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Abstract—We present a study on the stability of the generalized Hopfield network in randomly asynchronous mode.
First, the stability is investigated from the state space of the network. We introduce a concept of hole and define iwo kinds
of stability in randomly asynchronous mode. By mathematical inductive method, we have proved that a generalized
Hopfield network with non negative weights is strictly stable, that is, the network evolves to a simple hole—stable state
with probability one when it starts at any initial state. For the general case, we made the simulation experiments on the
networks with the number of neurons from 5 to 10. The empirical results have shown that almost any generalized
Hopfield network with simple holes is strictly stable. © 1997 Elsevier Science Ltd.
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1. INTRODUCTION

The discrete-time Hopfield network was proposed
mainly as an associative memory model (Hopfield,
1982). It is a dynamical system uniquely defined by
(W,0) where W is a symmetric zero-diagonal real
weight matrix, and 8 is a real threshold vector. By intro-
ducing a special energy function, Hopfield (1982) proved
that the network in an asynchronous mode (randomly or
deterministically) will evolve to a stable state with any
initial state, which is the key to associative memory.

In this kind of neural network, when the weight matrix
is asymmetric and zero-diagonal, we usually call it an
asymmetric (discrete-time) Hopfield network. In this
paper, we define a generalized Hopfield network as
such a kind of network with a general (asymmetric or
symmetric) zero-diagonal real weight matrix. In recent
years, for the purpose of associative memory, several
learning algorithms or schemes have been established
on the generalized Hopfield networks (refer to, e.g.,
Gardner, 1988; Abbott, 1989; Venkatesh & Psaltis,
1989; Allen & Alspector, 1990; Xu & Tsai, 1990; Ma,
1993; 1995). In fact, these schemes are all based on
making a set of given patterns to be the stable states of
a network. Many experiments show that the effect of
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associative memory with the network operating asynchro-
nously is better and more reasonable than that with the
network operating synchronously, since the state of a syn-
chronous network has more probability to be trapped in a
limit cycle than to converge to a stable state. But the stabi-
lity of the generalized Hopfield network in any kind of
asynchronous mode has not been investigated in depth.

In this paper, we present a study on the stability of the
generalized Hopfield networks in randornly asynchro-
nous mode. Hereafter we refer to Generalized Hopfield
Network as GHN for short. In Section 2, we investigate
the pair-wised network—a more general form of
GHN—from its state space and make it be equivalent
to a directed hypercube. Then we generalize the stable
state to the hole and prove that the network in randomly
asynchronous mode will drop in a hole with probability
one when it starts at any initial state. In Section 3, we turn
to discuss GHNs and prove that the GHN with non-
negative weights is strictly stable. For the general case,
we make the simulation experiments on the networks
with the number of neurons from 5 to 10 and the
empirical results show that almost any GHN having
simple holes is strictly stable. Our conclusions appear
in Section 4.

2. THE STABILITY OF THE PAIR-WISED
CONNECTED NEURAL NETWORKS

We first consider the pair-wised connected neural net-
work of n neurons which is a more general form of
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GHN or discrete-time Hopfield network. Here a pair-
wised connected neural network is defined to be a single
layer consisting of n neurons which are connected to one
another. Every neuron is in one of two possible states,
either 0 or 1 (when the two possible states are — 1 and 1
instead of 0 and 1, it can be easily verified that the net-
work has the same properties of stability discussed in this
paper). The state of neuron i at time ¢ is denoted by x,(?).
The state of the neural network at time ¢ is the vector
X(1) = [x,(0),x5(2),....x ()] T The network can operate in
different modes. If the computation is performed at all
neurons at the same time, we say that the network is
operating in synchronous mode. If the computation is
performed at a single neuron at each time, we say that
the neural network is operating in asynchronous mode.
Furthermore, we say that the network is operating in a
randomly asynchronous mode if the single activation
neuron is randomly selected subject to one probability
distribution. And we say that the network is operating
in a deterministically asynchronous mode if the single
activation neuron is deterministically selected by a
certain rule (function).

In any asynchronous mode, the label of the selected
neuron forms a sequence as the network evolves. Such
sequence will be called an asynchronous sequence for the
evolution of the network. In fact, the characteristic of the
asynchronous sequence and the structure of the network
together determine the stability of the network in an
asynchronous mode.

