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Abstract. In tackling the learning problem on a set of finite samples, Bayesian Ying-Yang
(BYY) harmony learning has developed a new learning mechanism that makes model selec-
tion implemented either automatically during parameter learning or in help of evaluating
a new class of model selection criteria. In this paper, parameter learning with automated
model selection has been studied for finite mixture model via an adaptive gradient learning
algorithm for BYY harmony learning on a specific bidirectional architecture (BI-architec-
ture). Via theoretical analysis, it has shown that the adaptive gradient learning implements a
mechanism of floating rival penalized competitive learning (RPCL) among the components
in the mixture. Also, the simulation results are demonstrated well for the adaptive gradient
algorithm on the sample data sets from Gaussian mixtures with certain degree of overlap.
Moreover, the adaptive gradient algorithm is applied to classification of the Iris data and
unsupervised color image segmentation.
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1. Introduction

Finite mixture distributions have been used extensively as models in a wide variety
of practical situations where data can be viewed as arising from two or more pop-
ulations mixed in certain proportions. Many studies have been made on mixture
modelling as well as clustering analysis on such a sample data set [1]. Usually, it
is assumed that the number of component densities in the mixture is pre-known
and there have been several statistical methods to do such a task, e.g., the k-means
algorithm [2] and the EM algorithm [3]. However, in many cases this key infor-
mation is not available and the selection of an appropriate number of component
densities must be made jointly with the estimation of the parameters, which
becomes a rather difficult task [4].

With the Akaike’s information criterion [5] or its extensions(e.g. [6, 7]), we can
solve such a mixture modelling problem by choosing a best number k∗ of com-
ponent densities as the clusters in the sample data set. However, the process of
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evaluating a criterion incurs a large computational cost since we need to repeat
the entire parameter estimating process at a number of different value of k, even
though such a process is attempted to be organized in a more efficient way,
e.g., embedding the checking of the criterion value within clustering as did in ISO-
DATA [8].

In the field of artificial neural networks, competitive learning (CL) has been devel-
oped for clustering analysis and vector quantization [9]. However, the conventional
competitive learning algorithms such as the classical competitive learning algorithm
[10] and the frequency sensitive competitive learning algorithm [11], can only be
considered as adaptive versions of k-means algorithm and thus are unable to solve
the problem of selecting k during clustering analysis. Xu et al. [12] proposed a new
kind of competitive learning algorithm, called rival penalized competitive learning
(RPCL) algorithm, via such a mechanism that for each input, the winner of the units
(i.e., weight vectors) is rewarded to adapt to the input, but the rival (the second win-
ner) is penalized (or delearned) by a smaller learning rate. It was demonstrated that
the RPCL algorithm has the ability of automatically allocating an appropriate num-
ber of units for a sample data set, with the other extra units being pushed far away
from the sample data. Therefore, the RPCL algorithm can be used on a clustering
analysis problem with an unknown k, as long as an initial number of the units is
given to be larger than the number of actual component densities in the sample data
set. In some extended versions of the RPCL algorithm [13], the units have been gen-
eralized to be the component densities of a finite mixture, which makes it possible
for a mixture modeling problem too.

Alternatively, Bayesian Ying-Yang (BYY) harmony learning system and theory,
proposed in 1995 [14] and systematically summarized in [15–17], has provided a
theoretical foundation to solve this mixture modeling problem. The BYY harmony
learning acts as a general statistical learning framework not only for understanding
several existing major learning approaches but also for tackling the learning prob-
lem on a set of finite samples with a new learning mechanism that makes model
selection implemented either automatically during parameter learning or in help of
evaluating a new class of model selection criteria. Applied to the mixture modeling
based problem, selection of k is made via either evaluating a criterion derived from
the harmony measure or directly maximizing the harmony measure. In the latter
case, selection of k can be made automatically during parameter learning via the
least complexity nature of BYY harmony learning.

However, the least complexity nature also yields a winner-take-all (WTA) effect
that creates a local maximum solution to the harmony maximization. The problem
can be taken by either certain internal mechanisms of harmony learning or some
external techniques imposed together with learning [15–17]. Internally, either a
Tikhonov regularization is introduced via a Parzen window based data smoothing
[15, 17, 18] with various experimental supports [19], or a conscience type delearn-
ing is resulted from normalization regularization [15] with the experimental sup-
port too [20]. Moreover, it has been pointed out firstly in [15] and then further
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elaborated in [17] that the latter case actually implements a RPCL mechanism
that has its penalizing per sample during learning. Externally, the local maximum
problem may also be solved by combining a Maximum-Likelihood(ML)-equiva-
lent learning with the harmony via a weighted sum [15] or introducing simulated
annealing like techniques that make learning gradually switched from a ML-equiv-
alent learning to the harmony learning [15, 21]. In implementation, both cases are
equivalent to replacing the WTA competition in the harmony learning and the
Bayesian posterior allocation in the ML learning by some average of the both [15,
21]. Another internal mechanism, that is suggested but without further explora-
tion in [15], is using a bidirectional architecture (BI-architecture) with its Ying path
for the finite mixture and with its Yang path for regularization. In [22, 23], some
batch way gradient implementations of BYY harmony learning with a BI-architec-
ture were made on Gaussian mixture and experiments have shown that a RPCL
like mechanism also occurs during parameter learning with automated model
selection.

