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Abstract

The EM algorithm is generally considered as a linearly convergent algorithm. However,
many empirical results show that it can converge significantly faster than those gradient based
first-order iterative algorithms, especially when the overlap of densities in a mixture is small.
This paper explores this issue theoretically on mixtures of densities from a class of exponential
families. We have proved that as an average overlap measure of densities in the mixture tends
to zero, the asymptotic convergence rate of the EM algorithm locally around the true solution
is a higher order infinitesimal than a positive order power of this overlap measure. Thus, the
large sample local convergence rate for the EM algorithm tends to be asymptotically
superlinear when the overlap of densities in the mixture tends to zero. Moreover, this result
has been detailed on Gaussian mixtures.
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1. Introduction

The EM algorithm is a widely used method for maximum likelihood (ML) or
maximum a posteriori (MAP) estimation [3]. The convergence of EM and related
methods has been studied by many authors (e.g., [2,4,12,15,16,18,19]). Generally, the
EM algorithm is considered as a first order or linearly convergent algorithm and it
really shows the slow convergence in some situations. Then, there have been
proposed several acceleration methods for the EM algorithms such as Aitken
acceleration [9], conjugate gradient acceleration [5], quasi-Newtonian acceleration
[6,10], parameter expansion acceleration [13] and “working parameter” approach [7].

However, as the EM algorithm has been successfully applied to large-scale
problems such as hidden Markov models [17], probabilistic decision trees [7] and
mixtures of experts architectures [8], many evidences show that its convergence
rate can be significantly faster than those of conventional first-order iterative
algorithms (i.e., gradient ascent). In fact, it is further found by the empirical results
that the EM algorithm converges faster when the overlap in the given mixture
becomes smaller.

Xu and Jordan [20] showed that the condition number of the effective Hessian of
the EM algorithm for Gaussian mixtures is smaller than the condition number of the
Hessian of the log likelihood associated with gradient ascent, which provides a
general guarantee of the dominance of the EM algorithm over the gradient
algorithm. Moreover, in the case that the mixture components are well separated,
they showed that the condition number for EM approximately converges to one,
which indicates a local superlinear convergence rate. Thus, in this restrictive case, the
EM algorithm has the favorable property of showing quasi-Newton behavior as it
nears an ML or MAP solution.

It has been further found by Ma et al. [14] that the asymptotic convergence rate of
the EM algorithm is actually dominated by a measure of the average overlap of
component densities in the Gaussian mixture as the overlap tends to zero. Based on
the mathematical connection between the EM algorithm and gradient algorithm and
one of its intermediate results on the convergence rate by Xu and Jordan [20], they
proved that the asymptotic convergence rate locally around the true solution is a
higher order infinitesimal than a positive order power of an average overlap measure
of component densities in the mixture as this measure tends to zero. That is, the large
sample local convergence rate of the EM algorithm tends to be asymptotically
superlinear when the overlap of densities in the mixture tends to zero.

In the current paper, based on one of the EM convergence rate properties
obtained by Render and Walker [18], we further prove a general result that extends
the results in [14] from Gaussian mixtures to mixtures of densities from a class of
exponential families. Under certain regular conditions, we have found that the large
sample local convergence rate of the EM algorithm for a mixture of densities from
the exponential families tends to be asymptotically superlinear when the average
overlap measure of component densities in the mixture tends to zero. From the
general result, we also provide an alternative proof on the main theorem firstly
obtained in [14] on Gaussian mixtures.
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Section 2 describes the EM algorithm for mixtures of densities from the
exponential families. In Section 3, we introduce and prove our main theorem on
the asymptotic convergence rate of the EM algorithm. We further detailize this result
on Gaussian mixtures in Section 4 and then conclude in Section 5.

2. The EM algorithm for mixtures of densities from exponential families
2.1. The mixture model

We study the following mixture model:

K K
P(x|®) = Y 0 Pi(xl$), %=0, Y o =1, (1)
i=1 i=1

where x = [xl,...,x,,]T € R", each P; is a density from a family of probability
distributions parameterized by ¢, € Q; C R% and K is the number of the mixture
components. The parameter @ consists of the mixing proportions «; and the
component parameters ¢;, that is, @ = (a,...,0k,¢P,...,Pg) € 2, with

K
2%

S?:{wb“”am¢b“”¢@:§:

i=1

=1and 2;,20,¢, € Q; fori = 1,...,K}.

If each Pi(x|¢;) = Pi(x|m;, 2;) is a Gaussian density given by

. _ DY) — 1 —(1/2)(x—m[)TZ,.'l(x—m[)

PAI) = POl ) = o e , @)
where m; = [m;, ..., m;]" is the mean vector, X; = (O’;d)nxn is the covariance matrix
which is positive definite, it becomes a Gaussian mixture which has been extensively
studied in literature. In fact, the asymptotic convergence rate of the EM algorithm
for Gaussian mixtures with respect to the overlap in the mixture have already studied
in [14]. In this paper, we further study the same problem on the EM algorithm for
mixtures of densities from exponential families. That is, the components are
extended from Gaussian densities into densities of exponential families.

A parametric family of densities ¢(x]0),0 € @ C R on R" is said to be an
exponential family if its members take the form

¢(x10) = a(0)'b(x)e" "™, x e R", 3)

where b(x), #(x) are functions of x on R" and a(6) is given by

a@z/bmﬁmw
Rn

for an appropriate underlying measure ¢ on R”". It is assumed that h(x)>0 for all
x € R", a(0)< + oo for 0 € O and 1(x), called a statistic, relates to the observed data
only. Also, the support of every member of an exponential family is same as that of
the function b(x).
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On the other hand, the members of the exponential family can be equivalently
represented by

P(x|) = g(x10($)) = a(¢)”'b(x) @™, x e R”

with the “expectation” parameter ¢ = Ey(#(X)) which will be used in our analysis
(refer to [1] or [18] for details).

