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Abstract

It is well-known that the EM algorithm generally converges to a local maximum likelihood estimate. However, there have
been many evidences to show that the EM algorithm can converge correctly to the true parameters as long as the overlap of
Gaussians in the sample data is small enough. This paper studies this correct convergence problem asymptotically on the EM
algorithm for Gaussian mixtures. It has been proved that the EM algorithm becomes a contraction mapping of the parameters
within a neighborhood of the consistent solution of the maximum likelihood when the measure of average overlap among
Gaussians in the original mixture is small enough and the number of samples is large enough. That is, if the initial parameters
are set within the neighborhood, the EM algorithm will always converge to the consistent solution, i.e., the expected result.
Moreover, the simulation results further demonstrate that this correct convergence neighborhood becomes larger as the average
overlap becomes smaller.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The expectation-maximization (EM) algorithm is a gen-
eral methodology for maximum likelihood (ML) or max-
imum a posteriori (MAP) estimation[1]. Its convergence
has been studied by many researchers (e.g.,[2–7]). Since
the EM algorithm is generally considered as a first-order or
linearly convergent algorithm, several acceleration methods
for the EM algorithm have been further proposed, e.g.,
Aitken acceleration[8], conjugate gradient acceleration[9],
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quasi-Newtonian acceleration[10], parameter expansion ac-
celeration[11] and “working parameter” approach[6].

However, recent studies have found that the EM algorithm
can be asymptotically superlinear as the overlap measure of
components in the original mixture tends to zero. Actually,
Xu and Jordan[12] constructed a relation between the EM
algorithm for Gaussian mixtures and the gradient algorithm
of the maximum likelihood showing that the EM algorithm
owns a quasi-Newton behavior as it nears an ML or MAP
solution while the mixture components are well separated.
Based on this relation and one of its intermediate results on
the convergence rate in[12], Ma et al.[13] further proved
that the asymptotic convergence rate of the EM algorithm
locally around the true solution is a higher-order infinitesi-
mal than a positive order power of an average overlap mea-
sure of component densities in the mixture as this measure
tends to zero. That is, the large sample local convergence
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rate of the EM algorithm tends to be asymptotically super-
linear when the overlap of densities in the mixture tends to
zero. Recently, Ma and Xu[14] have generalized this result
to the mixture of densities from exponential families.

But there has still been an important but unsolved problem
of whether the EM algorithm can converge to the correct
solution, i.e., the consistent solution of the true parameters
of the mixture from which the sample data come. Clearly,
this correct convergence problem is key to the usefulness of
the EM algorithm. According to the classical convergence
theory, the EM algorithm only converges to a local maximum
solution of the likelihood function and cannot be guaranteed
to converge to the correct solution. However, in practical
applications and experiments, we often find that the EM
algorithm always converges correctly when the overlap of
Gaussians in the sample data or original mixture becomes
small enough. This fact reveals that the correct convergence
of the EM algorithm is related to the overlap of the Gaussians
in the mixture of the sample data and thus we can study
the correct convergence of the EM algorithm for Gaussian
mixtures from the change of the overlap of Gaussians in the
original mixture.

In this paper, we study the correct convergence problem
of the EM algorithm for Gaussian mixtures under the theo-
retical framework of[13]. It is proved that the EM algorithm
becomes a contraction mapping of the parameters in a neigh-
borhood of the consistent solution of the maximum likeli-
hood when the measure of average overlap among Gaus-
sians in the original mixtures is small enough and the sample
size is large enough. That is, when the initial parameters are
given within the neighborhood, the EM algorithm will al-
ways converge to this consistent solution, i.e., the expected
result. Moreover, the simulation results further demonstrate
that the correct convergence neighborhood of the EM algo-
rithm increases as the measure of average overlap among
Gaussians in the original mixtures decreases to zero.

In the sequel, we introduce the Gaussian mixture model
and give some definitions and a lemma in Section 2. In
Section 3, we present the main results. Moreover, we sub-
stantiate them by the simulation experiments in Section 4.
Finally, we conclude in Section 5.