In the current paper, we study the implementation of an adaptive version of
the gradient learning algorithm on finite mixture for this purpose, and analyze the
learning mechanism on how it links to the RPCL learning with a floating penaliz-
ing. The simulation experiments have shown that the adaptive gradient algorithm
in the Gaussian mixture setting is efficient in comparison with the batch gradient
learning algorithms. Moreover, it is successfully applied to classification of the Iris
data and unsupervised color image segmentation.

In the sequel, the adaptive gradient learning algorithm is derived in Section 2.
Its learning mechanism is further analyzed in Section 3. Several simulation and
practical experiments are conducted in Section 4 to demonstrate the algorithm for
Gaussian mixture. Finally, we conclude in Section 5.

2. Adaptive Gradient Learning Algorithm

2.1. byy harmony function on finite mixture

We begin with a brief description of a BI-architecture of the BYY system on which
the harmony learning is equivalent to the parameter learning on the finite mixture
model, and leave the details to Xu [15].

A BYY system describes each observation x ∈ X ⊂ Rd and its corresponding
inner representation y ∈ Y ⊂ Rm via the two types of Bayesian decomposition
of the joint density p(x, y) = p(x)p(y|x) and q(x, y) = q(x|y)q(y), being called
Yang machine and Ying machine, respectively. Given a data set Dx = {xt }Nt=1,
the task of learning on a BYY system consists of specifying all the aspects of
p(y|x),p(x), q(x|y), q(y) with a harmony learning principle implemented by max-
imizing the functional

H(p||q)=
∫

p(y|x)p(x)ln[q(x|y)q(y)]dxdy − lnzq, (1)
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where zq is a regularization term that implements either data smoothing or nor-
malization as mentioned previously in the introduction section.

If p(y|x) and q(x|y) are both parametric, i.e., from a family of probability den-
sities with a parameter θ , the BYY system is called to have a BI-architecture for
short. For the finite mixture modeling, we use the following BI-architecture of the
BYY system. The inner representation y is discrete, i.e., y ∈ Y = {1,2, . . . , k} ⊂ R

with m= 1. Then, we let q(y = j)=αj � 0 with
∑k

j=1 αj = 1. Also, we ignore the
regularization term zq (i.e., set zq =1) and let p(x) be directly given by the empir-
ical density p0(x):

p0(x)= 1
N

N∑
t=1

δ(x −xt ), (2)

where x ∈ X = Rd and δ(·) is a kind of kernel function (e.g., Gaussian function).
Moreover, the Yang path is constructed with the following parametric form:

p(y = j |x)= αjq(x|θj )

q(x|�k)
, q(x|�k)=

k∑
j=1

αjq(x|θj ), (3)

where q(x|θj ) denotes q(x|y = j) with θj consisting of all its parameters and
�k ={αj , θj }kj=1. In this case, the BYY system implements a finite mixture model
q(x|�k), with regularization imposed via Equation (3).

Using a specific design of the Yang path to replace the regularization role of
the term ln zq that actually should be computed on the entire set of samples,
BYY harmony learning on a BI-architecture is more suitable for being imple-
mented adaptively, in comparison with BYY harmony learning with regularization
by either data smoothing or normalization.

With all these component densities into Equation (1) and letting the kernel func-
tions converge to the delta functions, H(p||q) becomes the following harmony
function on the parameters �k:

J (�k)= 1
N

N∑
t=1

k∑
j=1

αjq(xt |θj )∑k
i=1 αiq(xt |θi)

ln[αjq(xt |θj )], (4)

which was originally introduced in [14] as a criterion for selection of k and then
further suggested for parameter learning with automated selection of k [15].

2.2. adaptive gradient learning algorithm

Denoting Uj(x)=αjq(x|θj ), for j =1,2, . . . , k, J (�k) has the following expression:

J (�k)= 1
N

N∑
t=1

Jt (�k), Jt (�k)=
k∑

j=1

Uj(xt )∑k
i=1 Ui(xt )

lnUj (xt ). (5)



BYY HARMONY LEARNING ON FINITE MIXTURE 23

Considering the constraints on αj , we use the following so-called softmax
representation:

αj = eβj∑k
i=1 eβi

, j =1, . . . , k, (6)

where −∞<β1, . . . , βk <+∞.
Then, we can get the following derivatives of J (�k) per sample xt with respect

to βj and θj :

∂Jt (�k)

∂βj

=
k∑

i=1

∂Jt (�k)

∂Ui(xt )

∂Ui(xt )

∂βj

= 1
q(xt |�k)

k∑
i=1

[1−
k∑

l=1

(p(l|xt )− δil)lnUl(xt )](δij −αj )Ui(xt ), (7)