In this paper, we study the stability of the network in
randomly asynchronous mode. For clarity, we only con-
sider a typical randomly asynchronous mode which is
accurately described as follows.

The network starts with an initial state. Then at each
time, a neuron is randomly selected from all possible n
neurons of the network with equiprobability. If the
selected neuron is neuron i and the time is ¢ + 1, then
the state of neuron / is computed from the state X(z) of the
network at time ¢ by

xi(t+ 1) = FiX@®) = Fi(x1 (), -y Xi = 1(8) X; 1 1 (8), o0 X (1))

n
where F; is the activation function of neuron i from
{0,1}" to {0,1} (in fact, it only depends on the (n — 1)
components of X(r) except x(1)). The states of other
neurons remain unchanged, i.e.

X+ D) =x0) G #i) @)

On the other hand, if X(r + 1) is computed from the
current state X(r) by performing the evaluation eqn (1)
at every neuron of the network, the mode of operation is
synchronous.

A state X = [x;.x3,....x,]" of the network is called
stable if

X,=F(X) (i=1,2,..,n) 3)

i.e. if the state of the network will never change as a
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result of evolution in any asynchronous or synchronous
mode. Thus the stable state of the network in any
operation mode is the same. However, the stability of
the network in different operation mode may be different.
In the following, we only discuss the stability of the
network in randomly asynchronous mode.

We now observe the operating of the network from the
state space V(0,1) = {0,1}" which consists of all pos-
sible 2" vertices of n-dim unit hypercube. Every state of
the network is considered as a vertex of V‘”’(O,l) ora
binary code of n bits. In an n-dim hypercube, each vertex
has n edges connecting to its n neighbor vertices. Two
neighbor vertices expressed as two n-dim binary vectors
have one Hamming distance between them. We consider
that the state (vertex) of the network is X = [x;,x2,....x,]"
and neuron i is selected. According to the state evolution
rule of eqns (1) and (2), if F(X) # x,ie, F(X)=1—x;
X will be transited to [x;,...,x;_;,1 — x,»,xi+],...,x,,Twhich is
defined as the ith neighbor vertex of X. We give a
direction from X to its ith neighbor vertex on the
edge between them. Else if F(X) = x;, the state of
the network X will not change at time ¢ ++ 1. In this
case, by eqn (1), F[x pXion] — XipXiptyenkal?) =
FillxppXisiXiptseXn]) = FyX) = x;. Therefore
when the ith neighbor vertex is the state of the network
and neuron i is selected, the ith neighbor vertex of X,
i€, [XponXion] — XpXippe..X,' will be transited to X.
Then we give a direction from the ith neighbor vertex
to X on the edge between them. In this way, we can
give a direction on every edge of the hypercube. Thus
the evolution function of the network defines a directed
hypercube in the state space. On the contrary, a direc-
ted hypercube also defines a unique evolution function
of the network. Therefore a network is functionally
equivalent to a directed hypercube and we can study
the network by its directed hypercube.

For the stability of the network, we introduce a con-
cept of the hole in a directed graph.

DEFINITION 1. Assuming that G is a directed graph and
H is a subgraph of G. H is called a hole of G if it satisfies:

1. H is a connected graph, i.e., any vertex of H can
connect to any one of the other vertices of H by a
path in H.

2. Any vertex outside H can only connect to the vertices
of H if it is possible. In other words, each vertex in H
cannot connect to any vertex outside H.

For a network, if H is a hole of its directed hypercube, we
say that H is a hole of the network. We also say that this
set of vertices or states in H is a hole of the network.
The stable state is certainly a hole of the network. So
the hole is just a generalization of the stable state. A hole
may be simple, just like a stable state, but it may be
complex and very large, even containing all the vertices.
We further define a hole to be simple or complex as
follows. A hole is simple if it contains only one vertex,
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i.e., it is a stable state. A hole is complex if it contains
two or more vertices.

The structure of a hole may be complicated. Figure 1
gives the structure sketches of three kinds of holes. In
Figure 1, a small black circle represents a vertex (state).
Figure la describes the structure of a simple hole—a
stable state. Figure 1b describes the structure of a special
complex hole—the limit cycle of the network in ran-
domly asynchronous mode. The other edges connecting
to the vertices of the hole are all omitted in the figure. In
this kind of limit cycles, any two neighbor vertices have
one hamming distance between them. Figure Ic
describes an example of the general structure of a com-
plex hole. It can be thought as a group of the cycles
among which any cycle intersect or is tangent with one
of the other cycles. The other edges connecting to the
vertices of the hole are also omitted in the figure.