This paper further focuses on a class of exponential families in which every density
P(x|¢p) has the mean vector m and the covariance matrix X, and is sheltered by an
envelope or upper bounded function U(x|¢) as follows:

P(x|$) S U(x|$) = W(x)(Amax) e #1/1D 72 (4)
where
n(x) — (/Lmax)
| x —ml|

and Anax 1s the maximum eigenvalue of X of P(x|¢). Moreover, ¢y, ¢, p and v are a
group of positive numbers, and w(x) is a positive polynomial function of xi,..., X,
with constant coefficients. Here and hereafter, we use the Euclidean norm for a
vector and its inductive norm for a matrix. Actually, the class of these families
includes many of the most commonly used exponential families such as the binomial,
Gaussian and exponential distributions.

In the mixture, each Pi(x|¢;) is assumed to have the “expectation” parameteriza-
tion for ¢, € Q; € R as follows:

Pi(x|p)) = ai(¢) ' bilx) P, x e R )

and @* = («f,. .., o, @7, ..., ¢%) is used to denote the “true” parameter value of the
mixture to be estimated, that is, the sample data come from the mixture of the
parameter @*. Also, the components of 7;,(x) are assumed to be polynomials of
X1yeooyXp.

Moreover, the envelope function of Pi(x|¢}) is given as follows:

Pi(x|7) < Udx|¢}) = w(x)(Ay, )~ e P/t (6)
where
()
Mi(x) = —ma__
llx — |

and m? and 1! are the mean vector and the maximum eigenvalue of the covariance
matrix 27 of Pi(x|¢;), respectively. ci, ¢z, p and w(x) may depend on i implicitly.
Furthermore, we assume that these A, . are always bounded. We let v to be the least
one among all these v; and modify p such that these U;(x|¢$]) are still the envelope
functions of the component densities. As a result, we can let

_ (;Ll ax)v

nix) =—"2—, i=1,... K,
' lx —m7]|

where v is a common positive number.
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2.2. The EM algorithm and its asymptotic convergence rate

We consider a set of sample data &y = {x”:¢r=1,...,N} and suppose that
¢\, ..,¢g are mutually independent variables. If ¢¢ = (acl, e 0 B, %) s a
current ML estimate of the log-likelihood function L(®) = Z, | log P(x(’) |<;D) for the
mixture of densities from the exponential families Eq. (1), the EM algorithm
recursively gets the next estimate by

% Pi(x"| ;)
i NZ P(x(r)|¢o: > (7)
(]5;#_ {;tz(x ) P(x(f)MjC) }/{; P(x(f)|@c) , (8)
fori=1,...,K.

This iterative procedure converges to a local maximum of L(®) [3,19]. Moreover,
under certain regularity conditions, the EM iteration converges to a consistent
solution that maximizes the log likelihood L(®) [18]. In this paper, assume that the
EM algorithm asymptotically converges to the true parameter @* correctly (i.e.,
when the size N of the sample data %y is large, the EM algorithm converges to ¢V
with limy_ @Y = ®* in probability one), we analyze the local asymptotic
convergence rate around @*.

In [18], Render and Walker represented the EM iteration as a functional iteration

* = G(®°) and have

dT — ¢V = G(9°) — G(®Y) = G'(PV)(¥° — dV) + O(||9¢ — dV|?) )

for any @° in Q near ®", where G'(®) denotes the Jacobian of G(®) at " and O(x)
means that it is a same order infinitesimal as x — 0. By the strong large number law,
they proved that as N increases to infinity, with probability one, G'(®") converges to
its expectation E(G'(®*)) = I — Q(®P*)R(P*), where

O(P*) = diag(et, . .., o, o Iy, ... o T k) (10)
with

;= [ 160 = 971000 - 11 P d

-

and

R(®*) = / V(x)V(x) P(x|®*)du (11)
with

V() = (Br(X), ..., B (x), i BT ()L o Br ()T k()

Bi(x) = Pi(x|$7)/ P(x|D"),

Ii(x) = ;7 '[t:(x) — ¢;1.
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Here and hereafter, E(-) = E¢ (). It follows from Eq. (9) that the convergence rate
of the EM algorithm locally around @V is upper bounded by the norm ||G'(¢")]|. By
increasing N to infinity, we then get the following upper bound of the asymptotic
convergence rate r of the EM algorithm locally around &*:

rgnmnG@%u=‘
N—o00

. ' BN
Jim G

= [E(G' (@)l = I — Q(P)R(P")]. (12)

In the following, we will study the asymptotic convergence rate of the EM
algorithm for mixtures of densities from the bell sheltered exponential families via
this upper bound through defining an average overlap measure of the component
densities in the mixture such that we can analyze its change as the overlap measure
tends to zero.

3. The main result
3.1. The measures of the overlap
We revisit the measures used in [14] for the overlap of component densities in a

Gaussian mixture. We consider the following posterior densities for the mixture Eq.
(1) with the true parameters @*:

B = —APOD oy K (13)
Zj:qupj(xld);)
It follows from Eq. (11) that
hi(x) = o pi(x). (14)
We further let
75(X) = (05 — hi(x))hj(x) forij=1,...,K, (15)

where ¢ is the Kronecker function. Then, we define a group of quantities on the
overlap of component densities as follows:

@) = [ 1yIPe1o") dy

fori,j=1,2,...,K, where e;(®*)<1 since [y;(x)|<1.