∂Jt (�k)

∂θj

=
k∑

i=1

∂Jt (�k)

∂Ui(xt )

∂Ui(xt )

∂θj

= 1
q(xt |�k)

[1−
k∑

l=1

(p(l|xt )− δjl)lnUl(xt )]αj

∂q(xt |θj )

∂θj

, (8)

where δij is the Kronecker function.
Letting

λi(t)=1−
k∑

l=1

(p(l|xt )− δil)lnUl(xt ), i =1, . . . , k, (9)

it follows from Equations (7) and (8) that we have the adaptive gradient learn-
ing rule:


βj = η

q(xt |�k)

k∑
i=1

λi(t)(δij −αj )Ui(xt ), (10)


θj = ηλj (t)αj

q(xt |�k)

∂q(xt |θj )

∂θj

=ηp(j |xt )λj (t)
∂lnq(xt |θj )

∂θj

, (11)

where η denotes the learning rate that starts from a reasonable initial value and
then reduces to zero with the iteration number n in such a way that 0�η(n)�1,
and

lim
n→∞η(n)=0,

∞∑
n=1

η(n)=∞, (12)

i.e., in the way used in the Robbin–Monro stochastic approximation proce-
dure [24]. The typical example of the learning rate satisfying Equation (12) is
η(n)=η0/n, where η0 is a positive constant.
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For the following experiments, we detail the adaptive gradient learning algorithm
for Gaussian mixture. In this case, q(x|θj ) is given by

q(x|θj )=q(x|mj ,�j )= 1

(2π)
n
2 |�j | 1

2

e− 1
2 (x−mj )T �−1

j (x−mj )
, (13)

where mj is the mean vector and �j is the covariance matrix which is positive
definite. Its derivatives take the following form:

∂q(xt |mj ,�j )

∂mj

=q(xt |mj ,�j )�
−1
j (xt −mj), (14)

∂q(xt |mj ,�j )

∂�j

= 1
2
q(xt |mj ,�j )[�

−1
j (xt −mj)(xt −mj)

T − I ]�−1
j , (15)

where I is the d-dim identity matrix. Substituting the derivative of q(xt |mj ,�j )

with respect mj into Equation (11), we then have the following adaptive update
rule of mj :


mj =ηp(j |xt )λj (t)�
−1
j (xt −mj). (16)

However, since �j is constrained to be positive definite, we cannot guarantee its
positive definite in the adaptive iteration if the derivative of q(xt |mj ,�j ) with
respect to �j is substituted into Equation (11) directly. Instead, we use the decom-
position technique suggested in [23], that is, letting �j = BjB

T
j , where Bj is a

nonsingular square matrix, we have the following adaptive update rule of Bj :


vecBj = η

2
p(j |xt )λj (t)

∂(BjB
T
j )

∂Bj

vec[�−1
j (xt −mj)(xt −mj)

T �−1
j −�−1

j ], (17)

where vec[A] denotes the vector obtained by stacking the column vectors of the
matrix A, and

∂(BBT )

∂B
= Id×d

⊗
BT

d×d +Ed2×d2 ·BT
d×d

⊗
Id×d ,

where
⊗

denotes the Kronecker product (or tensor product), and

Ed2×d2 = ∂BT

∂B
= (

�ij

)
d2×d2 =

⎛
⎜⎜⎝

�11 �12 · · · �1d

�21 �22 · · · �2d

· · · · · · · · · · · ·
�d1 �d2 · · · �dd

⎞
⎟⎟⎠

d2×d2

,

where �ij is a d × d matrix whose (j, i)th element is just 1, with all the other
elements being zero. Combining Equations (10), (16), and (17) together, we get the
specific adaptive gradient learning algorithm for Gaussian mixture in which αj and
�j are adaptively updated accordingly.
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3. Analysis of the Adaptive Gradient Rule

In this section, we analyze the learning mechanism implied in the adaptive gradi-
ent learning rule given by Equations (10) and (11). First, we give some properties
of λj (t) via the following theorem:

THEOREM 1. For each sample xt , we have

(i) If p(j1|xt ) � p(j2|xt ) � · · · � p(jk|xt ) under the permutation {j1, j2, . . . , jk} of
{1,2, . . . , k}, then λj1(t)�λj2(t)� · · ·�λjk

(t). Moreover, there exists a thresh-
old value T (t)= e−(1+H(xt )) such that if p(j |xt )>(�)T (t), λj (t)>(�)0, where

H(xt )=H(p(1|xt ), . . . , p(k|xt ))=−
k∑

i=1

p(i|xt )lnp(i|xt ); (18)

(ii) If jc =argmaxp(j |xt ), then λjc (t)>0;
(iii) If p(j |xt )> 1

e
, then λj (t)> 0; if p(j |xt )� 1

ke
, λj (t)< 0, where e is the natural

number.

