ± 0 . 0 0 0 0 −0 . 1614 ± 0 . 0 0 0 0 1 . 43 ± 0 . 02 

mix-GP 4 . 3722 ± 0 . 0038 −0 . 2392 ± 0 . 0023 33 . 21 ± 13 . 93 4 . 4342 ± 0 . 0048 −0 . 0729 ± 0 . 0026 35 . 52 ± 9 . 80 

GPFR 4 . 6265 ± 0 . 0 0 0 0 −0 . 2788 ± 0 . 0 0 0 0 2 . 06 ± 0 . 06 4 . 6124 ± 0 . 0 0 0 0 −0 . 1397 ± 0 . 0 0 0 0 2 . 25 ± 0 . 05 

mix-GPFR 0 . 9868 ± 0 . 4047 0 . 7904 ± 0 . 0999 31 . 39 ± 26 . 08 1 . 2715 ± 0 . 5026 0 . 8675 ± 0 . 0727 43 . 21 ± 33 . 05 

DPM-FR 0 . 6610 ± 0 . 0102 0 . 9634 ± 0 . 0011 93 . 92 ± 8 . 57 0 . 6723 ± 0 . 0035 0 . 9665 ± 0 . 0044 111 . 31 ± 7 . 99 

DPM-GP 4 . 3644 ± 0 . 0093 −0 . 2382 ± 0 . 0040 129 . 27 ± 38 . 33 4 . 4307 ± 0 . 0066 −0 . 0737 ± 0 . 0022 160 . 04 ± 32 . 27 

DPM-GPFR 0 . 6316 ± 0 . 0020 0 . 9667 ± 0 . 0 0 06 255 . 42 ± 40 . 18 0 . 6391 ± 0 . 0024 0 . 9708 ± 0 . 0 0 04 448 . 03 ± 120 . 50 

DPM-GPFR-VT 0 . 6305 ± 0 . 0015 0 . 9666 ± 0 . 0 0 08 301 . 48 ± 87 . 64 0 . 6388 ± 0 . 0021 0 . 9709 ± 0 . 0 0 01 397 . 23 ± 99 . 85 

DPM-GPFR α0 
0 . 6394 ± 0 . 0116 0 . 9669 ± 0 . 0 0 09 329 . 21 ± 33 . 96 0 . 6386 ± 0 . 0028 0 . 9708 ± 0 . 0 0 03 321 . 88 ± 102 . 34 

PYP-GPFR 0 . 6386 ± 0 . 0122 0 . 9615 ± 0 . 0164 307 . 42 ± 24 . 27 0 . 6386 ± 0 . 0019 0 . 9657 ± 0 . 0142 378 . 59 ± 105 . 93 

1
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Table 4 

Average RMSEs (Rooted Mean Square Errors), R-Squared ( R 2 ) indices and running times (in seconds) with standard deviations of the proposed and competing methods on real-world datasets. 

Method Electricity 2009 Electricity 2010 Drosophila 

ˆ K RMSE R 2 Time ˆ K RMSE R 2 Time ˆ K RMSE R 2 Time 

GP 1 0 . 9231 ± 0 . 0 0 0 0 0 . 0315 ± 0 . 0 0 0 0 1 . 72 ± 0 . 05 1 0 . 8838 ± 0 . 0 0 0 0 0 . 0927 ± 0 . 0 0 0 0 1 . 45 ± 0 . 03 1 0 . 7465 ± 0 . 0 0 0 0 0 . 3037 ± 0 . 0 0 0 0 1 . 84 ± 0 . 03 

mix-GP 3 0 . 9381 ± 0 . 0 0 0 0 −0 . 0147 ± 0 . 0 0 0 0 7 . 26 ± 0 . 27 3 0 . 8885 ± 0 . 0 0 0 0 0 . 0789 ± 0 . 0 0 0 0 8 . 80 ± 0 . 07 3 0 . 6796 ± 0 . 0019 0 . 4297 ± 0 . 0010 30 . 21 ± 2 . 78 

5 0 . 9384 ± 0 . 0025 −0 . 0189 ± 0 . 0055 13 . 90 ± 1 . 04 5 0 . 8889 ± 0 . 0048 0 . 0728 ± 0 . 0162 13 . 86 ± 1 . 30 5 0 . 6742 ± 0 . 0 0 05 0 . 4418 ± 0 . 0017 43 . 59 ± 4 . 79 

10 0 . 9395 ± 0 . 0013 −0 . 0165 ± 0 . 0045 23 . 30 ± 1 . 78 10 0 . 8952 ± 0 . 0 0 06 0 . 0493 ± 0 . 0 0 05 25 . 72 ± 3 . 36 10 0 . 6758 ± 0 . 0 0 02 0 . 4400 ± 0 . 0006 83 . 69 ± 9 . 92 

15 0 . 9391 ± 0 . 0013 −0 . 0149 ± 0 . 0011 32 . 13 ± 3 . 62 15 0 . 8951 ± 0 . 0 0 05 0 . 0496 ± 0 . 0 0 06 36 . 13 ± 4 . 55 15 0 . 6758 ± 0 . 0 0 04 0 . 4398 ± 0 . 0 0 05 111 . 34 ± 15 . 08 

20 0 . 9388 ± 0 . 0 0 06 −0 . 0177 ± 0 . 0025 34 . 94 ± 3 . 05 20 0 . 8955 ± 0 . 0 0 05 0 . 0496 ± 0 . 0 0 03 42 . 36 ± 4 . 70 20 0 . 6757 ± 0 . 0 0 03 0 . 4400 ± 0 . 0005 130 . 72 ± 20 . 13 

30 0 . 9383 ± 0 . 0 0 07 −0 . 0153 ± 0 . 0021 45 . 80 ± 4 . 19 30 0 . 8957 ± 0 . 0 0 05 0 . 0494 ± 0 . 0 0 09 54 . 21 ± 6 . 61 30 0 . 6757 ± 0 . 0 0 03 0 . 4399 ± 0 . 0 0 08 166 . 17 ± 26 . 45 

50 0 . 9386 ± 0 . 0 0 05 −0 . 0148 ± 0 . 0025 67 . 96 ± 6 . 93 50 0 . 8958 ± 0 . 0 0 05 0 . 0494 ± 0 . 0 0 07 75 . 94 ± 9 . 79 50 0 . 6758 ± 0 . 0 0 03 0 . 4398 ± 0 . 0010 220 . 87 ± 48 . 31 

GPFR 1 0 . 5651 ± 0 . 0 0 0 0 0 . 6350 ± 0 . 0 0 0 0 2 . 36 ± 0 . 05 1 0 . 5338 ± 0 . 0 0 0 0 0 . 6723 ± 0 . 0 0 0 0 2 . 17 ± 0 . 07 1 0 . 5396 ± 0 . 0 0 0 0 0 . 5864 ± 0 . 0 0 0 0 2 . 70 ± 0 . 13 

mix-GPFR 3 0 . 2079 ± 0 . 0 0 0 0 0 . 9478 ± 0 . 0 0 0 0 11 . 08 ± 0 . 05 3 0 . 2040 ± 0 . 0 0 0 0 0 . 9490 ± 0 . 0 0 0 0 10 . 82 ± 0 . 03 3 0 . 4182 ± 0 . 0 0 0 0 0 . 7608 ± 0 . 0048 24 . 24 ± 0 . 91 