For i#j, e;(®*) can be considered as a measure of the average overlap between the
densities of components 7 and j in the mixture. When P;(x|¢]) and P/(x|q§;‘) have a
high overlap at a point x, /;(x)h;(x) takes a large value; otherwise, /;(x)h;(x) takes a
small value. When they are well separated at x, h;(x)h;(x) becomes zero. Thus, the
product /;(x)h;(x) represents the degree of overlap between P;(x|¢;) and P/(x|¢;‘) at
x in the mixture, and the above ¢;(®*) is an average overlap measure between the
densities of components i and j in the mixture.
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We start at observing the special case e(®*) = 0 which means that
hi(x)hj(x) =0 fori#j

with probability one, i.e., the component densities in the mixture are well separated.
In this case, it follows from the result obtained in [I8] that the asymptotic
convergence rate is zero and the EM algorithm gets a Newton type convergence
behavior for the large size of samples. However, this case happens in only a
degenerated situation. In this paper, we consider a more general case that the
component densities are not well separated, but the mixture can tend to be well
separated with the overlap measure e(®*) attenuating to zero. Although the
asymptotic convergence rate of the EM algorithm for such a mixture does not
become zero exactly, it is interesting to study how the convergence rate attenuates
with the average overlap measure e(®*) reducing.

3.2. Regular conditions and lemmas

The study starts at some assumptions that require the mixtures of densities from
the exponential families to satisfy the following regular conditions:

(1) Nondegenerate condition on the mixing proportions: We first assume that the
mixing proportions satisfy the nondegenerate condition:

ofzo fori=1,...,K, (16)

where o is a positive number. If some mixing proportion reduces to zero, the
corresponding component distribution will disappear from the mixture, which
degenerates to a mixture with a lower number of the mixing components. This
assumption prevents this degeneracy.

(2) Uniform attenuating condition on the eigenvalues of the covariance matrices: We

let 27 be the covariance matrix of the ith component density and Z;,..., Ay its
eigenvalues. The eigenvalues of all the covariance matrices satisfy
PAP)< A <MP*) fori=1,... K, k=1,...,n, (17)

where f is a positive number and A(®%) is defined to be the maximum eigenvalue of
the covariance matrices 27,..., 2%, i.e.,

)V(CD*) = max /l,'/

ij ’
which is assumed to be always upper bounded by a positive number B. That is, all
the eigenvalues uniformly attenuate or reduce to zero when they tend to zero. It

follows from Eq. (17) that the condition numbers of the K covariance matrices are
also uniformly upper bounded, i.e.,

I<k(ZH)<B fori=1,... K,

where x(27) is the condition number of 27 and B’ is a positive number.
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(3) Regular condition on the mean vectors: The third assumption is that the mean
vectors of the component densities in the mixture, i.e., mj, ..., m}, satisfy

D max (D) < Diyin (P*) < ”m:k - m;k” < Dmax(@*)  for i#j, (18)

where Dpax(P*) = max;xjllm} — m; |, Dnin(9*) = min;||m} — m;|, and p is a
positive number. That is, all the distances between two mean vectors are the same
order as they tend to infinity. Moreover, when the overlap of densities in the mixture
reduces to zero, any pair of two means m;,m; cannot be arbitrarily close, i.e., there
should be a positive value T such that |m] — mj’-‘|| >T when i#j. In this situation,
Eq. (18) certainly holds if m7, ..., m} are always bounded.

We further get an upper estimation of || 11 [_] I, where II; is given in Eq. (10). Since
each component P;(x|¢;) comes from an exponential family, we have the following
equality [11]:

;= Var(t(X)) = I (¢pF) or II;7' =1(¢F),

where 1(¢]) is the Fisher information matrix of P;(x|¢}).
(4). Dominating condition on Fisher information matrices: Our last assumption is
that the norm of the Fisher information matrix I(¢;) for each P;(x|¢;) satisfies
IO ()™ fori=1,....K, (19)

max

where J is a positive number and 7,7, are nonnegative numbers.

As will be shown in the next section, Condition (4) is satisfied on each component
distribution in a Gaussian mixture as long as Condition (2) holds.

For analysis, we also define a quantity n(®*) from the functions #,(x), .. ., 1x(x) by

n(@*) = max n(my) (20)

which will be helpful to establish the relation between the asymptotic convergence
rate and the overlap measure e(®*).

By the function of #,(x) to Ui(x|¢}) given in Eq. (6) as well as P;(x|¢]), we can
easily have that e(®*) tends to zero if #(®*) tends to zero. On the other hand, if e(®*)
tends to zero, there generally appear two situations: (a) #(®*) does not tend to zero;
and (b) n(®*) tends to zero.

In the situation (a), as e(®*) tends zero, the covariance matrix 27 of each
component can always keep nonsingular, but there will be no overlap between any
two component densities in the limit mixture, which means that the component
densities in the mixture can be well separated. This is a special case of the mixture of
densities from exponential families and the EM algorithm in this special case is
already asymptotic superlinear by the analysis of Redner and Walker [18]. Thus, we
do not need to consider this special situation.

As to the situation (b), any two component densities in the mixture cannot be well-
separated, which is the general case of the mixture of densities from exponential
families. If e(®*) tends to zero, the covariance matrix X7 of each component will tend
to zero such that the component distribution is degenerated to a point distribution.
That is, each ! — 0. Because ||m} — m?|| =T under our assumptions, we have that
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n(®*) — 0. Therefore, we have that n(®*) — 0 while e(®*) — 0 and thus n(®*) — 0
is equivalent to n(®*) — 0 in this general situation.

As we need only to consider the general situation that the component densities
cannot be well separated, but tend to be well separated with e(®*) attenuating to
zero, we will use the equivalence of n(®*) — 0 and e(®*) — 0 in our study.