See the Appendix for the proof.
That is, λj (t) is floating with p(j |xt ) in the same descent order at each sample xt

and there exists a threshold value T (t) such that if p(j |xt )>(�)T (t), λj (t)>(�)0.
Obviously, T (t) varies with the sample xt via the Shannon entropy of the posterior
probabilities p(j |xt ) of the components in the finite mixture. As H(xt ) is high, i.e.,
the belonging component of xt is obscure, T (t) becomes low; otherwise, as H(xt )

is low, i.e., the belonging component of xt is clear, T (t) becomes high.
Moreover, when T (t) is low, there are generally several components with λj (t)>

0; otherwise, when T (t) is high, there are a few components or just a single com-
ponent with λj (t)>0. If component j is the maximum one at the sample xt , λj (t)

must be positive. On the other hand, if component j is relatively very small, λj (t)

becomes negative.
We consider the incremental of component Uj(xt ) by the update of the adaptive

gradient leaning rule and have


Uj(xt )=q(xt |θj )

k∑
i=1

∂αj

∂βi


βi +αj

[
∂q(xt |θj )

∂θj

]T


θj . (19)

It follows from Equations (10) and (11) that


Uj(xt )=ηUj (xt )
[
(λj (t)p(j |xt )−

k∑
i=1

αiλi(t)p(i|xt ))+
( k∑

i=1

α2
i −αj

)

+ αjλj (t)

q(xt |�k)q(xt |θj )

∣∣∣
∣∣∣∂q(xt |θj )

∂θj

∣∣∣
∣∣∣2]

. (20)
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For analysis, we let

γj (t)=γj1(t)+γj2(t), (21)

where

γj1(t)=λj (t)p(j |xt )−
k∑

i=1

αiλi(t)p(i|xt ); (22)

γj2(t)=
k∑

i=1

α2
i −αj . (23)

We then have


Uj(xt )=ηUj (xt )γj1(t)+ηUj (xt )γj2(t)+η
α2

j λj (t)

q(xt |�k)

∣∣∣
∣∣∣∂q(xt |θj )

∂θj

∣∣∣
∣∣∣2

. (24)

According to Equation (22) and (i), it can be found that γj1(t) also varies
with p(i|xt ) and there is another threshold value T ′(t) such that if p(i|xt ) >

(�)T ′(t), γj1(t) > (�)0. Since
∑k

i=1 αiλi(t)p(i|xt ) is a weighted sum of these
λi(t)p(i|xt ), γj1(t) becomes positive if p(j |xt ) is large enough. Therefore, γj1(t)

behaves similarly as λi(t), but their threshold values for p(j |xt ) may be different.
On the other hand, γj2(t) is only related to the mixing proportions α1, . . . , αk. It

follows from Equation (23) that if αj is larger than a threshold value α̂=∑k
i=1 α2

i ,
γj2(t) will be negative; otherwise, it will be positive.

With the above preparations, we can uncover the competitive learning mecha-
nism among the mixture components U1, . . . ,Uk by the adaptive gradient learning
rule. When a sample xt is inputted, the component parameters βj , αj , θj are mod-
ified according to Equations (6), (10), and (11), respectively. Accordingly, compo-
nent Uj is modified and its gain1 consists of three parts: ηUj (xt )γj1(t), ηUj (xt )γj2(t),

and η
α2

j λj (t)

q(xt |�k)
|| ∂q(xt |θj )

∂θj
||2.

Since both the descent queuing orders of γj1(t) in {γj1(t)}kj=1 and λj (t) in
{λj (t)}kj=1 are that of p(j |xt ) in {p(j |xt )}kj=1, the first and last parts of the gain
can be both considered as a result of the competition among the components
U1, . . . ,Uk at the sample xt through the posterior probabilities p(1|xt ), . . . , p(k|xt ).
By each of these two parts, all the posterior probabilities can be put in a descent
order and there is a threshold value T (t) such that if p(j |xt ) > T (t), the part of
the gain is positive and Uj becomes a winner and is rewarded to increase; other-
wise, if p(j |xt )<T (t), the part of the gain is negative and Uj becomes a loser and
is penalized to decreased. Because Uj(xt )=q(xt |�k)p(j |xt ), the competition of the
posterior probabilities is equivalent to that of the components themselves.

1Since η is very small, we neglect its quadratic or higher order terms in the incremental of Uj at the
sample xt .
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By the middle part of the gain, we further find a proportion conscience mech-
anism implied in the adaptive gradient learning rule. Clearly, α̂ = ∑k

i=1 α2
i ∈

(mini αi,maxi αi). Then, if αj > α̂, γj2(t) becomes negative, with Uj being penal-
ized to decrease. Otherwise, if αj < α̂, γj2(t) becomes positive, with Ui being
rewarded to increase. This is just a proportion conscience mechanism that the com-
ponents with large proportions tends to be penalized, while the components with
small proportions tends to be rewarded.

As a whole, we have found that the leaning mechanism implied in the adaptive
gradient learning rule is a kind of floating RPCL mechanism among the compo-
nents in the mixture. That is, the number of winners (or losers) is floating with the
sample xt and the gains of the components are also regulated by the mixing pro-
portions via a conscience mechanism.

