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Abstract—The biological neural network—simplex memory neural network—is proposed to describe the
mechanisms of pattern memory in the brain. A mathematical model of the simplex memory neural network is
constructed to memorize any binary pattern with content-addressable memory function. Under Hebbian learning
rule, the new network has some important functions in accord with the learning and memory behaviors of the brain.
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1. INTRODUCTION

A fundamental question about understanding the
memory mechanisms of the brain is “where and how
is the information memorized in the brain.” This
question has not been structurally solved yet. By
physiological anatomy, it is clear that the brain is
made of of neurons (neural cells), which are only in
the excited state 1 or the quiescent state 0 as being
expressed in a MP model (McCulloch & Pitts, 1942).
Then we generally consider that any piece of
information memorized in the brain is a binary
code. A (binary) pattern is a binary code to express
the form (the binary picture) of anything such as a
letter, a face, etc. We also consider that a pattern as a
basic unit of information can be retrieved or
recognized on a time in the brain. According to the
functions of memory of the brain, we can divide the
memory about a pattern into two categories: pattern
memory and associative memory. By pattern
memory, we mean to memorize a pattern directly
and to obtain the ability to recognize and retrieve it.
By associative memory, we mean to memorize the
relations between two patterns in order to associate
(retrieve) a pattern from the other one. Pattern
memory is the prime kind of memory which is the
basis of associative memory and intelligence. We
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wonder how a pattern can be memorized for a long
term and where it is. Psychological experiments show
that the memory is stored in the brain by groups
individually, and the memorizing or learning beha-
vior on a group is simply reading it repeatedly. In this
way, a pattern (as one group of information) is itself
probably memorized individually in a local place—a
number of neurons—in the brain. This set of neurons,
in fact, form a local neural network. Hence we
suppose that a pattern is itself memorized in a unique
local neural network of the brain which we call a
simplex memory neural network. More concretely,
the supposal means that a memorized pattern is itself
memorized in its simplex memory neural network
(hereafter referred to as SMNN) for pattern memory
and a SMNN has relations to other neural networks
for associative memory. This is our main idea.

As we expect, the SMNN of a pattern U should
have the following two functions: (1) CAM (content-
addressable memory) function: (i) when the input
pattern to the SMNN is U or the pattern nearby U (in
a certain neighborhood of U), the SMNN will be
excited, i.e., the state of the network is U. So the
pattern U is retrieved. (ii) When the input pattern is
very different from U, the network will not be excited,
i.e., the state of the network is O = (0, 0,..., 0) so
that every neuron of the network is in the quiescent
state, which means U is not retrieved. (2) AM
(associative memory) function: when the SMNN is
excited, the only memorized pattern U is retrieved.
Then the network will associate to the related neural
networks to retrieve their memorized patterns. And
in the contrary case, another neural network may
associate the SMNN in the same way.
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The purpose of this article is to construct a model
of SMNNs. As to associative memory, there are
many researches approaching it. It can be done by
means of an associative matrix or other methods.
Since the structures for associative memory are built
between two networks, we will not consider AM
functions of the SMNN for simplicity here. Then the
architecture of a SMNN will be established only by
the CAM function.

2. THE MATHEMATICAL MODEL OF SMNN

In this section, a model of SMNN is constructed
mathematically. Firstly, let N be a neural network of
n pair-wised connected neurons, then N is uniquely
defined by (W, @) where W is an n x n zero-diagonal
matrix, where element w;; denotes the weight from
neuron j to neuron i; @ is a vector of dimension n,
where component 8; denotes the threshold of neuron
i

Every neuron here can be in one of two possible
states, either 1 or 0. The state of neuron i at time ¢ is
denoted by s,(f). The state of the neural network at
time ¢ is the vector S(¢) = (51(2), s2(2), ..., sa(2))".

The state of neuron i at time (¢ + 1) is computed by

1 if Hi(s) >0,

s+ 1) =seni) = {§ 102

(1)

where

()= wys() -6 @

The next state of the network, ie., S(z+1), is
computed from the current state by performing the
evaluation eqn (1) at any neuron of the network. The
mode of operation is synchronous. When the
symmetric condition is satisfied, i.e., w;; = wj; for
any pair (i, )(i #j), the network is certainly a
Hopfield network (Hopfield, 1982) of the synchro-
nous operation mode.
The state S(¢) is called stable if

S(1) = Sen(WS(1) - 0), (3)

i.e., the state of the network is not changing as a
result of computation.