Since #(®*) is not an invertible function, i.e., there may be many @*s for a value of
n(®*), we further define

SO = sup e(®%) (21)
n(®*)=n

which is well defined because e(®*) is always not larger than 1. By the definition, we
certainly have

ej(P*)<e(P*)<f((P™)) for i#j. (22)
Finally, have three lemmas as follows (see the Appendix A for the derivation).
Lemma 1. Suppose that a mixture of K densities from the bell sheltered exponential

families of the parameter ®* satisfies Conditions (1)—(3). As n(®*) tends to zero, we
have

(1) n(®*), ni(mj’-k) and n;(my) are the equivalent infinitesimals.
(i1) For i#j, we have
I} | < T l|m} — my]l, (23)

where T’ is a positive number.
(iii) For any two nonnegative numbers with p + q¢>0, we have

I — M 1P ()~ < OV (D%)), (24)

max

where p vV ¢ = max{p, q}.

Lemma 2. Suppose that a mixture of K densities from the bell sheltered exponential
families of the parameter ®* satisfies Conditions (1)—(3). As n(®*) tends to zero, we
have for each i
) LI <y lim; — mj 17, (25)
where j#1i, Y and p are some positive numbers.
(i) E(lt(X) = 717 SoM{ (D), (26)

where M(®*) = max;.|m} — mrll, v and q are some positive numbers.

Lemma 3. Suppose that a mixture of K densities from the bell sheltered exponential
families of the parameter ®* satisfies Conditions (1)-(3) and n(®*) — 0 as an
infinitesimal, we have

I (%)) = o(n”(97)), @7
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where ¢>0, p is any positive number and o(x) means that it is a higher order
infinitesimal as x — 0.

These three lemmas establish certain important relations between the useful
quantities which will appear in the proof of the main theorem. Especially, the
relation between e(®*) and n(@*) given by Lemma 3 actually reflects the
characteristic of the densities from the bell sheltered exponential families.

3.3. The main theorem

With the above preparations, we are ready to give our main theorem.

Theorem 1. Given a mixture of K densities from the bell sheltered exponential families
of the parameter ®* that satisfies Conditions (1)—(4), as e(®*) tends to zero as an
infinitesimal, we have

r<|E(G (@) = o™ ("), (28)
where ¢ is an arbitrarily small positive number.

According to this theorem, under certain regular conditions, as the overlap of
components in the mixture of densities from the bell sheltered exponential families
becomes small, or more precisely, e(®*) — 0, ||E(G'(P%))| is a higher order
infinitesimal than e’>~%(®*). Therefore, as e(®*) tends to zero, the asymptotic
convergence rate of the EM algorithm locally around @* is a higher order
infinitesimal than e®>~%(®*). That is, when e(®*) is small and N is large enough, the
convergence rate of the EM algorithm approaches approximately zero. In other
words, the EM algorithm in this case has a quasi-Newton type convergence
behavior. Moreover, it follows from the theorem that the asymptotic convergence
rate attenuates exponentially with the overlap measure as it tends to zero. This
means that as the overlap measure in the mixture reduces, the convergence speed of
EM increases greatly. This result may provide a theoretic basis for the study of the
convergence rate of EM in the cases of finite overlap and data.

On the other hand, the theorem has also provided a new mathematical proof for
the well-known fact that the rate of the EM algorithm is determined by the fraction
of missing-data information. Actually, the measure of overlap among the component
densities is equivalent to the fraction of missing-data information in the mixture.
While the overlap measure tends to zero, the component density of each sample data
becomes very clear. That is, the fraction of missing-data information reduces to zero.
Therefore, the overlap measure can be considered as the fraction of missing-data
information in the mixture. In this way, the theorem has also proved that the EM
algorithm tends to converge superlinearly as the fraction of missing-data
information tends to be zero. Moreover, this theorem also provides another proof
for the correctness of the acceleration methods like the “working parameter’” method
[16] and the PX-EM algorithm [13], which are based on the concept that the EM
algorithm will have a fast rate of convergence if the fraction of missing-data
information is small.
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Proof of Theorem 1. We begin with the computation of the product Q(®*)R(P*).
According to the expressions of Q(®*) and R(®*), we compute the elements of
Q(P*)R(P*) by blocks, as follows:

Q@)R(P*) = diagldiagl/"), "Iy, ..., o5 1]

Ryyr Ryrr - Rypy
Ry 4t er,FlT er,r,T(
X
RFK’/}T RFK,FIT e Rr,(,r}
diag[ /"Ry v diag[ /"Ry px - diagl/ TRyt
OCTilanl—l’ﬁT OCT*IHIRFI’FIT . o(T*IHer]’F'Il“'
OC;(_IHKR['K,ﬁT “}_IHKRFK,I"IT . oc?{_lHKRFK,I"}

where B(x) = [B,(x),...,Bx()]" and .o/ = [oc’{,...,oc}]T. The blocks of the matrix
R(®*) are defined according to the blocks of V(x) as

V(x) =[BT et i) - ax BT k()]

(a) The computation of diag[;z{T]Rﬁ,ﬂT: From the definition of f,(x) and the relation
that 7;(x) = of B;(x), we have

1
/ BB PO D) djt = ——ey(@%) if i),
R" OCl» OC]-

1 1
[ BoPiede= - e
R &; (“,‘)
which lead to

—ai e (@%)  osTlenn(PF) - o leik(PF)
i lex (D) —o3len(@%) - o leag(DF)

diaglo/ "Ry ;v = I +
ek (DF) o3 lega (D) - —oy 'exk(PF)

Because

1 1 X
Eey(qj*)é &ey‘(@*) = o(e™ (%)),

7
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we further have
diagl./"|Ry g = I + o(c">~(®%)).

(b) The computation of diag[MT]Rﬁ’rT(i =1,...,K): According to the definition,
we have

Ry = E(of B(X)BX)T] (X))
[ o I (X)hi(X) |

= E| | o hQORX) | (1(X) — )7

o hg(X)h(X)
o hi(X)hi(X)

=F OC[*_lhl(X)(hl(X) — 1) (II(X) _ (bT)T H',l

i »

o hg(X)hi(X)

where X is the random vector subject to the probability distribution P(x|®*). In this
derivation, we have used the fact:

EGQOTC0) = 11715 [ (1) = 4 Px19) du=0.