5 0 . 1628 ± 0 . 0122 0 . 9694 ± 0 . 0035 30 . 42 ± 5 . 95 5 0 . 1788 ± 0 . 0168 0 . 9622 ± 0 . 0052 29 . 98 ± 3 . 94 5 0 . 3409 ± 0 . 0039 0 . 8012 ± 0 . 0362 43 . 64 ± 12 . 66 

10 0 . 1270 ± 0 . 0175 0 . 9818 ± 0 . 0041 59 . 88 ± 10 . 65 10 0 . 1400 ± 0 . 0192 0 . 9749 ± 0 . 0046 46 . 27 ± 5 . 30 10 0 . 3236 ± 0 . 0105 0 . 8437 ± 0 . 0082 163 . 44 ± 29 . 12 

15 0 . 1156 ± 0 . 0172 0 . 9813 ± 0 . 0046 84 . 20 ± 16 . 58 15 0 . 1331 ± 0 . 0096 0 . 9778 ± 0 . 0025 62 . 35 ± 10 . 25 15 0 . 3123 ± 0 . 0096 0 . 8523 ± 0 . 0061 225 . 27 ± 48 . 88 

20 0 . 1145 ± 0 . 0182 0 . 9856 ± 0 . 0028 97 . 48 ± 20 . 72 20 0 . 1320 ± 0 . 0076 0 . 9789 ± 0 . 0027 78 . 00 ± 12 . 80 20 0 . 3026 ± 0 . 0092 0 . 8631 ± 0 . 0080 278 . 36 ± 45 . 86 

30 0 . 1013 ± 0 . 0044 0 . 9865 ± 0 . 0017 99 . 74 ± 17 . 71 30 0 . 1164 ± 0 . 0037 0 . 9817 ± 0 . 0019 115 . 66 ± 32 . 79 30 0 . 3031 ± 0 . 0083 0 . 8631 ± 0 . 0067 453 . 36 ± 68 . 26 

50 0 . 0999 ± 0 . 0031 0 . 9871 ± 0 . 0 0 05 150 . 72 ± 34 . 99 50 0 . 1120 ± 0 . 0054 0 . 9821 ± 0 . 0021 163 . 69 ± 45 . 61 50 0 . 3103 ± 0 . 0115 0 . 8636 ± 0 . 0115 612 . 39 ± 104 . 74 

DPM-FR 14 . 10 ± 0 . 88 0 . 1148 ± 0 . 0173 0 . 9802 ± 0 . 0052 193 . 70 ± 6 . 00 13 . 10 ± 1 . 66 0 . 1181 ± 0 . 0081 0 . 9802 ± 0 . 0038 199 . 27 ± 13 . 30 28 . 90 ± 0 . 99 0 . 3245 ± 0 . 0167 0 . 8563 ± 0 . 0062 339 . 39 ± 83 . 95 

DPM-GP 12 . 80 ± 1 . 99 0 . 9388 ± 0 . 0015 −0 . 0212 ± 0 . 0039 95 . 48 ± 18 . 70 12 . 30 ± 1 . 77 0 . 8953 ± 0 . 0020 0 . 0514 ± 0 . 0042 117 . 88 ± 19 . 19 26 . 30 ± 2 . 54 0 . 6767 ± 0 . 0 0 09 0 . 4384 ± 0 . 0 0 08 507 . 16 ± 173 . 08 

DPM-GPFR 13 . 20 ± 1 . 75 0 . 0999 ± 0 . 0026 0 . 9852 ± 0 . 0027 231 . 21 ± 84 . 37 12 . 00 ± 2 . 00 0 . 1259 ± 0 . 0104 0 . 9804 ± 0 . 0027 270 . 55 ± 76 . 12 27 . 40 ± 1 . 17 0 . 2999 ± 0 . 0091 0 . 8685 ± 0 . 0086 269 . 91 ± 100 . 67 

DPM-GPFR-VT 14 . 50 ± 1 . 51 0 . 1097 ± 0 . 0113 0 . 9856 ± 0 . 0010 283 . 83 ± 15 . 23 11 . 50 ± 1 . 51 0 . 1269 ± 0 . 0098 0 . 9797 ± 0 . 0027 275 . 52 ± 72 . 67 22 . 10 ± 1 . 79 0 . 3001 ± 0 . 0061 0 . 8671 ± 0 . 0052 381 . 06 ± 27 . 72 

DPM-GPFR α0 
13 . 70 ± 1 . 57 0 . 1037 ± 0 . 0117 0 . 9842 ± 0 . 0040 243 . 14 ± 60 . 13 12 . 80 ± 2 . 10 0 . 1188 ± 0 . 0108 0 . 9814 ± 0 . 0 0 09 205 . 90 ± 103 . 49 27 . 00 ± 0 . 67 0 . 3017 ± 0 . 0066 0 . 8651 ± 0 . 0107 297 . 39 ± 20 . 51 

PYP-GPFR 14 . 10 ± 1 . 79 0 . 1014 ± 0 . 0044 0 . 9861 ± 0 . 0014 242 . 89 ± 56 . 78 12 . 94 ± 1 . 90 0 . 1221 ± 0 . 0119 0 . 9802 ± 0 . 0025 270 . 13 ± 49 . 39 26 . 96 ± 1 . 23 0 . 2992 ± 0 . 0079 0 . 8651 ± 0 . 0092 305 . 14 ± 27 . 36 

11
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Fig. 3. Illustrations of learned mean functions and prediction results of DPM-GPFR on S 10 . 
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hus running mix-GPFR with different ˆ K then conducting model se- 

ection via cross-validation would be even more time-consuming. 

owever, a single run of DPM-GPFR can successfully infer the ap- 

ropriate ˆ K automatically. The performances of mix-GP on real- 

orld datasets are almost the same with varying ˆ K , and the results 

re similar to a single GP. The reason is that mix-GP fails to reveal

ne structures underlying the data and model the evolving trends 

f curves. On the other hand, DPM-GPFR and its variants success- 

ully cluster the curves into various clusters. Furthermore, DPM- 

PFR related models almost always achieve the best results on all 

atasets, which demonstrates the effectiveness of DPM-GPFR. 