2. Gaussian mixture, definitions and lemma

We consider the following Gaussian mixture model:

P(x|�) =
K∑

j=1

�jP (x|mj ,�j ), �j �0,
K∑

j=1

�j = 1,

(1)

where

P(x|mj,�j )= 1

(2�)d/2 | �j |1/2
e−(1/2)(x−mj )

T�−1
j (x−mj ),

andK is the number of mixture density components, i.e.,
Gaussians,x = (x1, . . . , xd )

T ∈ Rd denotes a sample vec-
tor, d is the dimensionality ofx. The parameter� consists
of the mixing proportions�j , the mean vectorsmj , and

the covariance matrices�j = (�(j)
pq )d×d which are assumed

positive definite. For convenience of analysis, we represent
� as a vector of the parameters:

� = [AT,mT
1 , . . . , mT

K, vec[�1]T, . . . , vec[�K ]T]T,

whereA = [�1, . . . , �K ]T, and vec[B] denotes the vector
obtained by stacking the column vectors of the matrixB.

Given K and independently and identically distributed
(i.i.d.) samples{x(t)}N1 , we estimate� by maximizing the
log likelihood:

l(�) = log
N∏

t=1

P(x(t)|�) =
N∑

t=1

logP(x(t)|�). (2)

This log likelihood can be optimized iteratively via the EM
algorithm as follows:

�(k+1)
j

= 1

N

N∑
t=1

h
(k)
j

(t), (3)

m
(k+1)
j

= 1∑N
t=1h

(k)
j

(t)

N∑
t=1

h
(k)
j

(t)x(t), (4)

�(k+1)
j

= 1∑N
t=1 h

(k)
j

(t)

N∑
t=1

h
(k)
j

(t)(x(t) − m
(k+1)
j

)

× (x(t) − m
(k+1)
j

)T, (5)

where the posterior probabilitiesh(k)
j

(t) are given by

h
(k)
j

(t) =
�(k)
j

P (x(t)|m(k)
j

,�(k)
j

)

∑K
i=1 �(k)

i
P (x(t)|m(k)

i
,�(k)

i
)
. (6)

For convenience of mathematical analysis, Xu and Jordan
[12] studied a variant of the EM (or VEM) algorithm by
letting Eq. (5) be replaced by

�(k+1)
j

= 1∑N
t=1 h

(k)
j

(t)

N∑
t=1

h
(k)
j

(t)(x(t) − m
(k)
j

)

× (x(t) − m
(k)
j

)T, (7)

that is, the update of�(k+1)
j

is based on the last update

m
(k)
j

instead ofm(k+1)
j

in Eq. (5). However, Xu[15] further

proved that the VEM algorithm owns the same convergence
behavior as the EM algorithm. Therefore, we can study the
VEM algorithm instead of the EM algorithm so that the
iteration of the algorithm can be considered as a parameter
mapping�(k+1) = MN(�(k)), which enables us to study
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the correct convergence problem of the EM algorithm from
the point of view of the contraction mapping.

In order to analyze the correct convergence problem of
the EM algorithm, we give some definitions and a lemma
related to the Gaussian mixture model which were firstly
introduced in[13].

We begin to introduce the measure for the overlap of
Gaussians in the mixture. We consider the following poste-
rior densities for the Gaussian mixture Eq. (1) with the true
parameters�∗ of the sample data set:

hi(x) = �∗
i
P (x|m∗

i
,�∗

i
)∑K

j=1 �∗
j
P (x|m∗

j
,�∗

j
)

for i = 1, . . . , K. (8)

We let

�ij (x) = (�ij − hi(x))hj (x) for i, j = 1, . . . , K, (9)

where�ij is the Kronecker function. Then, we define a group
of quantities on the overlap of Gaussians as follows:

eij (�
∗) =

∫
Rd

|�ij (x)|P(x|�∗)dx,

for i, j = 1,2, . . . , K, whereeij (�
∗)�1 since|�ij (x)|�1.

For i �= j , eij (�
∗) can be considered as a measure

of the average overlap between Gaussiansi and j in the
mixture. WhenP(x|m∗

i
,�∗

i
) andP(x|m∗

j
,�∗

j
) have a high

overlap at a pointx, hi(x)hj (x) takes a large value; other-
wise, hi(x)hj (x) takes a small value. When they are well
separated atx, hi(x)hj (x) becomes zero. Thus, the prod-
uct hi(x)hj (x) represents the degree of overlap between
P(x|m∗

i
,�∗

i
) andP(x|m∗

j
,�∗

j
) at x in the mixture, and the

aboveeij (�
∗) is an average overlap measure between the

Gaussiansi and j in the mixture.
As a whole, we consider the worst case and define

e(�∗) = max
i �=j

eij (�
∗) (10)

as an average overlap of Gaussians in the original mixture.
Obviously, 0�e(�∗)�1.