Moreover, with the notations #,(x) = [t;1(x), ..., .4 (x)]" and ¢; =[dj1s---» qb}idi]T,
we have

diagl./ "VE(e BX)BXOIT) = E(diagl.s/ "o i X)BXNt/X) — ¢7)DIT;!

E(h (X)h(X)(1i1(X) — ¢71)) o E(m(X)hi(X)(t:4,(X) — ¢74)
E(hi(XDh(X)(131(X) — ¢71)) o E(hii(Xhi(X)(t1.4,(X) = ¢74)

= | EGX)(hi(X) = D(tia(X) = ¢7) -+ E(hi(X)(hil(X) = D(Wia(X) = ¢7g)) |17
E(hii(XDhi(X)(1i1(X) = ¢7)) o B (X0h(X)a,(X) = 7))
E(hg(XOh(X)(1i1(X) = 7)) o E(hg(XDh(X) 3.4, (X) = ¢74))
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Specifically, we consider each item in the above first matrix. It follows from the
Cauchy—Schwarz inequality and the fact |y;(x)|<1 that

|E(hi(X)(hi(X) = 8)(1i(X) — T
S E(I(X)(hi(X) — o)l (t:x(X) — 7)1
<E'PGROOE(1a(X) - 6710
<EV2(ly(X)EV2(1:(X) — $5))

<\/es(@)E A ((t14(X) — 1))

According to Lemma 2, E(||t(X) — ¢} |?|®*) is upper bounded by oM (®*). Then, all

the terms E'/z((t,-,k(X)—qbzk)Q) are certainly upper bounded by +/vMI(®*).
Therefore, we have

E(diagl.o/ "o B X)BX)(E(X) — ¢5)T) = O(M (@) (%)),

According to Lemmas 1 and 3, M%/*(¢*)e"5(¢*) is also an infinitesimal as e(®*) or
n(@*) tends to zero. It further follows from the properties of the matrix norms that

| E(diagl«/ ozt BAX)BX)(E(X) — dD) )| = O(M (09)e (9%)).
Moreover, we always have

diagl.o/ 1Ry, pr || < || E(diag.+# "o BLXOBX(E:(X) — ¢ DIIT;
and

T = (@D < OUm 1 (Ria) ™)
under Condition (4). Thus, we further have

diagl.ot T1R il < vllmy — m3 (|7 (2, )~ 2" (07),

‘max

where ¢, = (¢/2) + 11, ¢, = 72, and v is a positive number.
Therefore, it follows from Lemmas 1 and 3 that

diagl.«/TIRy 1| < O~V (2%))e (@) = o(e"* ().
By the properties of matrix norms, we are finally led to
diagl./ 1Ry 1 = o("* T (P%)).

(¢) The computation of o~'I1; iRy, T(l =1,...,K): According to condition (1) and
Lemma 2, o~ I1;]| is upper bounded by (l/oc)l//||m — mi;||”, where j#i, and p are

positive numbers Because Ry, g = Rﬂ T in a similar Wdy as (b) we can prove:

of LRy g = (e 7H(PY)).
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(d) The computation of oc?“IHiRFi’FT(i =1,...,K): By the definition of V(x), we
have
o IRy, v = T HLER (X)X (X))
= o E((X)(t(X) — ¢)(6(X) — 1) DI
= Ly, + o E((X)(hi(X) = D)(t:(X) — $))(t(X) — ¢) DT,
where we have used the fact:
LEh(OTXOIT(X) = 21,
Furthermore, considering that E(||z;(X) — qu-‘||2|d5*) is upper bounded by vM{(d*)
and of~! is upper bounded, in a similar way as above, we can prove:
o E(hi(X)(hi(X) = D)(t:(X) — $))(t(X) — ) DI = 0" 75(*))
from which, we have

o Ry, v = Ly, + 0”5 (0Y).

(€) The computation of «:~'I1 ,'Rrhr/r(]';éi): By the definition of V(x), we have
of " Ry, pr = o™ E(@ (X)X = ¢(G(X) = o) DI
= o E((X)h(X)(1(X) — 1) (1(X) = ¢)DIT;
Similarly as in (b), we can prove that

of T IRy, 1 = 0”7 TH@Y)).

Summing up the results in (a)—(e), we obtain:

O(P*)R(P*) = I + 0(e?7%).

Thus, according to Eq. (12), we finally get
r<|lI — Q)R] = o(™* (). O

4. A typical class: Gaussian mixtures

We further discuss the asymptotic convergence rate of the EM algorithm for
Gaussian mixtures which are a typical class of mixtures of densities from exponential
families. As proved in [1], a Gaussian density P;(x|m;, 2;) given by Eq. (2) can be
considered as a exponential family with 0; = (7 'm;, 27!') and the corresponding
t,»(x):(x,—%xxT). Therefore, the mean parameter ¢;, corresponding to 0;, is
(mj, —X(Z; + m;m])) which is equivalent to the common parameter (m;,2;) for the
multivariate normal family.
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Next, we have the following lemma which indicates that Gaussian densities are
bell-sheltered if the condition numbers of their covariance matrices are upper
bounded.

Lemma 4. Suppose that Pi(x|$}) = Pi(x|m},2}) is a Gaussian distribution with the
mean m} and the covariance matrix X7, and that the condition number of 27, i.e., k(27),
is upper bounded by B'. We have that P; (x|(;’> ) is bell-sheltered, i.e.,

P(x|q5)—P(x|ml,Z*)<b71 0 e (/2 ma)lx=nif|* (29)

max

where b is a positive number.