As a dynamic system, this kind of network may
have a CAM function as Hopfield networks. The
network starts in an initial state and runs with each
neuron synchronously re-evaluating itself. The net-
work enters a stable state which constitutes a stored
pattern in the memory.

According to the CAM function of the networks,
we introduce a mathematical definition of the SMNN
of a pattern U = (w1, ua,..., uy )T as follows.
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Given X:(x.,xz,...,x,,)T as a n-dim input

pattern, we define
d(X, U) =" |xi—ul (4)
i=1

as the Hamming distance between X and U.

DEFINITION 1. Define the t-neighborhood of U over the
binary n-dim space {0, 1}" as follows:

R(U) ={X:d(X, U) < t, X € {0, 1}"}. (5)

DEFINITION 2. As to a fixed pattern U, if a network
(W, 8) of n neurons satisfies:

v !fXE RI(U)7
O otherwise

E(X) = { (6)

where E(X) is the stable state of the network (if it
exists) when the network starts in the initial state X.
Then the network is called a SMNN of the patitern U
with error-correcting capacity t (1> 0).

From Definition 2, the performance of a SMNN
can be understood in this way. Firstly the initial state
X is inputted to the network. If the network operates
at last to the stable state U, we think the network is
excited, and the pattern U is retrieved, or U is
perceived. If the stable state of the network at last is
0, which means the network is in the quiescent state,
we think the pattern U is not retrieved. By the
definition of R,(U), the SMNN certainly has a CAM
function.

As to a fixed pattern, if the required error-
correcting capacity ¢ satisfies:

0< i< (% AU) - 1) . (d(U) - Z u,-) 1)

where d(U) is the Hamming weight of U, we now
propose a symmetric SMNN of U with error-
correcting capacity ¢ (like a Hopfield network) by

1 wy=u=1,i#}j,
-1 ui#“hl.?éjr

Wi = 0 w=u=0,i#j ®)
0 i=j
0, =d(U)—(t+1) 9)
foralli j=1,2,..., n.

Although the weight matrix and threshold vector
are constructed mathematically, they have some
biological meanings which will be discussed later.
Now we prove the network by showing the weight
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matrix and threshold vector is a SMNN of U with
error-correcting capacity #.

THEOREM 1. For any fixed pattern U, if d(U)>0, and
0 < t<1d(U) - 1, the network (W, 8 ) constructed by
eqns (8) and (9), is a SMNN of U with error-
correcting capacity 1.

Proof. Firstly we define the one-step evolution

function F from {0, 1}" into {0 1% of the network
(W, 9) as for X = (xi, x2,.. ) €{0,1}"

F,(X)zSgn(i: W,‘,ij(l)—o,'), i= 1, 2,...,71. (10)

Then the state at a time r+1 is given by
S(t+ 1) = F(S(2)). It is easy to verify that U and O
are the stable states of the network, i.e., they satisfy
that

F(U)=U and F(0)=0. (11)

In fact, in view of (8), we have that when u; = 1

1 ifuj = landi #J!
wy=< —1 ifu;=0andi#j, (12)
0 ifi=j

0  ifu;=0andi#}, (13)

—1 ify;=landi#j,
Wy =
0 ifi=j.

Hence
U) -1 if Ui = 1,
; Wt}u] { (U) lf U = 0' (14)
Thus, when u; = 1

F(U) = Sgn((d(U) ~ 1) - (d(U) - (1 + 1))
=Sgn(f) = 1 =y, (15)

and when ¥; =0

F(U) = Sgn((-d(U)) — (d(U) - (1 +1)))
=Sgn(t+1-2d(U)) =0=1u (16)
which implies that F(U) = U. On the other hand

F;(0) =Sgn(-6;) = Sgn(t + 1 - d(U)) =
i=1,2,...,n (17)
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Now we show that for any pattern
X = (x1,%,--.,%)" €{0,1}"
u,~=0=>F,-(X)=0=u,- (18)
and
1=u; ifd (X, U)<t,
M,'Zl—_—?F,'(X)—_— 0 lfd(X, U)>t+1,
1-x; ifd(X,U)=1+1

(19)

In order to show them we introduce a variable
determined from an input pattern X and a fixed
pattern U as follows:

NIX,U)=|{k:xy =i and wu =j}| fori,j=0,1,

(20)
where |4| denotes the number of elements of a set 4.