THEOREM 1. Any network in randomly asynchronous
mode defined by eqn (1) will drop in a hole of the network
with probability one when it starts at any initial state in
the state space.

Proof. For any network defined by eqn (1), we consider
its directed hypercube and divide all vertices into two
sets 4 and B. If a vertex (state) has a path connecting
to a hole of the network, which means that the network
has a positive probability to drop in the hole with this
state as an initial state of the network, the vertex belongs
to 4. Else if a vertex cannot connect to any hole of the
network, the vertex belongs to B. Now we prove that B is
empty.

We suppose that B isn’t empty. Then we say X; € B.
Because X; cannot be a stable state, X; must connect to
another vertex X; € B. (The vertex of B cannot connect
to the vertices of 4 under the classification.) In this way
on i step, X; € B may be in two cases. First, X; is still
different from any one of X;X,,....X; ;. Second, X; is
equal to one of X X,,...X; 1. We say X; = Xk < i),
then X X;11,....X; form a cycle in the directed hyper-
cube—the state space. Because this cycle, or even it
with the precedently formed cycles which intersect or
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are tangent with it, cannot be a hole, there must be a
new vertex in B which is connected from the cycle or
cycles. We change X; to be the new vertex in this case.
Therefore, a new and different vertex can always be pro-
duced and added to the vertex sequence X;,X5.....X; on
each step. If we form the sequence unlimitedly, we
certainly get infinite different vertices in 3. This is a
contradiction with the finite number of the state space
of the network. Therefore, B is empty.

As B is empty, 4 is the state space. Therefore, there
must exist at least one hole in the directed hypercube and
any vertex can connect to one of the holes. Then for each
state (vertex), it certainly has a path to a hole. Since the
path consists of a finite number of steps (edges) in the
directed hypercube, the network can evolve to the hole in
a finite number of steps when the asynchrorious sequence
is properly selected. Because the number of all the states
of the network is finite, there certainly exists a finite
number m such at the network will probably evolve to
a hole in m steps from any initial state in {0,1}". Thus, by
the assumption of the randomly asynchronous mode and
over the classical probability space {1,2,...,n}™ of the
m-step asynchronous sequence, the network has a
positive probability P(X) to evolve to a hole from X (as
an initial stage) in m steps. If X is already in a hole,
P(X) = 1. We let p be the minimum of P(X) over {0,1}".
Then p > 0.

Now we consider the network evolves with an initial
state X°. The asynchronous sequence is generated in the
randomly asynchronous mode. We express it in m-step
block as follows:

§= (Sl,l’sl,Zs seny sl,m’ SZ, 1552,2404582 ms veey sk,lvsk,Za ey
Sems o) @

In the first block of m steps, the network starts with X°.
Then the network has the probability P(X % to evolve to a
hole. At the end of the first block, the state of the network
is X(m). We denote X' = X(m). If X" is in a hole, then the
network will always be in this hole. Otherwise, if X' is
not in a hole, we need the second block to further make
the network evolve to a hole. In this case, 1 — P(X%) is the

©

FIGURE 1. The structure sketches of the three kinds of holes of GHNs.
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probability of the event E that the network does not drop
in a hole after the first block, i.e. X' is not in a hole.

In this way, at the end of the kth block, the state of the
network is X(km). We denote X* is in a hole, the network
will always be in this hole. Otherwise, if X* is not in a
hole. we still need the further block to make the network
evolve to a hole. In this case, over the product probability
space of k independent blocks, the probability of the
event E, that the network does not drop in a hole after
the k& blocks is

P(E)=(1 — PX°)(1 — P(XY)...(1 — P(X, _ 1)) = (1 — p).

5)

Because 0 < 1 — p < 1, then P(E,) converges to zero as k
tends to infinity. Thus the network with X° will finally
evolve to a hole with probability one as the time tends to
infinity. Therefore, the network will drop in a hole of the
network with probability one when it starts at any initial
state in the state space. The proof is completed.