By the simulation experiments conducted in Section 4, we have also shown the
floating RPCL mechanism in the adaptive gradient algorithm. In the experiments,
the largest component Ujc is always a winner and is mostly rewarded. At the
beginning of the competition, there may be several winners or even all the com-
ponents become the winners in a special case that each posterior probability is
considerable and all the mixing proportions are equal. However, as the competi-
tive learning continues and the extra components attenuates to zero, the number
of the winners at a sample xt gets less and finally becomes one. In this way, each
component dominantly occupying the samples from one of the actual component
densities will be strongly rewarded to conform to this true density multiplied by its
mixing proportion, while the mixing proportions of the extra densities are finally
penalized to reduce to zero.

Being different from the original RPCL rule [12], the adaptive gradient learn-
ing rule floats the numbers of winners and losers in each competition with the
sample xt . Such a floating characteristic may be more reasonable for automated
model selection. In fact, at the beginning of the competitive learning, since we get
less information from the sample data, T (t) tends to be low such that all the pos-
sible candidates to match some actual component, will not be penalized. As the
competitive learning continues, we get more information from the sample data and
T (t) tends to be high. In this way, the number of winners gets less and the conver-
gence of the learning is speeded up. Finally, we get enough information to make
clear that each sample comes from a unique component, i.e, there is just a unique
winner for each sample.

4. Experimental Results

In this section, several simulation experiments are carried out to demonstrate the
performance of the adaptive gradient learning algorithm for both model selec-
tion and parameter estimation on a sample data set from a Gaussian mixture,
also being compared with those of the batch gradient learning algorithms as
well as some other existing algorithms. Moreover, the adaptive gradient learning
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algorithm is applied to classification of the Iris data and unsupervised color image
segmentation.

4.1. simulation experiments

4.1.1. Sample Data Sets

We begin with a brief description of the four sets of sample data used for our
simulation experiments. We conducted four Monte Carlo experiments in which
samples were drawn from a mixture of four or three bivariate Gaussians distri-
butions on the plane coordinate system (i.e., d = 2). As shown in Figure 1, each
data set of samples are generated with a certain degree of overlap among the
clusters (Gaussians) in the mixture. They are four typical sets of sample data from
Gaussian mixtures. The clusters in S1 are sphere-shaped, with the equal number
of samples. But those in S2 are ellipse-shaped, with different numbers of samples.

–5 0 5
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5
(a)

–5 0 5
–5

0

5
(b)

–5 0 5
–5

0

5
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–5 0 5
–5

0

5
(d)

Figure 1. Four sets of sample data of Gaussian mixtures used in the experiments: (a) The first set of
sample data S1; (b) The second set of sample data S2; (c) The third set of sample data S3; (d) The
fourth set of sample data S4.
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Moreover, S3 consists of three very flat clusters and S4 has a small number of sam-
ples, with the same structure of S2. The detailed parameters for these four sets
of sample data are given in Table I where mi,�i = [σ i

jk]2×2, αi and Ni denote the
mean vector, covariance matrix, mixing proportion, and the number of samples of
the ith Gaussian(cluster), respectively.

4.1.2. Section of Initial Parameters

In our simulation experiments and application experiments in the sequential sub-
sections, k is always selected to be larger than k∗, i.e., the number of actual Gaus-
sians in a sample or real data set. As mentioned in Section 1, we do not know
the true number k∗ of actual Gaussians in a data set. Generally, we can overes-
timate it with some additional information in the data set. If this can be done,
we can let the overestimate of k∗ be k so that k > k∗. Certainly, we can always
choose a large number as k such that it is surely larger than k∗ of the data set.
But this may not be desirable since a large k(>>k∗) will increase the training time
and the risk of model selection error (see the following simulation analysis). For-
tunately, an efficient procedure via the RPCL algorithm was suggested in [12] to
get an appropriate k for a data set. We can start with a small number or a guess
for k and perform the RPCL algorithm on the data set. By checking whether there
are spare units (i.e., far-away weight vectors) left, we would know if k >k∗. If yes,

Table I. The parameters in the actual Gaussian mixtures to the three sets of sample data.