Then for u; = 0 we have that, in view of (13) and
N'(X, U) >0,

z": wijx; — ;i = —N'"(X, U) —d(U) + t +1
=1
] <t+1-d(U)<0, (21)
which implies (18). Before proving (19), we note that
d(U) = N"'(X, U) + N (X, U) (22)
and
d(X, U) = N"(x, U)+ N°%(x, U). (23)

Now suppose that ; = 1. Then, in view of (12),

u= Ju=0

2": WiXj = ~X; + (E Wi+ xi+ Y w,,x,) (24)
i=1 )

= —x;+ N'"(X, U)- N°(x, U)
in view of (22),
= —x+d(U) = N°'(X, U) - N°(X, U)
in view of (23),
= —x; +d(U) - d(X, U).
Hence

> wyxj — 0= —x; + d(U)

i=1

—dX, U) - (dU) - (1 + 1))

=-—x;+t+1-dX, U), (25)
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which implies (19).

We now consider the stable states of the network

with the initial state X:

(1) The case of d(X, U) < t: in view of (18) and (19)
we have F(X)= U for any pattern X ¢ {0, 1}"
such that d(X, U) < t. Thus the initial state X
arrives at the stable state U [cf. (11)] with only one
step and we have E(X) = U.

(2) The case of d(X,U)>¢+ 1: in view of (18) and
(19) we have FU)=0 for any pattern
X € {0, 1}" such that d(X, U)>t+ 1. Thus the
initial state X arrives at the stable state O [cf. (11)]
with only one step and we have E(X) = O.

(3) The case of d(X, U) = ¢+ 1: in view of (18) and
(19) we have

0 if u; =0,
1—x; ifu;=1.

FxX) = { (26)

for any pattern Xe€{0,1}" such that
d(X, U) =t+ 1. Thus

d(F(X),U) = N''(X, U) (27
in view of (22) and (23)

=d(U) - N (X, U)
= d(U) - (d(X7 U) - NIO(X7 U))
=dU) -+ D)+ NX, U)>dU) - (t+1)

in view of the assumption r<d(U)/2 — 1
S>2{(t+ D) - (t+1)=1t+1,

which means that F(X) satisfies the condition of
the case (2). Hence the initial state X arrives at the
stable state O [cf. (11)] with only two steps, i.e.
F(F(X)) = O and we have E(X) = O.

Summing up the above discussion we finally have
that E(X) = U if and only if d(X, U) <t, which
completes the proof. O

3. THE BIOLOGICAL DISCUSSION OF SMNNs

Now we consider the SMNN as a biological neural
network, then the weight w;; is considered as the
efficiency of the synapse from neuron j to neuron i.
Firstly, some biological meanings and supposals on
the network are given as follows.

As being expressed in the mathematical model, the
neurons are not permitted to fire (excite) at any
random time but rather that they are synchronized
such that they can only fire at some integral multiple
of the refractory period of the neuron [the supposal
was suggested by Little (1974)).
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We suppose that the learning process is just the
modification of synapses. In fact, threshold values of
neurons make no contributions to the learning
results. We can further suppose that all neurons of
the network have the same positive threshold value,
ie, =0, =---=8,=0>0. According to Heb-
bian learning supposal (Hebb, 1949), we use the
following formulae as a Hebbian learning rule for the
plastic synapse.

In a period, the state of neuron iis x; € {0, 1}, and
the state of neuron j is x;€ {0, 1}, then an
incremental synapse efficiency (weight) Aw;; is
obtained to w;;. Aw;; is computed by

+a ifx,~ =Xj= 1,
AW,']' = —Q ifx,- # Xj o (28)
0 ifx,~ =X;= 0

where o >0. In fact, this learning rule can be given a
unified form as follows:

AW,‘] = oz(xix]- b )—c}xj — X,'Yj),

where X = 1 — x.