We further introduce three kinds of special polynomial
functions which we often meet in the following analysis.

Definition 1. g(x,�∗) is called a regular function if it
satisfies:

(i) If �∗ is fixed,g(x,�∗) is a polynomial function of the
component variablesx1, . . . , xd of x.

(ii) If x is fixed,g(x,�∗) is a polynomial function of the el-
ements ofm∗

1, . . . , m
∗
K

, �∗
1, . . . ,�

∗
K

, �∗−1
1 , . . . ,�∗−1

K
,

as well asA∗ = [�∗
1, . . . , �

∗
K

]T,A∗−1 = [�∗−1
1 , . . . ,

�∗−1
K

]T.

Definition 2. g(x,�∗) is called a balanced function if it
satisfies (i) and the following:

(iii) If x is fixed, g(x,�∗) is a polynomial function of
the elements ofA∗, A∗−1, m∗

1, . . . , m
∗
K

, �∗
1, . . . ,�

∗
K

,

�(�∗)�∗−1
1 , . . . , �(�∗)�∗−1

K
, where

�(�∗) = max
i,k

�ik ,

where�ik is thekth eigenvalue of the covariance matrix�∗
j
.

Definition 3. g(x,�∗) is called a convertible function if it
is regular and there is a nonnegative numberq such that
�q(�∗)g(x,�∗) is converted into a balanced function.

Furthermore, we give certain assumptions on�∗ that reg-
ularize the manner ofe(�∗) tending to zero.

• We assume that�∗ satisfies the first condition that

(1) �∗
i ��, for i = 1, . . . , K,

where� is a positive number.
• Our second assumption is that the eigenvalues of all the

covariance matrices satisfy

(2) 	�(�∗)��ik ��(�∗), for i = 1, . . . , K,

k = 1, . . . , d,

where	 is a positive number.
• The third assumption is that the mean vectors of the

Gaussians in the mixture satisfy

(3) 
Dmax(�
∗)�Dmin(�

∗)�‖m∗
i − m∗

j‖
�Dmax(�

∗), for i �= j ,

whereDmax(�∗) = maxi �=j‖m∗
i

− m∗
j
‖, Dmin(�∗) =

mini �=j ‖m∗
i

− m∗
j
‖, and
 is a positive number.

With the above preparations, we now introduce the fol-
lowing lemma.

Lemma 1. Suppose that�∗ satisfies Conditions(1–3)
and thate(�∗) → 0 is considered as an infinitesimal. If
g(x,�∗) is a regular and convertible function, we have
∫

g(x,�∗)�ij (x)P (x|�∗)dx = o(e0.5−�(�∗)), (11)

where�>0 is an arbitrarily small number, ando(x) means
that it is a higher-order infinitesimal asx → 0.

The proof is given in[13].

3. Main results

We now consider the parameter mapping of the EM iter-
ation�(k+1) =MN(�(k)), which is explicitly expressed by
Eqs. (3), (4) and (7). For mathematical analysis, we need to
represent� by a set of independent variables. In order to
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do so, we introduce the following subspace:

R1 =

� :

K∑
j=1

�j = 0, �(j)
pq = �(j)

qp for all j, p, q


 ,

which is obtained from

R2 =

� :

K∑
j=1

�j = 1, �(j)
pq = �(j)

qp for allj, p, q




by the constant shift�0. For the Gaussian mixture, the con-
straint that all�j are positive definite should also be added
to R2 and thusR1. It can be easily verified that with this
constraint,R1 becomes an open convex set within the origi-
nal subspace. Since we will only consider the local differen-
tial properties of the parameter mapping at an interior point
of the open convex set, we can set a new coordinate system
for the parameter vector� via a set of the unit basis vec-
torsE = [e1, . . . , em], wherem is the dimension ofR1. In
this way, the independent parameters of the Gaussian mix-

ture become�̂ = ET� and thus�̂
(k+1) = ET�(k+1) =

ETMN(�(k)). Certainly, this compact representation of the
parameters is equivalent to the natural representation of the
parameters for Gaussian mixture. However, it is convenient
for mathematical analysis. We will use the two paramet-
ric representations equivalently in this paper. Hereafter, the
parameter�̂ denotes the compact parameter representation
with E.