We point out that introducing potentially infinite components 

s not the only reason that DPM-GPFR and its variants outper- 

orm competing methods. From Table 3 , we observe that the re- 

ults of mix-GPFR are very unstable. In mix-GPFR, the coefficients 

f B-spline mean functions are learned by optimization methods, 

hich may lead to severe overfitting and are highly dependent on 

he initialization. In DPM-GPFR, we view them as random variables 

nd develop a fully Bayesian treatment to infer the uncertainty 

ver these parameters. This explains why the standard deviations 
12 
f mix-GPFR on synthetic datasets are usually high. Besides, sup- 

ose that DPM-GPFR selects ˆ K components, if we run mix-GPFR 

ith 

ˆ K , then we may still obtain worse performances. The reason 

s, in mix-GPFR, the components are equal and symmetric, while 

n DPM-GPFR, the prior probability of these components is deter- 

ined by a stick-breaking process and thus not symmetric. From 

he Chinese restaurant process perspective, the components gen- 

rated by a Dirichlet process enjoy the self-reinforcing property, 

.e. , the components are size-biased and a large component tends 

o be even larger. This property is desirable for real-world appli- 

ations. Take the electricity load dataset, for example, most of the 

aily electricity load curves follow a similar trend for normal days, 

hich forms the largest component. The same deduction also ap- 

lies to the remaining curves, which may correspond to the elec- 

ricity consumption on holidays and weekends. 

In Fig. 3 (a), we illustrate the learned mean functions and 

round-truth mean functions in S 10 . We observe that DPM-GPFR 

an learn the mean functions accurately. For component 10, the 

ean function is relatively complicated, and the DPM-GPFR fur- 

her splits this component into 3 components. These 3 learned 
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Table 5 

Average RMSEs (Rooted Mean Square Errors) of DPM-GPFR on synthetic and real-world datasets with 

different prediction strategies. 

Dataset MAP spline Spline MAP Fused 

S 3 0 . 5190 ± 0 . 0073 0 . 5172 ± 0 . 0042 0 . 4822 ± 0 . 0094 0 . 4798 ± 0 . 0050 

S 4 0 . 5692 ± 0 . 0051 0 . 5644 ± 0 . 0034 0 . 5382 ± 0 . 0054 0 . 5333 ± 0 . 0039 

S 5 0 . 6176 ± 0 . 0042 0 . 6154 ± 0 . 0025 0 . 5860 ± 0 . 0039 0 . 5839 ± 0 . 0022 

S 6 0 . 6141 ± 0 . 0070 0 . 6112 ± 0 . 0042 0 . 6078 ± 0 . 0074 0 . 6048 ± 0 . 0044 

S 7 0 . 6702 ± 0 . 0086 0 . 6684 ± 0 . 0048 0 . 6492 ± 0 . 0093 0 . 6475 ± 0 . 0053 

S 8 0 . 6664 ± 0 . 0054 0 . 6661 ± 0 . 0039 0 . 6460 ± 0 . 0059 0 . 6458 ± 0 . 0043 

S 9 0 . 6602 ± 0 . 0105 0 . 6574 ± 0 . 0102 0 . 6396 ± 0 . 0114 0 . 6369 ± 0 . 0107 

S 10 0 . 6726 ± 0 . 0033 0 . 6718 ± 0 . 0027 0 . 6405 ± 0 . 0032 0 . 6398 ± 0 . 0028 

Electricity 2009 0 . 1191 ± 0 . 0114 0 . 1130 ± 0 . 0126 0 . 1119 ± 0 . 0095 0 . 1064 ± 0 . 0107 

Electricity 2010 0 . 1343 ± 0 . 0092 0 . 1308 ± 0 . 0100 0 . 1247 ± 0 . 0093 0 . 1217 ± 0 . 0104 

Drosophila 0 . 3352 ± 0 . 0158 0 . 3088 ± 0 . 0107 0 . 3264 ± 0 . 0148 0 . 3013 ± 0 . 0096 

Fig. 4. Clustering results of DPM-GPFR on realworld datasets. Curves of different clusters are in different colors. 
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ean functions share a similar global trend but have different lo- 

al variations. For each testing curve in S 10 , we further show the 

rediction result in Fig. 3 (b). This figure reveals why the DPM- 

PFR model outperforms competing methods: DPM-GPFR success- 

ully models evolving patterns in training curves, and in the pre- 

iction phase DPM-GPFR can adaptively choose the corresponding 

attern based on known samples. 

We report the performances of different prediction strategies 

n real-world datasets in Table 5 . We note that fused predic- 

ion is consistently better than other strategies. If we ignore the 

tructured noises and only use the spline functions to predict, the 

erformances will drop. This observation confirms that structural 

oise plays an important role in modeling the data. Besides, the 

AP prediction strategy is also worse compared with fused predic- 

ion, which shows the necessity of integrating out the uncertainty 

f latent indicators. 
e

13 
.4. Clustering analysis 

The clustering performances on synthetic datasets are reported 

n Table 6 . Since we have ground-truth labels on synthetic datasets, 

e calculate the GCAR, EMD-I, EMD-II and ARI between the results 

nd ground-truth labels and report the estimated number of com- 

onents ˆ K on both training sets and testing sets. DPM-GPFR and 

ts variants almost always achieve perfect GCAR and EMD-I, which 

eans they can distinguish curves generated by different sources 

uccessfully. Usually, the estimated number of components ˆ K of 

PM-GPFR is larger than K, thus it reveals the finer structure of 

he data. The results of mix-GP and DPM-GP are not good, which 

emonstrates the importance of using B-spline mean functions to 

apture the trend. As we increase K, the performances of mix-GPFR 

rops significantly, and MOHGP even leads to only one component 

n S 8 and S 10 , while the performances of DPM-GPFR related mod- 

ls are stable regardless of K. 
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Table 6 

Evaluation of clustering performances of the proposed and competing methods on synthetic datasets S 3 , S 5 , S 8 and S 10 . 

Method Phase S 3 S 5 
ˆ K GCAR EMD-I EMD-II ARI ˆ K GCAR EMD-I EMD-II ARI 

mix-GP train 3 . 00 ± 0 . 00 0 . 6800 ± 0 . 0422 0 . 3721 ± 0 . 0310 0 . 3093 ± 0 . 0963 0 . 3108 ± 0 . 0086 5 . 00 ± 0 . 00 0 . 8280 ± 0 . 0676 0 . 2018 ± 0 . 0658 0 . 1455 ± 0 . 0242 0 . 6751 ± 0 . 0594 

mix-GP test 3 . 00 ± 0 . 00 0 . 6467 ± 0 . 0422 0 . 4186 ± 0 . 0238 0 . 2893 ± 0 . 0787 0 . 2932 ± 0 . 0267 5 . 00 ± 0 . 00 0 . 6500 ± 0 . 0483 0 . 3942 ± 0 . 0358 0 . 2876 ± 0 . 0425 0 . 4168 ± 0 . 0428 

mix-GPFR train 3 . 00 ± 0 . 00 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 1 . 0 0 0 0 ± 0 . 0 0 0 0 5 . 00 ± 0 . 00 0 . 9800 ± 0 . 0632 0 . 0200 ± 0 . 0632 0 . 0019 ± 0 . 0060 0 . 9763 ± 0 . 0749 

mix-GPFR test 3 . 00 ± 0 . 00 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 1 . 0 0 0 0 ± 0 . 0 0 0 0 5 . 00 ± 0 . 00 0 . 9800 ± 0 . 0632 0 . 0200 ± 0 . 0632 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 9768 ± 0 . 0734 