The sample set Gaussian mi σ i
11 σ i

12 σ i
22 αi Ni

S1 Gaussian 1 (2.50, 0) 0.50 0 0.50 0.25 400

(N =1600) Gaussian 2 (0, 2.50) 0.50 0 0.50 0.25 400

Gaussian 3 (−2.50, 0) 0.50 0 0.50 0.25 400

Gaussian 4 (0, −2.50) 0.50 0 0.50 0.25 400

S2 Gaussian 1 (2.50, 0) 0.45 −0.25 0.55 0.34 544

(N =1600) Gaussian 2 (0, 2.50) 0.65 0.20 0.25 0.28 448

Gaussian 3 (−2.50, 0) 1 0.10 0.35 0.22 352

Gaussian 4 (0, −2.50) 0.30 0.15 0.80 0.16 256

S3 Gaussian 1 (2.50, 0) 0.10 −0.20 1.25 0.50 600

(N =1200) Gaussian 2 (0, 2.50) 1.25 0.35 0.15 0.30 360

Gaussian 3 (−1, −1) 1 −0.80 0.75 0.20 240

S4 Gaussian 1 (2.50, 0) 0.28 −0.20 0.32 0.34 68

(N =200) Gaussian 2 (0, 2.50) 0.34 0.20 0.22 0.28 56

Gaussian 3 (−2.50, 0) 0.50 0.04 0.12 0.22 44

Gaussian 4 (0, −2.50) 0.10 0.05 0.50 0.16 32
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then take this value; if not, increase k by adding a positive increment and perform
the RPCL algorithm again. The same procedure can be repeated until k > k∗. In
this way, we can get a moderately large number as k of the algorithm for the data
set.

The other parameters in the adaptive gradient learning algorithm can be initial-
ized randomly within certain intervals under the constraints. Actually, the initial
value of βj can be freely selected from some interval. But it has been found by
the experiments that when the initial values of these βj are equal or close and
thus the initial values of the corresponding αj are equal or close, the adaptive gra-
dient learning algorithm converges more efficiently. Thus, we give the same ini-
tial value or close values to these βj . As for mj , we can select its initial value in
the field of the sample data or some sample point. However, the initial matrix of
Bj should be nonsingular. For convenience, we can let the initial matrix of each
Bj be the identity matrix or around it. The learning rate η is given by η(n) =
η0/n with η0 =0.1 for the simulation experiments. The algorithm is stopped when
|J (�new

k )−J (�old
k )|<10−7.

4.1.3. Performance of Model Selection

We implemented the adaptive gradient learning algorithm on these four typical
sets of sample data. The experimental results on S1 and S2 are given in Figures 2
and 3, respectively, with case k =8 and k∗ =4. We observe that four Gaussians are
finally located accurately in either the sphere-shaped and symmetric structure case
or the ellipse-shaped and asymmetric structure case, while the mixing proportions
of the other four Gaussians were reduced to below 0.0001, i.e, these Gaussians are
extra and can be discarded. Therefore, the correct number of the clusters have been
detected on these data sets. Moreover, the experiment has been made on S3 with
k =8, k∗ =3. As shown in Figure 4, clusters are far from spherical shapes (actually
they are very flat). Again, three Gaussians are located accurately, while the mix-
ing proportions of the other five extra Gaussians become less than 0.001. That is,
the correct number of the clusters can still be detected on such a special data set.
Furthermore, the adaptive gradient learning algorithm was also implemented on S4

with k =8, k∗ =4. As shown in Figure 5, even each cluster has a small number of
samples, the correct number of clusters can still be detected, with the mixing pro-
portions of other four extra Gaussians reduced below 0.0002. Therefore, the adap-
tive gradient learning algorithm can make model selection automatically during the
parameter learning in each of these sample data sets.

The further experiments of the adaptive gradient algorithm had been also made
on these sets of sample data in the similar cases. Actually, a failure on the cor-
rect number detection rarely happen when we initially set k∗ � k � 3k∗. However,
the adaptive gradient learning may lead to a wrong detection when k > 3k∗. On
the other hand, an extra Gaussian may be stable with any shape as its mixing
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Figure 2. The experimental result of the adaptive gradient algorithm on the sample set S1 (after
4787 × 1600 iterations). In this and the following three figures, the contour lines of each Gaussian are
retained unless its density is less than e−3(peak).
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Figure 3. The experimental result of the adaptive gradient learning algorithm on the sample set S2

(after 4111×1600 iterations).
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Figure 4. The experimental result of the adaptive gradient learning algorithm on the sample set S3

(after 3044×1200 iterations).

Figure 5. The experimental result of the adaptive gradient learning algorithm on the sample set S4

(after 10111×200 iterations).
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Table II. The average errors of the estimated parameters by
the adaptive gradient learning and EM algorithms on the
four data sets.

S S1 S2 S3 S4

AGL algorithm 0.027539 0.025610 0.034658 0.016092
EM algorithm 0.019434 0.015928 0.029762 0.008623

proportion attenuates to zero. Sometimes, it degenerates into a 1-dim Gaussian
taking a shape of a line.

4.1.4. Parameter Estimation

In addition to the automated model selection, we further compared the converged
values of parameters (discarding the extra Gaussians) with those parameters in the
true Gaussian mixture where the samples come from. The performance metric of
average error is adopted as the absolute deviation between the estimated parame-
ters and the true parameters in each case. In Table II, we give the average errors
of the adaptive gradient learning (AGL) algorithm. For comparison, we also give
the average errors of the EM algorithms on these four sets of sample data under
k =k∗ in Table II.