Based on the relation between the two parametric repre-
sentations, we have

��̂
(k+1)

�(�̂
(k)

)T
=�ETMN(�(k))

�(�̂
(k)

)T
=ET �MN(�(k))

�(�(k))T

��(k)

�(�̂
(k)

)T

=ET �MN(�(k))

�(�(k))T

�E�̂
(k)

�(�̂
(k)

)T
=ET �MN(�(k))

�(�(k))T
E.

(12)

Using � instead of�(k) in the parameter mapping or the
EM iteration, we introduce the following two notations:

DMN(�) = �MN(�)

��T , (13)

DMN(�̂) = ��̂
(k+1)

�(�̂
(k)

)T

∣∣∣∣∣∣
�̂

(k)=�̂=ET�

= ETDMN(�)E. (14)

Therefore, we have

‖DMN(�̂
(k)

)‖ = ‖ETDMN(�(k))E‖
�‖E‖2‖DMN(�(k))‖, (15)

where‖ · ‖ denotes the Euclidean norm for a matrix.
Since the norm‖E‖ is a positive constant, we only need

to prove that‖DMN(�(k))‖ can be small enough so that the

iteration mapping becomes a contraction mapping via the
mean value theorem. Suppose that�N is a consistent solu-
tion of the maximum likelihood on the sample data setS=
{xt }Nt=1 and thus the EM algorithm can converge to it, that is,

�N is a fixed point of the parameter mappingMN(�). We
can analyze‖DMN(�(k))‖ around�N asymptotically, that
is, we study it viaDM(�∗)= limN→∞DMN(�N).Before
doing so, we give the partial derivatives ofDMN(�) at�∗
in the block forms (refer to[16] for derivation).

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= 1

N

N∑
t=1

�ij (t)

�∗
i

, (16)

��(k+1)
j

�m(k)
i

∣∣∣∣∣∣
�(k)=�∗

= 1

N

N∑
t=1

�ij (t)�
∗−1
i

(x(t)−m∗
i ), (17)

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= − 1

2N

N∑
t=1

�ij (t)Ui(t), (18)

�m(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

=
∑N

t=1 �ij (t)x
(t)

�∗
i

∑N
t=1 hj (t)

−
∑N

t=1 hj (t)x
(t)

∑N
t=1 �ij (t)

�∗
i
(
∑N

t=1 hj (t))
2

, (19)

�m(k+1)
j

�m(k)
i

∣∣∣∣∣∣
�(k)=�∗

=
∑N

t=1 �ij (t)x
(t) ⊗ [�∗−1

i
(x(t) − m∗

i
)]T∑N

t=1hj (t)

−
∑N

t=1 hj (t)x
(t) ⊗ ∑N

t=1 �ij (t)[�∗−1
i

(x(t)−m∗
i
)]T

(
∑N

t=1 hj (t))
2

,

(20)

�m(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

=
∑N

t=1 hj (t)x
(t) ⊗ ∑N

t=1 �ij (t)Ui(t)

2(
∑N

t=1hj (t))
2

−
∑N

t=1 �ij (t)x
(t) ⊗ Ui(t)

2
∑N

t=1 hj (t)
(21)

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

=
∑N

t=1 �ij (t)Rj (t)

�∗
i

∑N
t=1 hj (t)

−
∑N

t=1hj (t)Rj (t)
∑N

t=1 �ij (t)

�∗
i
(
∑N

t=1hj (t))
2

,

(22)
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��(k+1)
j

�m(k)
i

∣∣∣∣∣∣
�(k)=�∗

=
∑N

t=1 �ij (t)Ri(t) ⊗ [�∗−1
i

(x(t) − m∗
i
)]∑N

t=1 hj (t)

−
∑N

t=1hj (t)Ri(t) ⊗ ∑N
t=1 �ij (t)�

∗−1
i

(x(t) − m∗
i
)