MOHGP train 3 . 10 ± 0 . 32 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0152 ± 0 . 0480 0 . 9877 ± 0 . 0389 2 . 20 ± 1 . 99 0 . 4200 ± 0 . 3584 0 . 5800 ± 0 . 3584 0 . 0084 ± 0 . 0266 0 . 2719 ± 0 . 4412 

DPM-FR train 4 . 70 ± 1 . 06 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0922 ± 0 . 0927 0 . 9247 ± 0 . 0774 7 . 60 ± 1 . 51 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 1140 ± 0 . 0587 0 . 9213 ± 0 . 0423 

DPM-FR test 3 . 70 ± 1 . 16 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0607 ± 0 . 0982 0 . 9479 ± 0 . 0844 5 . 90 ± 1 . 29 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0636 ± 0 . 0764 0 . 9538 ± 0 . 0566 

DPM-GP train 4 . 80 ± 1 . 14 0 . 7183 ± 0 . 0166 0 . 3349 ± 0 . 0162 0 . 4931 ± 0 . 0725 0 . 2899 ± 0 . 0365 8 . 40 ± 1 . 51 0 . 8260 ± 0 . 0306 0 . 2101 ± 0 . 0373 0 . 3869 ± 0 . 0734 0 . 5348 ± 0 . 0510 

DPM-GP test 4 . 10 ± 0 . 88 0 . 70 0 0 ± 0 . 0351 0 . 3639 ± 0 . 0481 0 . 4040 ± 0 . 0937 0 . 2929 ± 0 . 0696 6 . 70 ± 0 . 82 0 . 7160 ± 0 . 0440 0 . 3262 ± 0 . 0534 0 . 3750 ± 0 . 0493 0 . 4522 ± 0 . 0760 

DPM-GPFR train 3 . 50 ± 0 . 85 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0395 ± 0 . 0756 0 . 9678 ± 0 . 0618 6 . 60 ± 1 . 07 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0763 ± 0 . 0503 0 . 9481 ± 0 . 0346 

DPM-GPFR test 3 . 20 ± 0 . 42 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0167 ± 0 . 0368 0 . 9862 ± 0 . 0306 5 . 80 ± 0 . 79 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0396 ± 0 . 0435 0 . 9721 ± 0 . 0310 

DPM-GPFR-VT train 3 . 70 ± 0 . 82 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0338 ± 0 . 0487 0 . 9730 ± 0 . 0392 5 . 60 ± 0 . 84 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0224 ± 0 . 0414 0 . 9848 ± 0 . 0284 

DPM-GPFR-VT test 3 . 10 ± 0 . 32 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0060 ± 0 . 0190 0 . 9951 ± 0 . 0156 5 . 00 ± 0 . 00 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 1 . 0 0 0 0 ± 0 . 0 0 0 0 

DPM-GPFR α0 
train 4 . 10 ± 0 . 88 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0450 ± 0 . 0567 0 . 9640 ± 0 . 0467 6 . 60 ± 1 . 07 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0784 ± 0 . 0529 0 . 9466 ± 0 . 0366 

DPM-GPFR α0 
test 3 . 20 ± 0 . 63 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0207 ± 0 . 0654 0 . 9822 ± 0 . 0562 5 . 70 ± 0 . 82 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0296 ± 0 . 0345 0 . 9793 ± 0 . 0242 

PYP-GPFR train 4 . 00 ± 1 . 15 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0485 ± 0 . 0649 0 . 9610 ± 0 . 0528 6 . 60 ± 1 . 43 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0675 ± 0 . 0608 0 . 9539 ± 0 . 0417 

PYP-GPFR test 3 . 20 ± 0 . 42 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0267 ± 0 . 0576 0 . 9776 ± 0 . 0486 5 . 80 ± 0 . 79 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0352 ± 0 . 0372 0 . 9753 ± 0 . 0264 

Method Phase S 8 S 10 

ˆ K GCAR EMD-I EMD-II ARI ˆ K GCAR EMD-I EMD-II ARI 

mix-GP train 8 . 00 ± 0 . 00 0 . 5769 ± 0 . 0221 0 . 4744 ± 0 . 0197 0 . 3134 ± 0 . 0477 0 . 4618 ± 0 . 0203 10 . 00 ± 0 . 00 0 . 6555 ± 0 . 0400 0 . 3887 ± 0 . 0468 0 . 2909 ± 0 . 0442 0 . 5185 ± 0 . 0315 

mix-GP test 8 . 00 ± 0 . 00 0 . 5562 ± 0 . 0278 0 . 5057 ± 0 . 0347 0 . 3622 ± 0 . 0536 0 . 3702 ± 0 . 0256 10 . 00 ± 0 . 00 0 . 5220 ± 0 . 0319 0 . 5361 ± 0 . 0224 0 . 4438 ± 0 . 0365 0 . 3234 ± 0 . 0214 

mix-GPFR train 8 . 00 ± 0 . 00 0 . 9625 ± 0 . 0604 0 . 0375 ± 0 . 0604 0 . 0046 ± 0 . 0080 0 . 9570 ± 0 . 0693 10 . 00 ± 0 . 00 0 . 9300 ± 0 . 0675 0 . 0700 ± 0 . 0675 0 . 0186 ± 0 . 0198 0 . 9164 ± 0 . 0780 

mix-GPFR test 8 . 00 ± 0 . 00 0 . 9625 ± 0 . 0604 0 . 0375 ± 0 . 0604 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 9581 ± 0 . 0675 10 . 00 ± 0 . 00 0 . 9300 ± 0 . 0675 0 . 0700 ± 0 . 0675 0 . 0084 ± 0 . 0158 0 . 9189 ± 0 . 0761 

MOHGP train 1 . 00 ± 0 . 00 0 . 1250 ± 0 . 0 0 0 0 0 . 8750 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 1 . 00 ± 0 . 00 0 . 10 0 0 ± 0 . 0 0 0 0 0 . 90 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 

DPM-FR train 11 . 00 ± 2 . 31 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0932 ± 0 . 0723 0 . 9403 ± 0 . 0476 13 . 50 ± 1 . 78 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0878 ± 0 . 0567 0 . 9458 ± 0 . 0372 

DPM-FR test 9 . 90 ± 1 . 73 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0787 ± 0 . 0714 0 . 9471 ± 0 . 0493 12 . 10 ± 1 . 45 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0750 ± 0 . 0538 0 . 9515 ± 0 . 0369 