By Theorem 1, we can consider each network defined
by eqn (1) is stable with probability one in light of con-
verging to the holes of it. In fact, besides the holes of the
network, there may be some cycles in the directed hyper-
cube. But they have the paths to some holes. Therefore,
these cycles do not trap the state of the network with
probability one as the time continues to infinity. In
other words, these cycles trap the state of the network
with probability zero. Theoretically, the network may
always transit in these cycles when a very special asyn-
chronous sequence appears. However, this case appears
with probability zero. We can be sure that it does not
appear in the application. By the empirical results, we
always find the network quickly drops in a hole.

For associative memory, it is reasonable that the net-
work converges to a stable state with any initial state in
randomly asynchronous mode. According to Theorem 1,
this is equivalent to that each hole of the network is
simple. We define that these kind of networks are strictly
stable. Hopfield network is an example of this kind of
network. Furthermore, the following corollary is deduced
from Theorem 1.

COROLLARY 1. If the directed hypercube of a such net-
work satisfies that every vertex has a path to a simple
hole—stable state, the network is strictly stable.

Proof. By Theorem 1, the network has holes. We suppose
that there exists a complex hole H of the network or its
directed hypercube. Then any vertex in H cannot connect
to the vertices outside H according to the definition of the
hole. So every vertex in H cannot have a path to a simple
hole in the directed hypercube. This is contradictory with
the fact that every vertex has a path to a simple hole.
Therefore the network has only simple holes. Hence the
network is strictly stable. The proof is completed.
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A GHN may have complex holes. For associative
memory, we want to know when a GHN is strictly stable
and whether there are abundant GHNs with simple holes.
Furthermore, how much is the probability (frequency) of
the event that a GHN with simple holes is strictly stable?
These problems are closely related to the associative
memory of GHNs. In Section 3, we will discuss these
problems on GHNs.

3. THE STABILITY OF THE GENERALIZED
HOPFIELD NETWORKS (GHNS)

We now consider a GHN N = (W,f). Here Wisann X n
zero-diagonal matrix with its element w;; denoting the
weight of the connection from neuron j to neuron i; 8 is a
vector of dimension n with its component §; denoting the
threshold value of neuron i. The activation function F(X)
is expressed as follows:

1 ifHX)=0
FiX)=IH(X))= . (6)

0 otherwise

where
HX)= > w, % +6;.
j=1

Since w;; = 0, H(X) is unconcerned with x;, and so is
F(X) here.

‘When the weight matrix is symmetric, the network is a
Hopfield network. As Hopfield (1982) proved by the
energy function, a Hopfield network with any initial
state will evolve to a stable state—a simple hole in any
asynchronous mode. Then a Hopfield network has no
complex hole. Thus a Hopfield network is strictly stable.

3.1. The Strict Stability of the GHNS with
Nonnegative Weights

We now give another kind of strictly stable networks.

THEOREM 2. A GHN with nonnegative weights is strictly
stable.

Proof. We prove this theorem by the mathematical
inductive method. We begin with n = 2. We define
N® = (W2,02) to be a GHN of two neurons with non-
negative weights. The weight matrix and threshold
vector are given as follows:

wo (04 oo (" Q)
b 0 6,

where a = 0, b = 0. Then H,(X) = ax; + 0, H,(X) =
bxl + 02.

! n = 1, the theorem certainly holds, but the network. has no weight.
For intuition with the condition of nonnegative weights of the network,
here we begin with n = 2.
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FIGURE 2. Two directed hypercubes of GHNs of two neurons with the complex holes.

The state space of N® is V®(0,1) = {(0,0),(0,1),
(1,0),(1,1)}. From the directed hypercubes, we can easily
verify that only two possible networks of two neurons are
not strictly stable. Figure 2 gives the directed hypercubes
of these two networks.

If a network of two neurons has the directed hypercube
of Figure 2a, it should obey the transition rules in Table 1.

If a N@ obeys the transition rules of Table 1, the
parameters of the network satisfy the following group
of inequalities:

6, =0

0, =0
®)

a+6, =0

b+86, =0

Then we getthata < — @,,and 6, =0, i.e.,,a <0. This is
a contradiction with @ = 0. Therefore any N® cannot
obey the transition rules or have such a directed hyper-
cube. In the same way, we can prove that any N® cannot
have the directed hypercube of Figure 2b. Then any N?
cannot have each of the two directed hypercubes. Thus
any N@ s strictly stable, i.e., a GHN of two neurons with
nonnegative weights is strictly stable.