(
∑N

t=1hj (t))
2

−�ij

∑N
t=1 hj (t)[I ⊗ (x(t)−m∗

i
)+(x(t)−m∗

i
) ⊗ I ]∑N

t=1hj (t)
,

(23)

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

=
∑N

t=1 hj (t)Ri(t) ⊗ ∑N
t=1 �ij (t)Ui(t)

2(
∑N

t=1hj (t))
2

−
∑N

t=1 �ij (t)Ri(t) ⊗ Ui(t)

2
∑N

t=1 hj (t)
, (24)

where

�ij (t) = (�ij − hi(t))hj (t),

hi(t) = �∗
i
P (x(t)|m∗

i
,�∗

i
)∑N

t=1 �∗
i
P (x(t)|m∗

i
,�∗

i
)
,

Ri(t) = (x(t) − m∗
i )(x

(t) − m∗
i )

T,

Ui(t) = �∗−1
i

− �∗−1
i

(x(t) − m∗
i )(x

(t) − m∗
i )

T�∗−1
i

,

and�ij is the Kronecker function.
With the above preparations, we are ready to give our

main theorem.

Theorem 1. Given i.i.d. samples{x(t)}N1 from a mixture of
K Gaussian distributions of the parameters�∗ that satisfies
conditions(1–3),whene(�∗) is considered as an infinites-
imal, as it tends to zero, we have almost surely:

lim
N→∞ ‖DMN(�∗)‖=‖DM(�∗)‖=o(e0.5−�(�∗)), (25)

where�>0 is an arbitrarily small number.

Proof. Under the law of large number, we have almost
surely:

lim
N→∞ ‖DMN(�∗)‖ = ‖ lim

N→∞DMN(�∗)‖
= ‖DM(�∗)‖. (26)

According to the definition of the Euclidean norm, if each
element ofDM(�∗) is a higher-order infinitesimal quan-
tity of e0.5−�(�∗), ‖DM(�∗)‖ is also a higher-order
infinitesimal quantity of e0.5−�(�∗). Thus, we only need
to prove that each element ofDM(�∗) is a higher-order
infinitesimal quantity of e0.5−�(�∗). In the following, we
will consider the elements ofDM(�∗) in different block
forms.

We begin with the partial derivative��(k+1)
j

/��(k)
i

. Ac-
cording to Eq. (16), for each pair ofi and j, we have

lim
N→∞

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

� 1

�
lim

N→∞
1

N

N∑
t=1

|�ij (t)|

� 1

�
e(�∗) = o(e0.5−�(�∗)).

As to the block form ��(k+1)
j

/�m(k)
i

, according to
Eq. (17) we have

lim
N→∞

��(k+1)
j

�m(k)
i

∣∣∣∣∣∣
�(k)=�∗

= lim
N→∞

1

N

N∑
t=1

�ij (t)�
∗−1
i

(x(t)−m∗
i )

=
∫

�ij (x)�
∗−1
i

(x − m∗
i )dx.

If g(x,�∗) is any element of the matrix�∗−1
i

(x−m∗
i
), it

is a regular and convertible function withq = 1. According
to Lemma 1, we have

lim
N→∞

��(k+1)
j

�m(k)
i

∣∣∣∣∣∣
�(k)=�∗

= o(e0.5−�(�∗)).

That is, each element of limN→∞��(k+1)
j

/�m(k)
i

|�(k)=�∗
is o(e0.5−�(�∗)).

Similarly, according to Eq. (18) we can prove:

lim
N→∞

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= − 1

2

∫
�ij (x)Ui(x)dx

= o(e0.5−�(�∗)),

where

Ui(x) = �∗−1
i

− �∗−1
i

(x − m∗
i )(x − m∗

i )
T�∗−1

i
.
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We turn to the block form�m(k+1)
j

/��(k)
i

given by
Eq. (19) and have

lim
N→∞

�m(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= lim
N→∞

∑N
t=1 �ij (t)x

(t)

�∗
i

∑N
t=1 hj (t)

− lim
N→∞

∑N
t=1 hj (t)x

(t)
∑N

t=1 �ij (t)

�∗
i
[∑N

t=1 hj (t)]2

= lim
N→∞

(1/N)
∑N

t=1 �ij (t)x
(t)

�∗
i
[∑N

t=1 hj (t)/N ] − lim
N→∞

1∑N
t=1 hj (t)

×
∑N

t=1 hj (t)x
(t)(1/N)

∑N
t=1 �ij (t)

�∗
i
[∑N

t=1hj (t)/N ]
= 1

�∗
i
�∗
j

∫
�ij (x)x dx − 1

�∗
i
�∗
j

∫
hj (x)x dx

∫
�ij (x)dx

= 1

�∗
i
�∗
j

∫
�ij (x)x dx − 1

�∗
i
�∗
j

m∗
j eij (�

∗).