DPM-GP train 10 . 80 ± 2 . 20 0 . 6288 ± 0 . 0434 0 . 4077 ± 0 . 0330 0 . 4311 ± 0 . 0741 0 . 4298 ± 0 . 0391 13 . 30 ± 2 . 45 0 . 7220 ± 0 . 0266 0 . 3145 ± 0 . 0271 0 . 3341 ± 0 . 0792 0 . 5329 ± 0 . 0388 

DPM-GP test 9 . 50 ± 1 . 90 0 . 5850 ± 0 . 0275 0 . 4603 ± 0 . 0263 0 . 4 4 42 ± 0 . 0680 0 . 3503 ± 0 . 0373 10 . 80 ± 1 . 81 0 . 5440 ± 0 . 0151 0 . 5105 ± 0 . 0180 0 . 4474 ± 0 . 0681 0 . 3450 ± 0 . 0364 

DPM-GPFR train 9 . 30 ± 1 . 16 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0498 ± 0 . 0535 0 . 9688 ± 0 . 0338 12 . 00 ± 1 . 25 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0446 ± 0 . 0253 0 . 9733 ± 0 . 0155 

DPM-GPFR test 9 . 10 ± 1 . 29 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0410 ± 0 . 0504 0 . 9730 ± 0 . 0334 10 . 60 ± 0 . 70 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0206 ± 0 . 0248 0 . 9871 ± 0 . 0156 

DPM-GPFR-VT train 9 . 20 ± 1 . 03 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0357 ± 0 . 0358 0 . 9780 ± 0 . 0222 11 . 50 ± 1 . 35 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0264 ± 0 . 0285 0 . 9843 ± 0 . 0172 

DPM-GPFR-VT test 8 . 90 ± 0 . 88 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0318 ± 0 . 0343 0 . 9794 ± 0 . 0224 10 . 40 ± 0 . 70 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0124 ± 0 . 0222 0 . 9922 ± 0 . 0140 

DPM-GPFR α0 
train 9 . 60 ± 1 . 43 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0582 ± 0 . 0565 0 . 9634 ± 0 . 0362 11 . 80 ± 1 . 23 0 . 9900 ± 0 . 0316 0 . 0100 ± 0 . 0316 0 . 0434 ± 0 . 0222 0 . 9635 ± 0 . 0325 

DPM-GPFR α0 
test 9 . 40 ± 1 . 43 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0590 ± 0 . 0653 0 . 9606 ± 0 . 0447 10 . 90 ± 0 . 88 0 . 9900 ± 0 . 0316 0 . 0100 ± 0 . 0316 0 . 0364 ± 0 . 0299 0 . 9660 ± 0 . 0361 

PYP-GPFR train 9 . 80 ± 1 . 32 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0572 ± 0 . 0393 0 . 9645 ± 0 . 0248 12 . 10 ± 1 . 29 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0467 ± 0 . 0333 0 . 9719 ± 0 . 0206 

PYP-GPFR test 9 . 10 ± 1 . 29 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0348 ± 0 . 0402 0 . 9774 ± 0 . 0265 11 . 30 ± 0 . 95 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 0358 ± 0 . 0312 0 . 9774 ± 0 . 0199 
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Table 7 

Average RMSEs (Rooted Mean Square Errors) of DPM-GPFR on real-world datasets with max _ K ∈ { 10 , 20 , 30 , 50 } , α0 ∈ { 0 . 01 , 0 . 10 , 0 . 50 , 1 . 00 , 3 . 00 , 5 . 00 , 10 . 00 } and D = 30 . 

max _ K α0 Electricity 2009 Electricity 2010 Drosophila 

ˆ K RMSE Time ˆ K RMSE Time ˆ K RMSE Time 

10 0.01 9 . 4 ± 0 . 7 0 . 1151 ± 0 . 0135 50 . 3 ± 14 . 39 8 . 9 ± 0 . 88 0 . 1426 ± 0 . 005 59 . 17 ± 9 . 49 10 . 00 ± 0 . 00 0 . 3210 ± 0 . 0143 67 . 28 ± 30 . 66 

0.10 9 . 1 ± 0 . 74 0 . 1282 ± 0 . 0168 59 . 84 ± 5 . 45 8 . 7 ± 0 . 67 0 . 1418 ± 0 . 0082 65 . 99 ± 6 . 09 10 . 00 ± 0 . 00 0 . 3254 ± 0 . 0113 81 . 34 ± 37 . 20 

0.50 8 . 9 ± 0 . 88 0 . 1333 ± 0 . 0219 62 . 15 ± 4 . 99 9 . 2 ± 0 . 79 0 . 1425 ± 0 . 0035 63 . 73 ± 8 . 56 10 . 00 ± 0 . 00 0 . 3187 ± 0 . 0123 69 . 63 ± 18 . 40 

1.00 9 . 0 ± 1 . 05 0 . 1336 ± 0 . 0121 59 . 12 ± 8 . 62 8 . 6 ± 1 . 07 0 . 1445 ± 0 . 0179 63 . 81 ± 6 . 54 10 . 00 ± 0 . 00 0 . 3216 ± 0 . 0111 64 . 73 ± 29 . 25 

3.00 8 . 5 ± 0 . 53 0 . 1287 ± 0 . 0156 61 . 68 ± 6 . 55 8 . 9 ± 0 . 57 0 . 14 ± 0 . 0089 63 . 12 ± 6 . 42 10 . 00 ± 0 . 00 0 . 3223 ± 0 . 0094 69 . 87 ± 26 . 21 

5.00 9 . 5 ± 0 . 71 0 . 1291 ± 0 . 0172 56 . 78 ± 5 . 38 8 . 6 ± 0 . 7 0 . 1423 ± 0 . 0175 61 . 63 ± 14 . 21 10 . 00 ± 0 . 00 0 . 3211 ± 0 . 0122 72 . 87 ± 23 . 62 

10.00 9 . 0 ± 0 . 67 0 . 1196 ± 0 . 0155 63 . 14 ± 4 . 9 8 . 8 ± 0 . 79 0 . 1363 ± 0 . 0098 61 . 9 ± 8 . 97 10 . 00 ± 0 . 00 0 . 3223 ± 0 . 0107 78 . 07 ± 53 . 07 

20 0.01 12 . 5 ± 1 . 51 0 . 1067 ± 0 . 0104 136 . 75 ± 36 . 91 11 . 2 ± 1 . 32 0 . 132 ± 0 . 009 153 . 95 ± 14 . 83 20 . 00 ± 0 . 00 0 . 3008 ± 0 . 0063 163 . 61 ± 69 . 87 

0.10 12 . 3 ± 2 . 21 0 . 1126 ± 0 . 0161 149 . 51 ± 12 . 13 11 . 6 ± 1 . 35 0 . 126 ± 0 . 0087 127 . 15 ± 44 . 72 20 . 00 ± 0 . 00 0 . 3027 ± 0 . 0104 168 . 45 ± 57 . 52 

