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a b s t r a c t

In this paper, we extend Bayesian Ying-Yang (BYY) harmony learning to the case ofmultivariate t-mixtures
and propose a gradient BYY harmony learning algorithm that can automatically determine the number of
actual t-distributions in a dataset during parameter learning. It is demonstrated by simulation experi-
ments that this proposed algorithm for t-mixtures is both effective and stable on model selection and
parameter estimation. Moreover, by mainly utilizing certain contourlet texture features from an image, the
proposed algorithm is successfully applied to unsupervised image segmentation, showing considerable
advantages for both general and multi-texture images.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

As a powerful tool for statistical learning and data analysis,
finite mixture model has been widely used in pattern recognition,
signal processing and image analysis. In the finite mixture mod-
eling, data are viewed as arising from a linear mixture of two or
more populations with certain proportions. Obviously, the number
of components or populations is a very important parameter, but
this information is not available in general. Actually, when the
number of components is unknown, the finite mixture modeling
becomes a rather challenging task.

Structurally, the number of components can be considered as a
measure of complexity for the finite mixture model, so the
determination of component number is usually referred to as
model selection. In a conventional way, this model selection pro-
blem could be solved by optimizing certain criterion like Akaike's
Information Criterion (AIC) [1], Bayesian Inference Criterion (BIC)
[2] or Minimum Description Length (MDL) [3]. However, these
optimization methods needed to loop the number of components,
i.e., k, within a certain range, then make parameter estimation for
each k, and finally choose the best kn that could correspond to the
optimal value of the criterion function. Clearly, this kind of
methods would lead to a large computational cost due to the
repetitions of k for many times. Besides, the stochastic simulated
methods [4] were also used to solve this mixture modeling pro-
blem without knowing the number of components, but they
generally required a large number of samples via different sam-
pling rules. Furthermore, by projecting high-dimensional data into
one dimension, the Probabilistic Validation (PV) approach [5]
combined the cluster tendency estimation and cluster validation
inside the clustering analysis to determine the number of clusters/
components. However, this PV method was only suitable for
linear-separable data with a few number of clusters and negligible
overlaps.

With the help of competitive learning mechanism, Figueiredo
and Jain [6] proposed an unsupervised learning framework for
finite mixtures which could make model selection adaptively
during the parameter learning with a simplified MML model
selection criterion. In addition, Xu et al. [7] had already suggested
the Rival Penalised Competitive Learning (RPCL) algorithm to
achieve the automatic determination of cluster or component
number by updating the winner unit and de-learning the rival.
Unlike the RPCL approach, Cheung [8] constructed the kn-means
algorithm which could carry out the rival penalization mechanism
in a reasonable and implicit way, whereby circumventing the
sensitive parameter (de-learning rate) in the original RPCL algo-
rithm. Moreover, by combining the RPCL mechanism with the EM
algorithm, the RPEM algorithm [9,10] was also developed to rea-
lize the automatic model selection of Gaussian mixtures and t-
mixtures. Essentially, this kind of learning algorithms made
automatic model selection using an effective rule that annihilates
the components with small mixing proportions during the para-
meter learning. In fact, a similar rule is also adopted in our pro-
posed algorithm.
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Bayesian Ying-Yang (BYY) harmony learning, firstly proposed in
1995 [11] and then systematically developed in the sequent years
[12], can effectively tackle this finite mixture modeling problem in
a new statistical learning way such that model selection can be
made automatically during parameter learning. Specifically, BYY
harmony learning can be implemented via maximizing a parti-
cular harmony function on finite mixtures, which is actually
reduced from the harmony functional between Ying-machine and
Yang-machine in the BYY system related to the finite mixture
modeling problem. In fact, the Gaussian mixture modeling pro-
blem was already solved by the gradient BYY harmony learning on
a specific BI-architecture of the BYY learning system [13], and then
the conjugate gradient, adaptive gradient, and fixed-point BYY
harmony learning algorithms [14–16] were further proposed to
improve the efficiency of the harmony function maximization. All
these methods can automatically select an appropriate number of
components by attenuating the mixing proportions of extra
components to zero. Methodically, this BYY harmony learning can
be extended to any non-Gaussian mixture model, and it has been
already realized on Poisson mixtures [17], Weibull mixtures [18]
and log-normal mixtures [19].

In this paper, we extend this BYY harmony learning mechanism
to the case of multivariate t-mixtures which are usually adopted for
a set of continuous multivariate data that have a wider tail than
Gaussian's or atypical observations. Under a BI-architecture of the
BYY harmony learning system, a gradient BYY harmony learning
algorithm is constructed for maximizing the harmony function so
that model selection can be also made automatically during
parameter learning for t-mixtures. The performance of the pro-
posed algorithm is further demonstrated by various simulation
experiments. Moreover, with the main utilization of contourlet
texture features, this BYY harmony learning algorithm for t-
mixtures is successfully applied to unsupervised image
segmentation.