Letting g(x,�∗) be anyxi and by Lemma 1, we have

lim
N→∞

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= o(e0.5−�(�∗)).

For the block form
�m(k+1)

j

�m(k)
i

given in Eq. (20), we have

lim
N→∞

�m(k+1)
j

�m(k)
i

∣∣∣∣∣∣
�(k)=�∗

= 1

�∗
j

(∫
�ij (x)x ⊗ [�∗−1

i
(x − m∗

i )]T dx

−
∫

�ij (x)(x)m
∗
j ⊗ [�∗−1

i
(x − m∗

i )]T dx

)
.

Letting g(x,�∗) be any element ofx ⊗ [�∗−1
i

(x − m∗
i
)]T

or m∗
i

⊗ [�∗−1
i

(x − m∗
i
)]T and by Lemma 1, we have

lim
N→∞

�m(k+1)
j

�m(k)
i

∣∣∣∣∣∣
�(k)=�∗

= o(e0.5−�(�∗)).

We further consider the block form�m(k+1)
j

/��(k)
i

. Ac-
cording to Eq. (21) we have

lim
N→∞

�m(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= 1

2�∗
j

∫
�ij (x)[m∗

j − x] ⊗ Ui(x)dx.

Letting g(x,�∗) be any element of[m∗
j

− x] ⊗ Ui(x) and
by Lemma 1, we have

lim
N→∞

�m(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= o(e0.5−�(�∗)).

Furthermore, according to Eq. (22) we have

lim
N→∞

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= 1

�∗
i
�∗
j

(∫
�ij (x)Rj (x)dx − �∗

j eij (�
∗)

)
,

where

Rj (x) = (x − m∗
j )(x − m∗

j )
T.

Lettingg(x,�∗) be any element ofRj (x) and by Lemma
1, we have

lim
N→∞

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= o(e0.5−�(�∗)).

As to the block form��(k+1)
j

/�m(k)
i

given by Eq. (23),
since

lim
N→∞

∑N
t=1 hi(t)[I ⊗ (x(t)−m∗

i
)+(x(t)−m∗

i
) ⊗ I ]∑N

t=1hi(t)
=0,

under the law of large number, we have

lim
N→∞

��(k+1)
j

�m(k)
i

∣∣∣∣∣∣
�(k)=�∗

= 1

�∗
j

(∫
�ij (x)Ri(x) ⊗ [�∗−1

i
(x − m∗

i )] dx

−
∫

�ij (x)[�∗
i − (m∗

i − m∗
j )(m

∗
i − m∗

j )
T]

⊗[�∗−1
i

(x − m∗
i )] dx

)
.

Lettingg(x,�∗) be any element ofRi(x)⊗[�∗−1
i

(x−m∗
i
)]

or [�∗
i

− (m∗
i

− m∗
j
)(m∗

i
− m∗

j
)T] ⊗ [�∗−1

i
(x − m∗

i
)] and

by Lemma 1, we have

lim
N→∞

��(k+1)
j

�m(k)
i

∣∣∣∣∣∣
�(k)=�∗

= o(e0.5−�(�∗)).
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Now we turn to the last case, i.e., the block form
��(k+1)

j
/��(k)

i
. By the law of large number, we have

lim
N→∞

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= 1

2�∗
j

(∫
�ij (x)[�∗

i − (m∗
i − m∗

j )(m
∗
i − m∗

j )
T]

⊗Ui(x)dx −
∫

�ij (x)Ri(x) ⊗ Ui(x)dx

)
.

Lettingg(x,�∗) be any element of[�∗
i
− (m∗

i
−m∗

j
)(m∗

i
−

m∗
j
)T]⊗Ui(x) or Ri(x)⊗Ui(x) and by Lemma 1, we have

lim
N→∞

��(k+1)
j

��(k)
i

∣∣∣∣∣∣
�(k)=�∗

= o(e0.5−�(�∗)).