0.50 12 . 2 ± 1 . 14 0 . 1088 ± 0 . 0138 149 . 17 ± 6 . 74 12 . 3 ± 1 . 16 0 . 1228 ± 0 . 0098 140 . 67 ± 31 . 46 19 . 80 ± 0 . 42 0 . 3018 ± 0 . 0054 149 . 23 ± 63 . 47 

1.00 12 . 3 ± 1 . 42 0 . 1085 ± 0 . 0151 151 . 95 ± 8 . 67 10 . 9 ± 1 . 66 0 . 1324 ± 0 . 0114 142 . 47 ± 35 . 05 19 . 80 ± 0 . 42 0 . 3008 ± 0 . 0075 142 . 27 ± 54 . 14 

3.00 11 . 6 ± 0 . 97 0 . 109 ± 0 . 0108 152 . 18 ± 8 . 93 12 . 0 ± 1 . 7 0 . 1245 ± 0 . 0114 109 . 63 ± 47 . 35 19 . 90 ± 0 . 32 0 . 2986 ± 0 . 0067 141 . 70 ± 54 . 61 

5.00 11 . 8 ± 1 . 69 0 . 1121 ± 0 . 0134 132 . 52 ± 43 . 52 12 . 1 ± 1 . 2 0 . 1207 ± 0 . 0062 134 . 29 ± 45 . 8 20 . 00 ± 0 . 00 0 . 3054 ± 0 . 0077 204 . 90 ± 71 . 42 

10.00 12 . 4 ± 1 . 35 0 . 1127 ± 0 . 0161 137 . 57 ± 35 . 45 12 . 2 ± 1 . 4 0 . 1294 ± 0 . 0114 128 . 27 ± 47 . 54 19 . 90 ± 0 . 32 0 . 3004 ± 0 . 0051 145 . 23 ± 60 . 24 

30 0.01 14 . 2 ± 1 . 75 0 . 1032 ± 0 . 012 244 . 18 ± 69 . 59 12 . 1 ± 1 . 79 0 . 1232 ± 0 . 0108 310 . 13 ± 12 . 12 26 . 90 ± 1 . 20 0 . 3034 ± 0 . 0085 261 . 85 ± 85 . 62 

0.10 13 . 6 ± 1 . 78 0 . 1038 ± 0 . 0126 270 . 46 ± 13 . 0 12 . 6 ± 2 . 22 0 . 1205 ± 0 . 0082 317 . 46 ± 39 . 56 26 . 90 ± 1 . 45 0 . 2988 ± 0 . 0074 238 . 30 ± 69 . 73 

0.50 13 . 3 ± 1 . 64 0 . 103 ± 0 . 0035 221 . 36 ± 92 . 12 12 . 3 ± 2 . 06 0 . 1209 ± 0 . 0132 264 . 8 ± 73 . 87 26 . 60 ± 1 . 35 0 . 2995 ± 0 . 0077 242 . 02 ± 98 . 26 

1.00 13 . 2 ± 1 . 75 0 . 0999 ± 0 . 0026 231 . 21 ± 84 . 37 12 . 0 ± 2 . 0 0 . 1259 ± 0 . 0104 270 . 55 ± 76 . 12 27 . 40 ± 1 . 17 0 . 2999 ± 0 . 0091 269 . 91 ± 100 . 67 

3.00 14 . 1 ± 1 . 6 0 . 1001 ± 0 . 0033 260 . 32 ± 10 . 75 12 . 1 ± 1 . 6 0 . 1219 ± 0 . 009 270 . 34 ± 16 . 39 26 . 70 ± 1 . 42 0 . 3047 ± 0 . 0109 278 . 03 ± 119 . 32 

5.00 14 . 0 ± 1 . 89 0 . 1 ± 0 . 0031 256 . 18 ± 13 . 28 12 . 8 ± 1 . 87 0 . 1212 ± 0 . 0105 238 . 6 ± 67 . 13 27 . 30 ± 1 . 34 0 . 2980 ± 0 . 0081 273 . 82 ± 86 . 37 

10.00 13 . 6 ± 1 . 17 0 . 1037 ± 0 . 0113 220 . 61 ± 80 . 51 13 . 6 ± 1 . 26 0 . 1193 ± 0 . 0117 257 . 82 ± 14 . 36 26 . 80 ± 0 . 92 0 . 2993 ± 0 . 0083 260 . 36 ± 79 . 86 

50 0.01 13 . 8 ± 1 . 4 0 . 1016 ± 0 . 0052 370 . 66 ± 188 . 26 14 . 2 ± 2 . 04 0 . 1136 ± 0 . 0065 362 . 06 ± 134 . 7 36 . 40 ± 1 . 35 0 . 3001 ± 0 . 0083 446 . 10 ± 139 . 67 

0.10 14 . 7 ± 1 . 7 0 . 1032 ± 0 . 0066 470 . 84 ± 34 . 38 14 . 4 ± 1 . 58 0 . 1123 ± 0 . 0055 403 . 04 ± 158 . 12 34 . 40 ± 2 . 27 0 . 3022 ± 0 . 0085 411 . 15 ± 146 . 06 

0.50 15 . 2 ± 1 . 32 0 . 1015 ± 0 . 0043 487 . 85 ± 12 . 75 14 . 4 ± 1 . 78 0 . 115 ± 0 . 0085 430 . 96 ± 127 . 77 34 . 70 ± 2 . 36 0 . 3026 ± 0 . 0107 509 . 99 ± 188 . 90 

1.00 14 . 4 ± 2 . 01 0 . 1003 ± 0 . 0038 404 . 57 ± 158 . 41 14 . 0 ± 2 . 31 0 . 1153 ± 0 . 0067 421 . 28 ± 107 . 3 34 . 80 ± 1 . 93 0 . 3037 ± 0 . 0083 637 . 26 ± 137 . 92 

3.00 14 . 8 ± 1 . 03 0 . 1014 ± 0 . 0019 485 . 51 ± 3 . 37 13 . 6 ± 1 . 78 0 . 1228 ± 0 . 0132 397 . 1 ± 151 . 77 34 . 80 ± 1 . 14 0 . 3034 ± 0 . 0091 569 . 81 ± 227 . 54 

5.00 15 . 2 ± 2 . 25 0 . 1032 ± 0 . 0049 401 . 85 ± 159 . 71 14 . 2 ± 1 . 4 0 . 1172 ± 0 . 0083 361 . 43 ± 178 . 15 34 . 40 ± 2 . 84 0 . 3009 ± 0 . 0083 506 . 12 ± 196 . 20 

10.00 15 . 0 ± 1 . 63 0 . 1002 ± 0 . 0054 448 . 33 ± 121 . 63 15 . 0 ± 1 . 33 0 . 1119 ± 0 . 0053 416 . 27 ± 117 . 66 35 . 90 ± 1 . 52 0 . 3058 ± 0 . 0077 440 . 73 ± 138 . 04 

1
5
 



T. Li and J. Ma Pattern Recognition 134 (2023) 109129 

Fig. 5. Learned mean functions of DPM-GPFR and mix-GPFR on S 10 under different D . The results of mix-GPFR are in black, while the results of DPM-GPFR are in color. 
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Since we do not have access to ground-truth clustering la- 

els on real-world datasets, we visualize the clustering results in 

ig. 4 . We plot the training curves and testing curves together 

ith learned mean functions. Curves belonging to different com- 

onents are in different colors. This figure further reflects the self- 

einforcing property, i.e. , the sizes of clusters are highly imbal- 

nced. The learned structures are very fine and accurately capture 

he evolving law. 