Proof. By the orthogonal linear transformation y = U;(x — m}) with the notation

o
(2 YL )11/2

max

—(1/204,) 111
9

P iga) =

we have

Pi(x|m?, =5 < B P(y| !

max)

since x(27)<B'. Moreover, from ||y|| = ||x — m}||, we certainly have

1 i .
Pixim, Z)<b e il
max

where b = (B /2n)"%. O

By Lemma 4, under conditions (1)—(3), a Gaussian mixture of the parameter @* is
certainly a mixture of K densities from the same bell sheltered exponential family.
Moreover, for each component density Pi(x|¢]) = Pi(x|mf,27), t:(x) takes the
following form:

X for m
ti(x) = — %xxT for — %(ZT + WIT(mT)T)

We then have that the components of each #,(x) are polynomials of xi,...,x;,.
Therefore, a Gaussian mixture of the parameter @* under conditions (1)—(3) satisfies
all the assumptions on the mixture of the main theorem except condition (4).
Fortunately, on a Gaussian distribution, condition (4) is implied in condition (2),
which is shown by the followmg lemma. For convenience of expresswn we let
(S [(mf) ,vec[Zl] 1¥, where Zl = 2(2* +m*(m*) ), and ¢ = [(m*) vec[Z*] 1%

Lemma 5. Suppose that Pi(x|$;) = Pi(x|mj,27) is a Gaussian density and x(X7) is
upper bounded. As A, tends to zero, we have

”I(qb;k)” = 0((;“£nax)_f)’ (30)

where T is a positive number.
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Proof. By derivation, we have

OPi(xIm;, I7)

ij.‘
oP; D 1
7’(%'?4’ D_ 5(2}“‘1 — 2 x = m)(x = mHTZYPix|mE, 2. (32)
i

= (x — m})ZI PixIm?, £5), G

According to the definition of the Fisher information matrix, we also have

. * . )\ T
167) = Ey; ( (52 (6 )
2K\T * * T 2 \T T
_ g [%¢)" [0PiXI¢7)| (OPi(XI¢7) | (3(;)
i\ oer U og) o, 0;

CA@DT ae (3DT"
= o4 ’(¢f)< 0] ) |

where

T
107 = Ey (ap"ézl‘f’f )) (ap i;gl‘bf))

If Egs. (31) and (32) are substituted into the above equation and the power
P?(xlmf,Z}") in the integrand of I((j);k) is transformed into a Gaussian density
Pi(x|m;f,%2f) multiplied by a negative order power of |27| with a positive constant
coefficient, we further have

I(&?) = Er 1/320)(G(X, ¢7)),

where G(x, ¢7) is a matrix function of x —m} and X7. Take the transformation
y = x —mj, we then have

1(&?) = Eq1/3):(G(Y, 27)),

where G(y, 27) is a matrix whose components g,,(y, 27) are the polynomial functions
of yi,...,y, If we represent Z;‘_] via its adjoint matrix by

ayy  dapp - dig;
ary dxp -+ Ay
x—1 s 1—1
2 =27 . . . . s
dd;1 dd2 - Qdd;

where ay; is the determinant of the complementary submatrix of a,’:j in 27, the
coefficients in each g,,(y,27) are clearly the constant polynomial functions of o)
multiplied by a negative order power of |X7|. Since these o}) are always upper
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bounded, there exits a positive number t such that the absolute values of all the
coefficients in each (4;,,)°g,,(v,27) are upper bounded. By the properties of

m.

Gaussian distribution and An.x < B, we have that E(0,1/357)((/1£nax)’gpq( Y,27)) is also
bounded. Therefore, we have
@D = 1) G TG
= (Ana) e TPl
SO(p)

where w is a positive number. Because
s ngor\ T
D e IO BT o ¥

where [[0(¢;)T /0% = [1(@($;)T /0¢*)T|| = 2, which can be easily verified from the
expression of the matrix, Eq. (30) certainly holds. [

(DI <

Summing up the above results, we have proved that only the conditions (1)—(3) are
enough to let the main theorem applicable to the EM algorithm on Gaussian
mixtures, that is,

Theorem 2. Given a Gaussian mixture of K densities of the parameter ®* that satisfies
conditions (1)—(3), as e(®*) tends to zero as an infinitesimal, we have

I1G' (@) = o(e™ (%)), (33)
where ¢ is an arbitrarily small positive number.

In other words, Theorem 1 applies to Gaussian mixture when only conditions
(1)—(3) are satisfied.

5. Conclusions

In the mixtures of densities from the bell sheltered exponential families, when the
overlap of any two component densities is small enough under certain regular
conditions, the large sample local convergence behavior of the EM algorithm is
similar to a quasi-Newton algorithm. Moreover, the large sample convergence rate is
dominated by an average overlap measure of the densities in the mixture as they both
tend to zero.
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Appendix

Proof of Lemma 1. We begin to prove (i). For convenience of analysis, we let
n(P*) = max;.;n,(m;) = nl-f(m]ﬁ). According to conditions (2) and (3), there exists
three pairs of positive numbers ay, az, by, b, ¢y, ¢; such that

11 (inan)” < Onan)” S @2 (nn)' (34)
bl (/linax)V < (;“jx.nax)v < bZ()Vinax)v’ (3 5)
crllm} — m || <|lmf — m || <callmi — m3|. (36)

Compare Egs. (34) and (35) with Eq. (36), there exist two other pairs of positive
numbers |, a5, b}, b, such that

ayn(P*) <n(mi) <apn(7),

b/lﬂi(m;)<’1j(mf)<b/2’7i(m}k)-
Therefore, n(®*), n;(m}) and n;(my) are the equivalent infinitesimals.