Summing up all the results, we obtain that each element
of DM(�∗) is o(e0.5−�(�∗)). Therefore, we finally have
‖DM(�∗)‖ = o(e0.5−�(�∗)).

The proof is completed.

According to Theorem 1, as the average overlap of
Gaussians in the original mixture becomes small, or more
precisely, e(�∗) → 0, the norm ofDM(�∗) becomes a
higher-order infinitesimal of e0.5−�(�∗). That is, the norm
of DM(�∗) can be arbitrarily small as long as e(�∗) is
small enough. Because limN→∞DMN(�N) = DM(�∗),
the norm ofDMN(�N) can also be arbitrarily small when
N is large enough. In help of this result, we have the
following theorem on the correct convergence of the EM
algorithm.

Theorem 2. Given i.i.d. samples{x(t)}N1 from a mixture of
K Gaussian distributions of the parameters�∗ that satisfies
conditions(1–3),and assuming that�N is just themaximum
likelihood consistent solution of the parameters� with the
set of these samples, i.e., limN→∞�N = �∗, whene(�∗)
is small enough and N is sufficiently large, there exists a
closed neighborhoodN(�N) of�N such that for any initial
parameters�0 ∈ N(�N), the EM algorithm will converge
to �N .

Proof. According to Theorem 1, whene(�∗) is small
enough with sufficiently largeN, ‖DMN(�∗)‖ can be suf-
ficiently small. Then, according to Eq. (15),‖DMN(�̂

∗
)‖

can also be sufficiently small. Because limN→∞ �̂
N = �̂

∗
(according to limN→∞ �N = �∗) and ‖DMN(�)‖ is

continuous with�, ‖DMN(�̂
N
)‖ will be very small as

long asN is sufficiently large. Thus, there exists a closed

neighborhoodN(�̂
N
) such that‖DMN(�̂)‖<1 for each

�̂ ∈ N(�̂
N
). In this case, the EM algorithm becomes a

contraction mapping withinN(�̂
N
) according to the mean

value theorem. Therefore, by the fixed point theorem, the

EM algorithm uniquely converges tô�
N

when it starts

from any initial parameterŝ�
0 ∈ N(�̂

N
).

Since the parameter representation of�̂ is equivalent to
that of� for Gaussian mixture, correspondingly there exists
a closed neighborhoodN(�N) of �N such that the EM
algorithm uniquely converges to�N when it starts from any
initial parameters�0 ∈ N(�N).

The proof is completed. �

According to Theorem 2, ase(�∗) is small enough and
N is sufficiently large, there exists a closed neighborhood of
the maximum likelihood consistent solution of the param-
eters such that the EM algorithm can converge to it when
the initial parameters are set within this neighborhood. That
is, the EM algorithm can converge correctly when it starts
within the neighborhood. Moreover, according to the above
analysis we can easily find that the magnitude of the neigh-
borhood is dominated by the overlap of Gaussians in the
original mixture, which will be demonstrated by the simu-
lation results given in the next section.

4. Simulation experiments

In this section, simulation experiments are carried out to
demonstrate the correct convergence property of the EM
algorithm under the small overlap between the Gaussians
in the original mixture. For simplicity, we consider a mix-
ture model of two univariate Gaussians in which the mix-
ing proportions�1, �2 and the standard variances�1, �2
are known and fixed, while the mean valuesm1 and m2
are unknown and need to be estimated. Typically, we set
�1=�∗

1=0.4, �2=�∗
2=0.6, �1=�∗

1=1.5, �2=�∗
2=1.5. In

this case, the overlap between the two Gaussians in the orig-
inal mixture is only dependent on the distance betweenm∗

1
andm∗

2. For convenience of analysis, we further fixm∗
1 = 0

and letm∗
2 increase from zero. Then, the EM algorithm be-

comes an iterative algorithm on the two mean valuesm1
and m2 only. That is, the parameters� degenerates into
m = (m1,m2)

T. In this situation,DMN(m̂) = DMN(m)

with

DMN(m(k)) =




�m(k+1)
1

�m(k)
1

�m(k+1)
1

�m(k)
2

�m(k+1)
2

�m(k)
1

�m(k+1)
2

�m(k)
2


 . (27)

As m∗
2 increases from 0, the average overlap measure

e(m∗) of two Gaussians in the original mixture quickly de-
creases, which is sketched inFig. 1. It is clear thate(m∗)
quickly attenuates to zero asm∗

2 increases. In a similar way,
‖DMN(m∗)‖ also attenuates to zero as the average over-
lap e(m∗) attenuates to zero orm∗

2 increases. However, as
shown inFig. 2, the variation of‖DMN(m∗)‖ with m∗

2 is
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2.