Then we suppose that a GHN of n neurons with non-
negative weights is strictly stable. We define N® =
(W™ ,6®) 10 be a GHN of n neurons with nonnegative
weights.

We now consider a GHN of (n + 1) neurons with
nonnegative weights and define N0 = (WD g+h)
as a GHN of (n + 1) neurons with nonnegative weights.

TABLE 1
The transition rules of the network with the directed hypercube
Figure 2a
The State Neuron 1 Neuron 2 Synchronous
selected selected mode
(0,0) = (1,0) (0,0) (1,0
0.1)= (0,1) (0,0) (0,0)

(1,0)= (1,0) 1,1) 1,1)
(1,1) = (0,1) 1,1) (0,1)

With (n + 1) neurons, the weight matrix and threshold
vector are given as follows:

0 W2 e Win Wiy
w21 0 e W2 Wy
w1 — ,
Wn,1 Wn,2 0 Wnnt1
Wn+1,1 wn+l.2 Wn+l,n 0
6,
73
gt — : ©)
b,
0n+1

By Corollary 1, if any vertex has a path to a simple hole
in the directed hypercube, the network is strictly stable.
In the pointview of state transition, if the network starts
with an initial state X and finally evolves to a stable state
X* under any asynchronous sequence, there is certainly a
path from X (as a vertex) to X* (as a simple hole) in the
directed hypercube. Therefore in order to prove the strict
stability of N®*, we need only to prove that there
always exists an asynchronous sequence for the network
to evolve to a stable state from any initial site. In the
following, we construct such an asynchronous sequence
for any initial state by the induction hypothesis and the
properties of N1,

Suppose that X = [xl,xz,...,x,,,x,,H]T € v™(0,1)is an
initial state of N™*V ie., X(0) = X. Let X(t) =
(1) XD, Xa(D Xns1(D]T be the state vector of N™*.
xi(1) is the state variable of neuron i. We discuss the
evolution of N®*V in two cases of x,;.

(1) x,41 = 0. At the first stage, we select the perform-
ing neurons only from the front n neurons, i.e., the
first,...,nth neurons of the network, in the evolution
steps. In this case, as we don’t select the last neuron—
neuron (n + 1), x,,; is fixed to be zero. Then N®D jg
functionally degenerated to a N® of the front # neurons
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with (W™, as follows.

0 Wi,2 Win-1 Wi,n
Wa 1 0 Won_1 Wan
W('l) — ,
Wn_1,1 Wa-1,2 - 0 Wn_ti,n
wn,l wn,2 Wn,n—l 0
6
0,
0" = (10)
6,

According to the induction hypothesis, N® is strictly
stable. By the proof of Theorem 1, there is a path in
the directed hypercube of N® from [x{,x5,...x,]" = X®
to a stable state of N®, say X' = [x'1,x’5,...x",]7. Then
there is an asynchronous sequence §; by which the net-
work of N® can evolve to X from X®. With S, the state
vector of N®*V is [x/ ¢’ 5,...x",,0] " at the end.

We then select neuron (n + 1) to perform the evalua-
tion. After the evolution, if x,,(f) remains unchanged,
[ X' 2,...x" 1,017 is certainly a stable state of N®*V. Thus
N@*D has already evolved to a stable state with the initial
state X by the asynchronous sequence § = §;.

On the contrary, if x,,(#) has changed to 1, the state of
the network becomes X(7) = [x'1.x"5,...x'n,117. Then we
obtain the following inequality.

Wat 11X 1+ Way 12X 2+ oo+ Wop o s+ 0,01 =0
(1D

We begin the second stage of selecting the performing
neuron again only from the front n neurons in the
evolution steps. At this stage, N™*" is functionally
degenerated to another N®@ of the front n neurons with
W®,0™) as follows:

0 Wi,2 Win-1 Win
W, 1 0 Won—1  Won
W = : : : : ,
Wal,l Wao12 oo 0 Wn_1n
Wn,1 Wy 2 Woon—1 0
01+ wini1
Oy +wypy1
"= 12)
On + Wa,n+1

For this N®, we have the proposition that the state vari-
able x;(¢) of neuron i (for i = 1,2,...,n) with the initial state
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X' will not decrease in the following steps. It can be
verified as follows.