The rest of this paper is organized as follows. We begin with a
brief introduction of t-distribution and t-mixture in Section 2.
Then, the gradient BYY harmony learning algorithm for t-mixtures
is derived and constructed in Section 3. The simulation experi-
ments are carried out in Section 4. Section 5 contains a detailed
description about the extraction of contourlet texture features and
the application of the proposed gradient BYY harmony learning
algorithm to unsupervised image segmentation. Finally, a brief
conclusion is made in Section 6.
2. Multivariate t-distributions and mixture

In this section, we briefly introduce multivariate t-distributions
as well as the t-mixture models.

2.1. Multivariate t-distribution

In statistics, a multivariate t-distribution is a multivariate
generalization of Student's t-distribution. For the case of d-
dimension, if y and U are independent and distributed as N ð0;ΣÞ
(Gaussian or normal distribution) and χ2

ν (chi square distribution),
respectively, where Σ is a d� d covariance matrix and ν40, x¼
yffiffi
U
ν

p þμ is then subject to a multivariate t-distribution with para-

meters fμ;Σ;νg, and it takes the following density function:

qðxjμ;Σ;νÞ ¼
Γ

νþd
2

� �
jΣ j �1=2

ðπνÞd2 Γðν2Þ½1þν�1δðx;μ;ΣÞ�ðνþdÞ=2
; ð1Þ

where δðx;μ;ΣÞ ¼ ðx�μÞTΣ�1ðx�μÞ.
In fact, it can be proved that as ν-1, multivariate t distribu-
tion converges to the Gaussian distribution with mean μ and
covariance Σ. However, multivariate t-distribution has a longer tail
than Gaussian distribution, and is thus more robust in fitting the
data with atypical observations.

2.2. Multivariate t-mixture model

A finite mixture is a probabilistic model with two or more
components or populations linearly mixed with certain propor-
tions. We consider the following finite mixture model:

qðxjΘkÞ ¼
Xk
j ¼ 1

αjqðxjθjÞ; ð2Þ

where x denotes the variable and Θk ¼ fαj;θjgkj ¼ 1 denotes all the
parameters in the mixture. k is the number of components, qðxjθjÞ
is the component distribution with parameter θj, and αj is the
mixing proportion with the constraint that

Pk
j ¼ 1 αj ¼ 1;

αjZ0; j¼ 1;…; k. Two major tasks for the finite mixture modeling
are model selection and parameter estimation,i.e., determining the
true value of k and estimating the parameters in Θk.

If all the components fqðxjθjÞgkj ¼ 1 are Gaussians, the finite
mixture model becomes the famous Gaussian Mixture Model
(GMM). Due to its analytical tractability, asymptotic properties and
computational convenience, GMM has been widely applied to
model the data distributions of various random phenomena.
However, GMM is sensitive to outliers, which can lead to
instability and unreliability on small or noisy datasets. Alter-
natively, we can use multivariate t-mixture model to model this
kind of datasets. Actually, multivariate t-mixture model just means
that all the components in the above mixture model follow mul-
tivariate t-distribution. Since its components, i.e., t-distributions,
have longer tail than Gaussians, multivariate t-mixture model is
more robust than GMM in certain practical applications.

Mathematically, multivariate t-mixture model takes the fol-
lowing distribution:

qðxjΘkÞ ¼
Xk
j ¼ 1

αjqðxjθjÞ ¼
Xk
j ¼ 1

αjqðxjμj;Σ j;νjÞ; ð3Þ

where qðxjμj;Σ j;νjÞ is a multivariate t-distribution with para-
meters fμj;Σ j;νjg (as expressed in Eq. (1)) for j¼ 1;…; k. In fact,
multivariate t-mixture model is often used in many practical
application fields, such as clustering analysis [20] and image seg-
mentation [21].

In order to solve the problem of t-mixture modeling, many
efforts have been already made and the most frequently used
approach might be the EM algorithm [22] and its extensions.
However, due to the principle of the EM algorithm, the EM algo-
rithm cannot make model selection on t-mixtures. In order to
overcome this deficiency, certain penalized EM algorithms [9,23]
were suggested for t-mixtures. But it is obvious that the EM-like
algorithms consume a large amount of computation. In the next
section, based on the BYY harmony learning framework, we will
construct a gradient BYY harmony learning algorithm for t-mix-
tures, which can make model selection automatically during
parameter estimation in a more effective and efficient way.
3. BYY Harmony Learning for t-Mixtures

In this section, we begin to introduce the BYY harmony learn-
ing system, and then derive the gradient BYY harmony learning
algorithm for t-mixtures. The implementation details are finally
discussed.
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3.1. BYY harmony learning system and theory

In clustering analysis, data can be observed as the combination
of two related parts, i.e., the observation xAX �Rn and its inner
representation yAY �Rm. The BYY harmony learning system
[11,12] is constructed to describe relationship between these two
parts via the two types of Bayesian decomposition of the joint
density: pðx; yÞ ¼ pðxÞ pðyjxÞ and qðx; yÞ ¼ qðyÞ qðxjyÞ, which are
called Yang machine and Ying machine, respectively. The goal of
BYY harmony learning is to extract the hidden probabilistic
structure of x with the help of y by specifying all aspects of pðyjxÞ,
p(x), qðxjyÞ and q(y). The harmony learning principle can be
implemented by maximizing the functional:

HðpJqÞ ¼
Z

pðyjxÞpðxÞln½qðxjyÞqðyÞ� dx dy: ð4Þ

If both pðyj xÞ and qðxjyÞ are parametric,i.e., from a family of
probability densities, then the BYY learning system is said to have
a BI-directional architecture (BI-architecture for short).