2610 J. Ma, S. Fu / Pattern Recognition 38 (2005) 2602–2611

Table 1
The simulation results on the correct convergence of the EM algorithm with the average overlape(m∗)

m∗
2 2 4 6 10 14 20

e(m∗) 0.4260 0.1140 0.0164 4.5782e−014 5.7979e−036 1.7031e−057

mN
1 0.0314 0.02426 0.007 −0.0116 0.0196 −0.0349

mN
2 1.9531 3.9830 5.9714 9.9840 14.0066 19.9752

‖DMN(m∗)‖ 0.7295 0.6514 0.2647 0.0018 4.7050e−009 2.8513e−018

‖DMN(mN)‖ 0.7462 0.6590 0.2581 0.0010 4.9302e−009 1.217e−023

r(mN ) 0.25 0.93 1.75 3.87 4.78 7.43

rather complicated in details, where we have randomly se-
lected 5000 samples from each original Gaussian mixture.

As analyzed in the previous section, whene(�∗) is
small enough,‖DMN(�∗)‖ becomes small enough so that
‖DMN(�N)‖ is less than 1 and the EM algorithm becomes
a contraction mapping within a neighborhood of�N . Now,
we further demonstrate these theoretical results by the sim-
ulation experiments. We select 6 typical values ofm∗

2 and
get the corresponding average overlapse(m∗) of two Gaus-
sians in the original mixtures. Then, for each value ofm∗

2,

we compute‖DMN(m∗)‖ and‖DMN(mN)‖, respectively,
on a set of 5000 samples from the original mixture. Finally,
we get the largest radiusr(mN) of the neighborhood ofmN

in which ‖DMN(m)‖<1. That is, the EM algorithm can
converge correctly tomN when the initialm0 is set within
it. Clearly, r(mN) denotes the largest correct convergence
radius of the EM algorithm from the point of view of the
contract mapping. The simulation results for the 6 values
of m∗

2 are listed inTable 1.
According to the simulation results given inTable 1,

‖DMN(mN)‖ is approximately equal to‖DMN(m∗)‖.
Moreover, as the average overlap of the Gaussians in the
original mixture becomes smaller, the correct convergence
radius of the EM algorithm becomes larger. Therefore, it
is demonstrated by the simulation results that the EM al-
gorithm for Gaussian mixtures tends to converge correctly
when the overlap of Gaussians in the original mixture
becomes small.

5. Conclusions

We have presented an analysis on the correct convergence
of the EM algorithm for Gaussian mixtures. Our analysis
shows that when the overlap of any two Gaussian distribu-
tions is small enough, the EM algorithm becomes a con-
tract mapping of the parameters within a neighborhood of
the consistent solution of the maximum likelihood. That is,
the EM algorithm can converge consistently to the true pa-
rameters when it starts within the neighborhood. Moreover,
it is further demonstrated by the simulation results that the
radius of this correct convergence neighborhood becomes
larger as the average overlap becomes smaller.

Although our studies in this paper are purely theoretical,
they are also significant to the practical applications of the
EM algorithm. In fact, these results on the correct conver-
gence of the EM algorithm as well as the previous results
[12–14]on the convergence rate of the EM algorithm show
that the EM algorithm is a quite efficient method for the
parameter estimation when the overlap of Gaussians in the
original mixture is small enough. Practically, if we can mea-
sure the average overlap of actual Gaussians from the sam-
ple data directly, we may get the condition for the EM al-
gorithm to converge correctly on the sample data, which is
valuable for the applications of the EM algorithm. Clearly,
it is probable to define a measure of the average overlap of
actual Gaussians from the sample data directly. However, it
is still difficult to give a reasonable and computable defini-
tion for it and we will investigate this problem in our future
works.
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