We begin with the first evolution step and assume that
neuron i is selected to perform the evaluation. When x';
= 1, since X’ is the stable state of the first degenerated
network described by eqn (10), we have

w;‘lx'l+w,-y2x'2+...+w,-’,,x',‘+0,~+1 = 0 (13)
Because w; 1 = 0, we certainly have
WX 1+ wiax s W w1+ 0,200 (14)

So that x(f) will be 1 after the step. When x’; = 0,x(t)
can only be 0 or 1. Then x(f) cannot be decreased. There-
fore the state variable of each neuron of the network
doesn’t decrease in the first step.

At the beginning of the second step, the state vector of
the network may be in two situations. Firstly it is X’
(unchanged). By the analyses of evolution of the first
step, we know that the state variable of each neuron
will not decrease in the second step. Secondly it is
changed to [x',..x"i1,1,% i41,....x ] 7 instead of X' =
(%" preex’ i-1,0,X" i 15--ox" 1] 7. Then the state vector has an
additional 1 component in comparison with x’. Because
w;; = 0, Hi(X(#)) will be increased or unchanged in the
second step. Therefore the state variable of each neuron
of the network will not decrease in the second step. By
the above analyses of two situations, we can obtain that
the state variable of each neuron of the network doesn’t
decrease in the second step.

In the same way, the state of each neuron of the
network doesn’t decrease in the following steps.
Summing up the above discussion, we have verified the
proposition.

From the induction hypothesis, this N® is still strictly
stable. So there is an asynchronous sequence: S, by which
the N® evolves from X’ to a stable state, say X" =
(X1 20Xl

Now we return to N®  with the state
[X (X" 3. X" 117, We select neuron (n + 1) for the sec-
ond time. By the proposition above, we certainly have

X zx'(i=12,..,n). (15)
By eqns (11) and (15), we have

Wit 1,101+ Wag 12X 2 o W 1 nX i+ 0, =0,
(16)

that is, the state of neuron (n + 1) is still 1. Therefore the
state [x"1,"2,....¢" ,, 117 is a stable state of N®*D. Thus the
N+ has evolved to a stable state with the initial state X
by the asynchronous sequence S = (3,7 + 1,55).

Summing up the above results, there always exists an
asynchronous sequence for N®*V to evolve to a stable
state from any initial state X with x,,; = 0.

(2) x4, = 1. In the same way, we select the perform-
ing neuron only from the front » neurons in the evolution
steps at the first stage. In this case, as we fix the state of
neuron (n + 1), N+ jg again degenerated to the N® of
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eqn (12) of the front n neurons. From the induction
hypothesis, this N* is strictly stable. In the same way,
there is an asynchronous sequence S, by which the N®
with the initial state of [x;,x,,....x,]7 = X®™ will evolve to
a stable state X’ = [x" ,x’5,....x',]7. Then at the end of S,
the state vector of N js [x'1.x'5,....x" 117

We then select neuron (n + 1) to perform the evalua-
tion. If the state variable of neuron (n + 1) is not
changed, [x'1,x'5,....x",,1]7 is certainly a stable state of
N®*D_ S0 N™D has evolved into a stable state from the
initial state X by the asynchronous sequence S = S in
this situation.

If the state variable of neuron (n + 1) has changed to 0
after this step, the state vector of N™P is [x' 1, x 25y
x 017 at present. This turns out to be case (1). By the
above results, N® can evolve to a stable state by a
certain asynchronous sequence. Therefore there always
exists an asynchronous sequence for N®Y to evolve to a
stable state from any initial state X with x,,; = 1.

Summing up the results of two cases, we have obtained
that there always exists an asynchronous sequence by
which N™*" evolves to a stable state from any initial
state of V®+1(0,1). Therefore every vertex must have a
path to a simple hole in the directed hypercube of NV,
By Corollary 1, we obtain that N®*" is strictly stable.
The proof is completed. -

3.2. The Simulation Results on the Stability of GHNs

In this subsection, we study the stability of general GHNs
by simulation experiments. We now consider a general
GHN as a random network from the probability space. As
we define, a GHN is uniquely specified by (W,0). It is
called random if the weights w;;(i # j) and thresholds 8,
are random variables.”> We assume that all the weights
w;; (except w;; = 0) are independent random variables
subject to one probability distribution and all the
thresholds 8; are also independent random variables sub-
ject to another probability distribution. When a random
GHN doesn’t have symmetric or nonnegative weights,
there are three possible results about the simple and
complex holes of the network:

EVENT &,. All holes are simple, which certainly
means that the network is strictly stable.