From Table II, we can find that the adaptive gradient learning algorithm usu-
ally converges to a good estimate of the true parameters with a low average
error. However, the EM algorithm slightly outperform the adaptive gradient learn-
ing algorithm on the parameter estimation. That is, there is a slight deviation
between the BYY harmony learning estimate and the maximum likelihood estimate
(obtained from the EM algorithm). It is clear that this deviation is caused by the
floating RPCL mechanism of the adaptive gradient learning algorithm that each
Gaussian may be pushed or penalized with a number of samples.

4.1.5. Comparison with the Other Approaches

As compared with the batch gradient learning algorithms [22, 23] on the same data
set, we have found the following facts from the experiments:

(1) The convergence speed of the adaptive gradient learning algorithm is generally
much faster than that of the traditional batch gradient algorithm [22]. How-
ever, it may be slower than those of the conjugate and natural gradient learn-
ing algorithms [23] in the cases where the overlap among Gaussians is weak,
i.e., the actual Gaussians are well-separated. Oppositely, as the overlap among
Gaussians in the sample data set becomes strong, it is considerably faster that
those of the conjugate and natural gradient algorithms.
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(2) The adaptive gradient learning algorithm converges to the correct solution
more frequently than the batch gradient algorithms do in the cases that the
overlap among the Gaussians in a sample data set becomes strong or k is much
greater than k∗. That is, the adaptive gradient algorithm can search the global
maximum of J (�k) more efficiently.

As a result, the adaptive gradient learning algorithm is more efficient that the bath
gradient learning algorithms for the practical applications, which is really demon-
strated by the practical applications in the following two subsections. As compared
with two typical methods of the maximum certainty partitioning using a number of
kernel functions [25] and the variational Bayesian learning [26] for parameter learn-
ing and model selection on Gaussian mixture, our adaptive learning algorithm can
lead to a similar or better result, but have much less computation.

4.2. classification of the iris data

We further applied the adaptive gradient learning algorithm to classification (or
recognition) of the Iris data [27] which is a typical real data set for testing a classi-
fication algorithm. Actually, it consists of 150 samples of three classes where each
class contains 50 samples and each sample or datum is four-dimensional and con-
sists of measures of the plants morphology. Although there is the class index for
each sample, we could not use the class indexes of these samples in the adaptive
gradient learning algorithm since it learns in an unsupervised way. However, the
class indexes were used to check the classification result of the adaptive gradient
learning algorithm on the Iris data.

The adaptive gradient learning algorithm was applied to the Iris data
unsupervised classification problem by setting k =6, i.e., the two times of the real
class number 3. For the other initial parameters, we set βj = 1 + 0.2 × rand(1),

Bj = (1+0.2× rand(1))× I4, ηn =0.006/n0.8, where rand(1) is a random number in
[0,1], and I4 is the four-order identity matrix. Note that the learning rate here is
slightly different from the one given in Section 4.1B for slow-down in the learning
rate reduction. For quick convergence of the algorithm, we also set a low thresh-
old value T =0.04 such that when some αj <T , we cancel the j th Gaussian in the
mixture for the following learning iterations. The algorithm was also stopped when
|J (�new

k )−J (�old
k )|<10−7. It was shown by the experiments that the adaptive gra-

dient learning algorithm can detect the three classes in the Iris data with an opti-
mal classification accuracy of 96.7% (there are only five errors in the second class),
which is slightly less than the classification accuracy 98% (there are three errors)
of the maximum certainty partitioning method with a large number of linear mix-
ing kernels (Gaussian functions) [25]. However, the Iris data can be classified com-
pletely, i.e., the classification accuracy 100%, via a recently proposed probabilistic
ensemble simplified fuzzy ARTMAP (SFAM) classifier that employs a probabilistic
plurality voting approach on a number of supervised learning classifiers SFAMs
[28].
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4.3. unsupervised color image segmentation

We finally applied the adaptive gradient learning algorithm to unsupervised color
image segmentation that has been considered as a promising and challenging area
in image processing [29]. Here, we utilized each Gaussian in the adaptive gradi-
ent learning algorithm to represent an object (including the background) in a color
image; however, the number of actual objects is not given in advance. We set k to
be larger than the true number k∗ of the actual objects and the pixels in the image
are partitioned according to the maximum posteriori probabilities among p(j |xt ).

We used three typical color images of house, jellies, and peppers in the segmen-
tation experiments. Each pixel in the image was represented by a three-dimensional
real point. In our experiments, we first regularized all the three coordinates of the
pixels in each color image via dividing them by 32 so that the regularized coor-
dinates were within an interval of [0,8]. We then ran the adaptive gradient learn-
ing algorithm on the data sets of these three color images, respectively, by letting
k = 6 (We could guess that the number of objects in a color image is less than
6) with the other initial parameters set by βj = 1 + 0.1 × rand(1),Bj = (1.1 + 0.1 ×
rand(1))×I3, ηn =0.0008/n. Again, we set a low threshold value T =0.04 such that
when some αj < T , we cancel the j th Gaussian in the mixture for the following
learning iterations. The algorithm was also stopped when |J (�new