We then consider (ii), if [|m} — mf|| is upper bounded as n(®*) — 0, Eq. (23)
obviously holds. If |m; — m7|| increases to infinity as n(@*) — 0, by the inequality
lmf | < llmf — mjf|| + ||m;‘||, Eq. (23) certainly holds if either ||| or ||m7|| is upper
bounded. Otherwise, if both |m}] and lm |l increase to infinity, the order of the
infinitely large quantity |m]| must be lower than or equal to that of |m] — mz |,
which also leads to Eq. (23). Therefore, (ii) holds under the assumptions.

Finally, we turn to (iii) for three cases as follows.

In the simple case p = ¢>0, according to (i), we have

I — P Rl ) ™" = it — mi 1P ()™
= (ni(m?))" = O(n"(@7)) = O(n""4(")).
If p>gq, since ifnax is upper bounded and according to (i), we have

1 — 1|17 (o)™ < OO 7P(@%) = O 7V (@*)).
If p<gq, as |m} — m; || =T, we can have
I — m 1P (o) ™ < O 4(@%)) = OV (%)).

Summing up the results on the three cases, we have

lm; — mf P ()~ < OG7Y4(@%)). O

max

Proof of Lemma 2. We begin to prove (i). According to the norm theory, we have

T = 11 E s ((6(X) = $(E(X) — d)DIN< Eg (16:(X) — $7 1) (37

Since #;(x) is assumed to be a polynomial of xy, x», ..., x,, i.e., the components of x,
we transform it into the following expression:

ti(x) = Py + P1x + Pyx* + - - 4 Ppxk,



J. Ma, L. Xu /| Neurocomputing 68 (2005) 105-129 123

where k>0, each P; is a d; x n’ matrix, and x’ is a product vector containing all the
product terms x;xj,---X; as its components, where each x; comes from
X1,X2,...,X,. It can be easily verified that ||x'|| </n||x|| for i =0, 1, oLk

Based on the above expression, we have

ti(x) = ti(x —m; + my)
= P\ + Pi(x —m) + Py(x — m)* + - - + P (x — m?)F, (38)

*

where each P} is still a d; x n’ matrix, but its elements are polynomials of n};, ..., m%,.

We then have
¢} = Eg(t4X)) = Py + Eg(Py(X —m}) + -+ + Ege (PL(X — ")) (39)
with Ey:(P{(X —m})) = P{Eg(X —m}) =0, and
k . .
H(X) = ¢F = [PUX —m}Y — Eg(PUX — m}))].
J=1

Now, we have

Eg:(11X) = ¢7117) = Eg: (124 X) = &))" (1(X) = )

k
=E¢:‘<

S 1P (X —m) = Ege (P (X — my)]T
X [P, (X = m})™ = Ey (P (X = mi})?)

j1=1=1
k

< Y Eq(IP (X —mp) = EP (X = m YOI
Ji=ljp=1
x [P, (X —m;)> — Eg (P} (X — Y]l

Z E1/2(||P’(X mY' — Ege(P) (X — m))|?)
]1—1=/2—1

EJ2IP (X = m Y2 = Ege (P, (X —m})219])1P). (40)

Particularly, we have
Eg (1P} (X = mfY' = Ege(P; (X —m))]?)
= Eg (1P (X —m})'I1P) — [ Eg: (1P} (X — m Y
SEg: (1P (X — miY 1P <SVnEg:(I1 P} 71X — mf|¥)
= Vil P} IPEg: (I1X — mf | ¥). (41)
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Because P;(x|¢}) < U(x|¢}), we further have
2 2
Eg(IX =17 [ = mf | Uxigh) dx

— / ||y||2/‘ w(y + m;)(,{fmx)—fl e—p(l/(ifm.x)““z)IIyH"2 dy, (42)

where we take the transformation y = x — m}. Since w(x) is a positive polynomial,
we certainly have

Wy + m)<wo + iyl + - - + we IylIF (43)

where k' is a positive integer, and wo, w1, ..., w, are a group of positive polynomials
of ||m]], i.e.,

wi = wo +wy |+ mf | for i=0,1,... K, (44)

where w{,w{,...,w. are nonnegative numbers, and c,...,cy are nonnegative

integers. By Lemma 1, we further have
wi <vh + vl |lmF — nmill 4.+ UZ,HWZ? - ;|| fori=0,1,...,K, (45)

where vf,v{,...,v, are nonnegative numbers. Take the upper bound of w(y + n})
into the inequality Eq. (42), we have

K .
Ey (X — m;f‘||211)< Z wi(Ah )7 / ]| 71+ e =P/ e IV g,
1=0

-
= 3 W) D / ¥ P g
=0

where we take the transformation u = y/(i,,,)". Clearly, [ llu]| ¥+ e=#1"I* du is finite

and upper bounded if j; is upper bounded. Since A, is upper bounded, we have that
Eg(1X — m?‘||2jl) is upper bounded by a positive polynomial of [|n} — m7].
Moreover, as each element of P}l is a polynomial of mj,...,m}, ”PJ/} | is upper
bounded by a positive polynomial of ||m}||. Therefore, E(lﬁ;«(HP;I (X —m)y 1) is
upper bounded by a positive polynomial of ||m; — m}|.
As a result, Eg (P (X —mf)" — Eg(P; (X —m*Y1)|1?) is upper bounded by a
positive polynomial of [[m; — m7||. Since ||m} — nm}|| = T', we further have that

E g (1P} (X —m})' — Egi (P} (X —mfY) D)<y, lmf — mi |17, (46)

where ; and p; is some positive numbers.
Take Eq. (46) into Eq. (40), we have

Eg(114X) = 71D <y llmf — m |7, (47)

where i/ and p are positive numbers. Therefore, according to Eq. (37), (i) holds under
the assumptions.
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As to (i), when j#i, we let ¢; = Ey(1(X)) and have
Eg(16(X) = ¢7 1D < Eg ((11(X) = ¢ + 19 — ¢71)7)
= Eg:(I16X) = ¢717 + 2011(X) — §jllI¢; — o7 1l + 1) — &7 11)
SEyQUu(X) = GilIP + 2119; — &7 17)