We suppose that the synapse is in the plastic or
stable form, corresponding to short-term or long-
term memory, respectively. When the synapse is
plastic, the efficiency of it can be modified by the
learning rule eqn (28), or the absolute value of it
attenuates to zero (forgetting). When the synapse is
stable, the efficiency of it w;; = + E(E>0), where E is
the saturation value which has two implications: (1)
when the absolute value of the plastic synapse
efficiency increases up to E, the plastic synapse
transforms into the stable one; (2) the stable synapse
efficiency +F cannot be changed by further learning
or forgetting. In the supposal, when w;; = +E, the
long-term synapse is excitatory; and when w;; = —E,
the long-term synapse is inhibitory. We further
suppose that E = 1 for E certainly can be chosen as
the unit of weight.

By the above facts and supposals, given a neural
network of n neurons with all plastic synapses
(Wo,0), let it learn the simplex pattern U € {0, 1}",
i.e., repeatedly input U to the network and make the
network to be in the state of U for a certain time
(period). As the learning process continues properly,
the synapse efficiencies of the network will come up to
the stable values:

1 ui:ujzlvi#ﬂ

-1 ui#uj,i#]‘,
= 29
w‘) O u,-:ujzo’i¢j, ( )
0 i=j

According to Theorem 1, the network (W, 8) is a
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SMNN of U, with the error-correcting capacity
t=dU)-6-1.

So we have shown that the SMNN given by eqns
(8) and (9), may be constructed in the brain by
repeatedly learning the specified pattern U with the
Hebbian learning rule from any network of plastic
synapses. Hence there may be biological SMNNSs in
the brain.

As required, the SMNN certainly has the function
of a CAM. We further discuss the two biological
functions with the SMNN.

A. The Error Correcting Property

According to Theorem 1, the threshold value 8, error
correcting capacity ¢ and d(U) satisfy

t=d(U)-6-1. (30)

So when 0 is stable (fixed), the error correcting
capacity ¢ is directly proportional to d(U). As d(U)
increases, the error correcting capacity increases too.
In fact, as d(U) [supposing that

If

we memorize the dual pattern U= (1 —u;, | —u,,

R )T instead of U, which is a common
phenomenon in memorizing patterns or figures by the
brain] becomes greater, the pattern becomes more
complex, so it contains more information with which
the greater capacity of error correcting is obtained.
Thus the relation eqn (30) conforms to the memory
behavior of the brain.

B. The Effects of Fluctuation on the Threshold Value

As we suppose above, the threshold values are stable
and don’t affect the learning results. In fact, the
stability is relative. The threshold value may fluctuate
under certain conditions. When there appears
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excitation (inhibition) on a local field of the brain,
this may cause each neuron of the SMNN to be easily
excited (inhibited), which means the threshold value
is decreased (increased) to a lower (higher) value.
According to eqn (30), when the threshold value of
the network is decreased, i.e., the excitatory level is
increased, the error correcting capacity is increased so
that the retrieval of the pattern becomes easy.
Alternatively, when the threshold value of the
network is increased, i.e., the inhibitory level is
increased, the error correcting capacity is decreased
so that the retrieval of the pattern becomes difficult.
This function seems reasonable.

4. CONCLUSION

We have proposed a model of SMNN to describe the
mechanism of pattern memory in the brain. The
SMNN is defined to memorize only a simplex pattern
with a CAM function. Then a mathematical model of
SMNN is constructed for any pattern. Under some
physiological supposals (these seem reasonable), the
mathematical model can be formed by repeatedly
learning the pattern U with Hebbian learning rules
from any neural network of plastic synapses. Hence
there may be biological SMNNSs in the brain. From
the discussion, we have shown that the SMNN as a
biological neural network has some important
functions in accord with the memory behavior of
the brain.

As a whole, the model of SMNN is significant in
recognizing the memory architecture of the brain.
Certainly we need further psychological experiments
to verify it.
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