k ) − J (�old
k )| <

10−7.
The first experiment was made on the color image of house which is shown

in Figure 6(a). We implemented the adaptive gradient learning algorithm on this
color image with the above initial settings and leaded to the segmentation results
shown in Figure 6(b). It can be found that two objects (the house and the back-
ground) are finally located accurately, while the mixing proportions of the other
four Gaussians (objects) are reduced to below 0.04, i.e, these objects are extra and
discarded from the figure. That is, the correct number of the actual objects had
been detected on the color image with an accurate segmentation. Moreover, the
second experiment had been made on the color image of jellies, which is shown
in Figure 7(a), with k = 6. As shown in Figure 7(b), two objects (the jellies and
the background) are located accurately, while the mixing proportions of the other
four extra Gaussians (objects) become less than 0.04. That is, the correct number
of the objects could still be detected on this color image. Finally, the adaptive gra-
dient learning algorithm was implemented on the color image of peppers, which
is shown in Figure 8(a), with k = 6. As shown in Figure 8(b), the three objects
are located accurately, with the mixing proportions of other three extra Gaussians
reduced below 0.01.

As a result, the adaptive gradient learning algorithm can detect the number of
actual objects in each of these color images. Moreover, the segmentation results
of the adaptive gradient learning algorithm are much better than those of the
generalized competitive clustering (GCC) algorithm [29] (based on the fuzzy clus-
tering theory) given in the web http://www-rocq.inria.fr/∼boujemaa/Partielle2.html.
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Figure 6. The segmentation result on the color image of house. (a) The original color image of house;
(b) The segmented image of house via the adaptive gradient learning algorithm.

Figure 7. The segmentation result on the color image of jellies: (a) The original color image of jellies;
(b) The segmented image of jellies via the adaptive gradient learning algorithm.

Figure 8. The segmentation result on the color image of peppers: (a) The original color image of
peppers; (b) The segmented image of peppers via the adaptive gradient learning algorithm.
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By comparison, we can easily find that the adaptive gradient learning algorithms
lead to a more accurate segmentation on the contours of the objects in each
image.

5. Conclusions

After introducing a BI-architecture of the BYY system and the harmony func-
tion, we have derived an adaptive gradient leaning algorithm to make parameter
learning on finite mixture with automated model selection. It is shown by the-
oretic analysis that the adaptive gradient learning rule enforces a kind of float-
ing RPCL mechanism such that for each input xt , there is a threshold value T (t)

such that the components (or posterior probabilities) above T (t) are rewarded to
increase, while the components (or posterior probabilities) below T (t) are penal-
ized to decrease, simultaneously with a conscience mechanism on the mixing pro-
portions. Moreover, the adaptive gradient learning algorithm is demonstrated well
by the simulation and practical results on the sample data sets from Gaussian mix-
tures with a certain degree of overlap.
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Appendix

The Proof of Theorem 1 on the Three Properties on λj (t)

(i) According to Equation (9), we have

λj (t)=1+ lnUj (xt )−
k∑

i=1

p(i|xt )lnUi(xt )

=1+ lnp(j |xt )−
k∑

i=1

p(i|xt )lnp(i|xt )

=1+ lnp(j |xt )+H(xt ), (25)
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where

H(xt )=H(p(1|xt ), . . . , p(k|xt ))=−
k∑

i=1

p(i|xt )lnp(i|xt ) (26)

is the Shannon entropy of the posterior probabilities p(i|xt ) at the sample xt .
Since H(xt ) is invariant with j and lnp(j |xt ) increases with p(j |xt ), we cer-
tainly have λj1(t)�λj2(t)� · · ·�λjk

(t) if p(j1|xt )�p(j2|xt )� · · ·�p(jk|xt ).
It also follows from Equation (25) that there exists a threshold value
T (t)= e−(1+H(xt )) for p(i|xt ) such that if p(i|xt )>(�)T (t), λi(t)>(�)0.

(ii) If jc = argmaxp(j |xt ), i.e., p(j |xt ) � p(jc|xt ) for any j , and thus lnp(j |xt ) �
lnp(jc|xt ) for any j . Therefore, we have

k∑
j=1

p(j |xt )lnp(j |xt )�
k∑

j=1

p(j |xt )lnp(jc|xt )= lnp(jc|xt ), (27)

from which we further have

λjc (xt )�1. (28)

(iii) If p(j |xt ) > 1
e
, i.e., ep(j |xt ) > 1, then ln[ep(j |xt )] = 1 + lnp(j |xt ) > 0. Since

H(xt )�0, we have

λj (t)=1+ lnp(j |xt )+H(xt )>0. (29)

If p(j |xt ) � 1
ke

, i.e., ep(j |xt ) � 1
k

, then ln[ep(j |xt )] = 1 + lnp(j |xt ) � −lnk. By
the property of Shannon entropy, H(xt ) = H(p(1|xt ), . . . , p(k|xt )) � lnk with
the equality only holding when each p(i|xt )= 1

k
, we have

λj (xt )=1+ lnp(j |xt )+H(xt )<0. (30)
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