EVENT ¢g,. Some holes are simple and the other are
complex.

EVENT ¢g;. All holes are complex.

For associative memory, we usually make a set of
given patterns to be the stable states of a network. Thus
the required network certainly have simple holes. Are
there abundant GHNs with simple holes? Therefore we
want to know how much the probability P(e; U &,) is.

2 An actual network is a sample of a random network. The weights
w;i(i # j) and thresholds 8; of an actual network are regarded as samples
of the corresponding random variables.
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When a GHN has both simple holes and complex
holes, it is useless, or at least not good for associative
memory. We further want to know how much is the
conditional probability of the event £, given (g; U &,,
ie., P(gile; U g,). We made some simulation experi-
ments of GHNs to probe into these problems by
statistics. Table 2 lists the results of the experiments.

In Table 2, n and the integers in the first row are the
numbers of the neurons of the networks. For each value
of n, we randomly chose 1000 GHNSs with this number of
neurons. In each case w;; (except w;; = 0) and 6; were
independently chosen from the integers between — 1000
and 1000 with equiprobability. Then each network was
checked to find whether it had a simple hole or not. As a
result of statistics, we obtained F(n), the frequencies of
the event &, U &, (a random GHN has simple holes) in the
second row of Table 2. From these data of F(n)(n =
5,..,10), we found that a random GHN has the higher
frequency of having simple holes than that of having
only complex holes. However, F(n) decreases with n.
For the larger n, we cannot make such experiments on
the computer to estimate F(n). But we can be sure that
F(n) will be a considerable value because there exist
several algorithms which can make a set of patterns to
be stable states of a network. Therefore these networks
for associative memory really exist and may be easily
found or constructed.

For each GHN with simple holes, we further check
whether it had any complex hole or not. As a result of
statistics, we obtained that the numbers of the GHNs
having complex holes, are 14, 12, 15, 23, 27, 22, respec-
tively, corresponding to n from 5 to 10. Hence we got the
conditional frequencies R(n) of the event ¢, given &, U g,
(a random GHN has complex holes under the condition
that it already has simple holes). By the data of R(n)
listed in the third row of Table 2, the conditional frequen-
cies are very small and oscillate below 0.04. Then the
conditional frequency of the event &, given &, U &, (a
random GHN only has simple holes, i.e., it is strictly
stable, under the condition that it already has simple
holes) is almost 1 for a random GHN of these sizes.
Therefore these empirical results have shown that almost
any GHN with simple holes is strictly stable. Hence the
method of making a set of given patterns to be the stable
state of a GHN is effective for associative memory.
Summing up the above discussion, we can believe that
the GHN can be effectively used for associative memory.

We have discussed the stability of GHNs in randomly

TABLE 2
The simulation result of the frequency of the GHN with simple
holes and/or complex hole

n 5 6 7 8 9 10

Fn) 0724 0690 0.667 0.638 0.661 0.620
R(n) 0.019 0.017 0.022 0.036 0.040 0.035
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asynchronous mode. The acting operation mode is gen-
erally used as a practicable and reasonable randomly
asynchronous mode. However, according to the proof
of Theorem 1, we can easily find that the theoretical
results of the stability obtained in this paper are also
true for any randomly asynchronous mode subject to a
probability distribution by which each neuron is selected
with a positive probability. These results are significant
to associative memory. Moreover, we made some other
simulation experiments in synchronous or some determi-
nistically asynchronous modes. In this case, we find that
operating in a deterministically asynchronous mode or
synchronous mode, a GHN may be attracted in a stable
or state cycle, even when it is strictly stable. Most of
states in the state space (as initial states) will be trapped
in the cycles instead of stable states.

4. CONCLUSION

We have begun to explore the stability of GHNSs in ran-
domly asynchronous mode. By mathematical analyses,
we found and proved a GHN with nonnegative weights is
strictly stable. Then the GHNs with nonnegative weights
is useful for associative memory. On the other hand, this
kind of GHNs can be easily constructed by electronic

J. Ma

devices. By simulation experiments on the networks
with the number of neurons from 5 to 10, we found
that the GHNs with simple holes are abundant and
strictly stable almost. Therefore GHNs can also be
effective for associative memory as Hopfield networks.
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