.5. Discussions on variants of the model 

From Tables 3, 4 and 6 , we observe that the improvements 

rought by introducing the Dirichlet process prior to the mixture 

f GPs over a single Gaussian process are minor. Although DPM-GP 

as a mixture structure and divides the curves into clusters, the 

lustering and prediction results are not good. The reason is DPM- 

P fails to model the data, especially capture the common evolving 

rends without B-spline mean functions. On the other hand, DPM- 

R is much better than competing methods and achieves compa- 

able performances with DPM-GPFR. If only “FR” or “GP” is used, 
16
ach component is not as flexible as “GPFR”, thus the model tends 

o use more components to describe the data. We conclude that 

oth the functional regression part and the Gaussian process part 

re necessary to model the data, and using functional regression is 

ore important. DPM-GPFR-VT has fewer components than DPM- 

PFR and higher ARI, thus the variational tempering technique im- 

roves the clustering performance. Other variants have similar re- 

ults compared with DPM-GPFR, and none of them consistently 

utperforms others. 

From Tables 3 and 4 , we find that although the number of pa-

ameters of DPM-GPFR and its variants are close, the time costs are 

ignificantly different. The main reason is that the prior of stick- 

reaking variables influences the distribution of mixing propor- 

ions significantly, as discussed in Section 3.3 . Since the parameters 

0 and δ are automatically learned in DPM-GPFR α0 
and PYP-GPFR, 

he number of remaining components during the learning process 

ay be different from DPM-GPFR, which influences the computa- 

ional cost significantly. Unfortunately, since the learning process is 

ata-dependent, we have no idea how many iterations are needed 
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Fig. 6. Visualization of AGCARs (Average Generalized Classification Accuracy Rates) of clustering results with different ˆ K . Large values are dark, and small values are light. 
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or convergence, nor do we know how many components are re- 

ained. Therefore, we can not easily conclude which method is the 

astest, and their time costs highly depend on the specific problem. 

.6. Sensitivity analysis of hyper-parameters 

We fix D = 30 , and vary α0 in { 0 . 1 , 0 . 25 , 0 . 5 , 1 , 3 , 5 , 10 } , max _ K
n { 10 , 20 , 30 , 50 } . The results are shown in Table 7 . We find dif-

erent α0 leads to similar RMSEs, thus the performances are not 

ensitive to α0 . In particular, given max _ K , the number of remain- 

ng components almost keeps invariant under different α0 in all 

atasets. Intuitively, α0 influences the number of components, and 

 larger α0 may lead to more components. The observation here 

s contradictory to intuition. The reason is α0 indeed influences 

he number of components priorly , but the final ˆ K is determined 

y both prior and data . Once we have abundant data, the role of 

rior becomes less important, thus we obtain similar results even 

0 varies severely. However, α0 stills affects the time cost as dis- 

ussed in Section 3.3 , because the number of remaining compo- 
17 
ents during the learning process is affected by α0 , especially at 

he first few EM iterations when prior plays a more important role 

han data. 

On the other hand, the results are sensitive to max _ K . Given α0 , 

s we increase max _ K , there tend to be more components and the 

unning times tend to be longer. The effect of α0 on time cost is 

nfluenced by max _ K , as indicated in Section 3.3 . When max _ K is too 

mall, there are not enough components for mixing proportions to 

ecay to 0, thus the running times under different α0 are similar. 

hen max _ K is large enough, the effect of α0 is more significant. 

ote that the original Dirichlet process assumes there are poten- 

ially infinite many components and max _ K is only introduced to 

ake the variational inference tractable. Therefore, a larger max _ K 

ay better retain the properties of the Dirichlet process, while a 

mall max _ K makes it more like a finite mixture model. 

Finally, we fix α0 = 1 , max _ K = 50 and vary D in 

 5 , 10 , 20 , 30 , 50 } . To further compare DPM-GPFR and mix-GPFR,

e report the prediction performances of both methods under dif- 

erent D in Table 8 , and show the learned mean functions on S 10 
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Fig. 7. Evidence lower bound (ELBO) v.s. iterations. ELBOs after an M-step are in red, and ELBOs after a VB iteration inside an E-step are in blue. 

Table 8 

Average RMSEs (Rooted Mean Square Errors) of DPM-GPFR on synthetic and real-world datasets with max _ K = 30 , α0 = 1 . 00 and D ∈ 
{ 5 , 10 , 20 , 30 , 50 } . 

Dataset Method D 5 10 20 30 50 

S 3 mix-GPFR 1 . 4907 ± 0 . 0 0 0 0 0 . 4877 ± 0 . 0 0 0 0 0 . 4763 ± 0 . 0 0 0 0 1 . 1378 ± 0 . 0 0 0 0 1 . 3591 ± 0 . 0 0 0 0 

DPM-GPFR 1 . 5363 ± 0 . 0011 0 . 4812 ± 0 . 0015 0 . 5314 ± 0 . 0024 0 . 5358 ± 0 . 0025 0 . 5378 ± 0 . 0010 

S 5 mix-GPFR 1 . 5637 ± 0 . 0610 0 . 6792 ± 0 . 2523 0 . 9544 ± 0 . 3057 0 . 9437 ± 0 . 1582 1 . 3133 ± 0 . 0967 

DPM-GPFR 1 . 2154 ± 0 . 0020 0 . 5982 ± 0 . 0022 0 . 5824 ± 0 . 0018 0 . 5865 ± 0 . 0034 0 . 5850 ± 0 . 0013 

S 6 mix-GPFR 1 . 3951 ± 0 . 2372 1 . 0330 ± 0 . 8764 0 . 8493 ± 0 . 2441 0 . 9587 ± 0 . 0696 0 . 9509 ± 0 . 1312 

DPM-GPFR 1 . 2202 ± 0 . 1101 0 . 6044 ± 0 . 0012 0 . 6032 ± 0 . 0037 0 . 6075 ± 0 . 0038 0 . 6068 ± 0 . 0108 

S 7 mix-GPFR 1 . 7462 ± 0 . 0695 0 . 7491 ± 0 . 2853 1 . 3249 ± 0 . 8260 1 . 3309 ± 0 . 3491 1 . 3574 ± 0 . 1303 