= 2 (1:(X) — §11P) + 211} — D11 (48)
In the same way as above, we can prove that
Eg(11X) = @17 <y my = m |7, (49)

where /; and p, are positive numbers. Moreover, we certainly have
/ /
g7 — Pl <l + sl

By Eq. (38), in a similar way we can prove that both [¢7|| and ||q§]’-|| are upper
bounded by ,||m} — m;‘||1’2, where 1/, and p, are some positive numbers. Therefore,
by Eq. (48), Ed,;(”ti(X) — qﬁj‘”z) is upper bounded by a positive polynomial of ||m} —
i} ||. Since [|m} —my|| =T, we have

Eg(1t4X) = 711D <Wylimf —m |17, j#i, (50)

where ; and p; are positive numbers.
By Egs. (47) and (50), we have

K
E(lt(X) = ¢717) =Y 07 Eg (16:X) — ¢} 17 <oM (%),
j=1

where M (®*) = max;.; [m; —m7|, v and g are positive numbers. [

Proof of Lemma 3. We first prove that

fn) = o(n’),
as 1 — 0, where p is an arbitrarily positive number.
We consider the mixture of K densities from the bell sheltered exponential families
of the parameter @* under the relation #(®*) = . When i#/, for a small enough #,
there is certainly a point »2j; on the line between m; and m} such that

of Pi(m3|97) = o Py(miz| 7).
We further define
E; = {x : o] Pi(x|7) =0 P(x|$})},
Ej = {x : of Py(x|}) > o Pilx|;)}.
As n(®*) tends to zero, (A )" /(ImF — ) and A/ (imr — ni7||) are the same

max max
order infinitesimals. Moreover, x(Z7) and 'K(Z]’f) are both upper bounded. Thus, there
certainly exists a neighborhood (i.e., a hypersphere) of m; (or mi) in E; (or E;). For
clarity, we let A7, (m]) and A", (m;) be the largest neighborhood in E; and Ej,
respectively, where r; and r; are their radiuses. Since x(27) and x(27) are always
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upper bounded, r; and r; are both proportional to ||m} — my|| when ||m} — m7|| either
tends to infinity or is upper bounded. So there exist a pair of positive numbers b; and
b, such that

rizbillm! — m;‘|| and r;=b;|m; — m]’f||.
We further define
Di = N (m7) = {x: ||lx — || =ri},
Gy = N ) = (x: lx — i[> 1)
and thus
E; C D;, E; C D,.

Moreover, from the definitions of e;(®*) and /i (x) we have
@) = [ B0 P12 di

- / MR (P du + / i)y () P(x| %) d
E .
< /(/ hi(X)hj(x)P(x|(p*) dp+ [ hi(x)hj(X)P(x|¢*) du

=5 [ peiopdu+ar [ P de

We now consider f:@i Pi(x|¢7) du. Since r;=b;l|m; — m?|,

/ Pixl?) du< / Pixl?) d
a; e < byl =t |

By the transformation y = (x — m})/|lm} — mr|l, we have

/ P(x197) di
7,

2i =t a—p(Inr = 12) ) Ganax) "2 112
< / w(||mf _ m]*”y + m;'k)(/L;nax) e pUllmf=mz)2) [ Gamax) 2 1Y ”m;F _ m]*” d”/
Iyl <b:

_ / = o= 1+ 7))
Iyl <b;

s &P =1 G 212 (51)

where p' is the transformed measure from p by the transformation.

Since each coefficient in the polynomial function w(llm —mj|ly +mj) is a
polynomial function of m multiplied by a positive order power of ||m} — mz |, there
certainly exists a positive number ¢ such that the coefficients in the polynomial
function ||m} — mj’.k||_‘1w(||m;k — mi}|ly +mj) are upper bounded as 5(®*) — 0. So
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lm; —my I~4w(|lm} — mt|ly + my) can be upper bounded by another positive
polynomial function of y with constant coefficients. Moreover, by Lemma 1, we have
I — m [ ) ™ < O™ ),

1
I} = | ()™ > 007,

1

where ¢} = (g + 1) vV (c1/v).
According to these results, we have from Eq. (51) that

1 2 c * cn
Pi(x|¢p))du< / ———wi(») e P A/M @DV g,
‘/91 l Bi 170] (d3 )

1 1 Il
— - =AM 4, 52
| e W, (52)
where %; = {y: |lyl|=b;}, p’ is another positive number, and w;(y) is a positive
polynomial function of y with constant coefficients.

Furthermore, we let

1 e
Fi = [ POy PO = (e 7
B; n
and consider the limit of F;(n)/5#” as 5 tends to zero.
For each y € 4;, we have

lim 21 _ wi(y) lim e P (/1)

n—0 1’]p n—0 11("’/1 +p)

) g(C’, +p)
=w Im —————
1) (oo LIV

=0,

uniformly in 4;, which leads to

fim 21 _ i / PO 4,
a, MW

n—0 n? n—0 n
P
:/ ﬁmﬂdﬂ/
a,1~0 0P
=0

and thus F;(n) = o(y”). It further follows from Eq. (52) that

sup [ Pxig)dn = o) (53)
(@ )=nJ Z;
Similarly, we can also prove:

sup /J B3I du = o).

n(®*)=n
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As a result, we have

S = sup e;(®*)

n(@*)=n

< sup (o [ B duar [ Poidndn
n(®*)=n ;i i

< s [ peacs s [ P
n@)=n J 2, n(@)=n J 9,

= o(n”).

Thus, we have
Jn< max S = o(n”). (54)

Moreover, because

lim@ = lim (@)L =0,

n—0 l’]p n—0 ne
we finally have f*(y) = o(n”) and thus f*(5(®*)) = o(n’(®*)). O
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