DPM-GPFR 1 . 2316 ± 0 . 0 0 08 0 . 6575 ± 0 . 0026 0 . 6440 ± 0 . 0049 0 . 6512 ± 0 . 0040 0 . 6511 ± 0 . 0050 

S 8 mix-GPFR 2 . 0916 ± 0 . 3237 0 . 8365 ± 0 . 4668 0 . 8810 ± 0 . 4671 0 . 8627 ± 0 . 2220 1 . 1940 ± 0 . 5667 

DPM-GPFR 1 . 8314 ± 0 . 0143 0 . 6837 ± 0 . 0027 0 . 6478 ± 0 . 0045 0 . 6414 ± 0 . 0023 0 . 6413 ± 0 . 0022 

S 9 mix-GPFR 2 . 0088 ± 0 . 2849 1 . 1011 ± 0 . 4741 1 . 0828 ± 0 . 4047 0 . 9868 ± 0 . 3939 1 . 3796 ± 0 . 3269 

DPM-GPFR 1 . 6815 ± 0 . 2662 0 . 6937 ± 0 . 1379 0 . 6375 ± 0 . 0119 0 . 6757 ± 0 . 1411 0 . 6794 ± 0 . 1411 

S 10 mix-GPFR 1 . 7408 ± 0 . 3282 1 . 0823 ± 0 . 4284 1 . 2112 ± 0 . 4584 1 . 2715 ± 0 . 4892 1 . 3357 ± 0 . 3496 

DPM-GPFR 1 . 5298 ± 0 . 1298 0 . 6801 ± 0 . 0022 0 . 6765 ± 0 . 1176 0 . 6378 ± 0 . 0032 0 . 6875 ± 0 . 1476 

Drosophilia mix-GPFR 0 . 3651 ± 0 . 0363 0 . 3614 ± 0 . 0436 0 . 3630 ± 0 . 0447 0 . 3615 ± 0 . 0437 0 . 3593 ± 0 . 0433 

DPM-GPFR 0 . 3212 ± 0 . 0057 0 . 3016 ± 0 . 0059 0 . 2998 ± 0 . 0082 0 . 3065 ± 0 . 0095 0 . 3030 ± 0 . 0077 

Electricity 2009 mix-GPFR 0 . 2749 ± 0 . 0240 0 . 2125 ± 0 . 0345 0 . 1795 ± 0 . 0429 0 . 1652 ± 0 . 0421 0 . 1677 ± 0 . 0391 

DPM-GPFR 0 . 2562 ± 0 . 0020 0 . 1777 ± 0 . 0090 0 . 1256 ± 0 . 0185 0 . 1014 ± 0 . 0023 0 . 1086 ± 0 . 0084 

Electricity 2010 mix-GPFR 0 . 2838 ± 0 . 0227 0 . 2134 ± 0 . 0328 0 . 1832 ± 0 . 0428 0 . 1735 ± 0 . 0366 0 . 1752 ± 0 . 0370 

DPM-GPFR 0 . 2610 ± 0 . 0035 0 . 1686 ± 0 . 0047 0 . 1176 ± 0 . 0126 0 . 1194 ± 0 . 0095 0 . 1191 ± 0 . 0058 
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t
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s
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d

n Fig. 5 . We can see that if D is too small, the B-spline functions

re not flexible enough to fit the trend of curves thus leading 

o large prediction errors. As we increase D , the RMSE tends to 

ecrease, and the running time tends to be longer. For DPM-GPFR, 

he improvements of the performances are marginal as long as D 

s large enough. Although we develop a fully Bayesian treatment of 

PM-GPFR, in the prediction phase we use the MAP estimations of 

 instead of integrating out the uncertainty, thus the model may 
k 

18 
till suffer from over-fitting and the performance may drop slightly 

f D is too large. On the other hand, for mix-GPFR, the choice of 

 is very tricky and significantly influences the final results. From 

ig. 5 , we observe that DPM-GPFR is less likely to overfit than 

ix-GPFR, which confirms that treating B-spline coefficients as 

atent indicators and placing a multivariate Gaussian prior helps to 

nhance the robustness of the model. We set D = 20 on synthetic 

atasets and D = 30 on real-world datasets in our experiments, 
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hich balances the trade-off between flexibility, running time, and 

he risk of over-fitting. 

Due to randomness of initialization of latent variables and op- 

imization procedures, multiple runs of DPM-GPFR on a given 

ataset may lead to different ˆ K . Besides, under various parameter 

ettings, the resulting ˆ K may also be different. Even two clustering 

esults have the same ˆ K , they may still be different. One natural 

uestion is, what is the relationship between these clustering re- 

ults? Suppose that we have n 1 clustering results c 1 , . . . , c n 1 with 

ˆ 
 1 and n 2 clustering results c ′ 

1 
, . . . , c ′ n 2 with 

ˆ K 2 , we calculate 

GCAR ( ̂  K 1 , ˆ K 2 ) = 

∑ n 1 
i =1 

∑ n 2 
j=1 

GCAR (c i , c 
′ 
j 
) 

n 1 n 2 

or each possible combination of ˆ K 1 , ˆ K 2 . The results in Fig. 6 shows 

hat when 

ˆ K 2 ≥ ˆ K 1 , AGCAR ( ̂  K 1 , ˆ K 2 ) is close to 1, which means c ′ 
j 

is

early a refinement of c i for each c i , c 
′ 
j 
. 

.7. Effectiveness of the variational EM algorithm 

Although there are convergences guarantees for the conven- 

ional EM algorithm [3,33,34] , these theoretical results cannot be 

irectly applied to the variational EM algorithm since the Q- 

unction is calculated by an approximate posterior distribution. To 

ee the convergence property of the variational EM algorithm, we 

lot the ELBO v.s. iterations in Fig. 7 . We can see the ELBO in-

reases with iterations and tends to be stable soon after several it- 

rations, which empirically demonstrates that the proposed learn- 

ng algorithm is effective for the DPM-GPFR model. 

. Conclusion and discussion 

In this paper, we have proposed an infinite mixture of Gaus- 

ian process functional regression model (DPM-GPFR) based on 

he Dirichlet process, which can accurately capture trends informa- 

ion and characterize structured noises in functional datasets. The 

roposed method successfully solved the model selection problem 

n the mixture of Gaussian process functional regressions (mix- 

PFR) model. Furthermore, the variational EM-algorithm for learn- 

ng is derived in detail, and several variants are discussed. Exten- 

ive experimental results on both synthetic and real-world datasets 

emonstrate the effectiveness of the proposed model compared 

ith competing methods. We also analyzed the clustering results 

nd investigated the sensitivity of hyper-parameters of DPM-GPFR. 

We point out several possible research directions. In DPM-GPFR, 

ach component is a GPFR, and the mixture is developed with 

utput space. As indicated in [9] , introducing a mixture structure 

n the input space may further improve the performance. Besides, 

sing MCMC sampling to approximate the Q-function in the EM 

lgorithm [18,35] may improve the approximation accuracy com- 

ared with variational methods at the cost of longer running time. 

urthermore, it is interesting to extend DPM-GPFR to multivariate 

ases and consider exogenous covariates. 
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