For the multivariate t-mixture model with a given sample set
Dx ¼ fxtgNt ¼ 1, we utilize the following specific BI-architecture: the
inner representation y is discrete in Y ¼ f1;2;…; kg, and the
observation xARd is generated from a multivariate t-mixture. In
Ying space, we let qðy¼ jÞ ¼ αjZ0 with

Pk
j ¼ 1 αj ¼ 1. In Yang space,

we assume that p(x) is a blind d-dimensional t-mixture from
which a set of samples Dx ¼ fxtg is generated. Moreover, on the
Ying path, we let qðxjy¼ jÞ ¼ qðxjθjÞ be d-dimensional t-
distribution with parameter θj. Thus, the Yang path can be con-
structed according to the Bayesian principle:

pðy¼ jj xÞ ¼ αjqðxjθjÞ
qðxjΘkÞ

; qðxjΘkÞ ¼
Xk
j ¼ 1

αjqðxjθjÞ; ð5Þ

where qðxjΘkÞ tries to approximate the true t-mixture model p(x)
hidden in the data Dx via the harmony learning on the BYY system.

With all these component densities into Eq. (4) we get an
estimate of HðpJqÞ on Dx as the following harmony function:

JðΘkÞ ¼
1
N

XN
t ¼ 1

Xk
j ¼ 1

αjqðxt jθjÞPk
i ¼ 1 αiqðxt jθiÞ

ln½αjqðxt jθjÞ�: ð6Þ

According to the BYY harmony learning principle, the maximiza-
tion of harmony function JðΘkÞ can lead to automated model
selection during parameter estimation as long as k is larger than
the number of actual components in the given dataset.

3.2. Gradient BYY harmony learning algorithm

For convenience, we denote UjðxÞ ¼ αjqðxjθjÞ for j¼ 1;…; k, the
harmony function JðΘkÞ can be then represented as

JðΘkÞ ¼
1
N

XN
t ¼ 1

Xk
j ¼ 1

UjðxtÞPk
i ¼ 1 UiðxtÞ

ln UjðxtÞ: ð7Þ

As for the parameters in Θk, there are certain constraints such
as:

Pk
j ¼ 1 αj ¼ 1;αjZ0, νj40, and Σj must be positive definite. To

get rid of these constrains, we make the following transforma-
tions: αj ¼ eβjPk

i ¼ 1
eβi
, νj ¼ v2j and Σ j ¼ BjB

T
j for j¼ 1;2;…; k, where

βj; vjAð�1; þ1Þ and Bj is just a nonsingular square matrix. In
this way, the partial derivatives of JðΘkÞ with respect to
βj;μj;Bj; vj, respectively, can be given as follows:

∂JðΘkÞ
∂βj

¼ 1
N

XN
t ¼ 1

1
qðxt jΘkÞ

Xk
i ¼ 1

λiðxtÞðδij�αjÞUiðxtÞ; ð8Þ

∂JðΘkÞ
∂μj

¼ 1
N

XN
t ¼ 1

pðjjxtÞ λjðxtÞ
ðνjþdÞΣ �1

j ðxt�μjÞ
νjþδðxt ;μj;Σ jÞ

; ð9Þ
vec
∂JðΘkÞ
∂Bj

� �
¼ 1
2N

XN
t ¼ 1

pðjjxtÞλjðxtÞ
∂ðBjB

T
j Þ

∂Bj

"

�vec Σ�1
j ðxt�μjÞðxt�μjÞT
νjþδðxt ;μj;Σ jÞ

� Id

" #
Σ �1

j

( )#
; ð10Þ

∂JðΘkÞ
∂vj

¼ 1
N

XN
t ¼ 1

pðjj xtÞλjðxtÞ Ψ
νjþd
2

� �
� ln½1þν�1

j δðxt ;μj;Σ jÞ�
�

�Ψ
νj
2

� �
� d
νj
þ ðνjþdÞδðxt ;μj;Σ jÞ
νjðνjþδðxt ;μj;Σ jÞÞ

)
vj ð11Þ

where δij is the Kronecker function, λiðxtÞ ¼ 1� Pk
l ¼ 1

pðljxtÞ�δil
� 	

ln UlðxtÞ, Ψ ðzÞ ¼ ∂ ln ΓðzÞ
∂z , Id is the d-dimensional

identity matrix, and vec(M) denotes the vector obtained by
stacking the column vector of the matrix M. The detailed

expression of
∂ðBjBT

j Þ
∂Bj

can be found in [14].
After obtaining the partial derivatives in Eqs. (8)–(11), we can

maximize the harmony function for t-mixtures by the following
batch gradient BYY harmony learning algorithm:

ϕnew ¼ϕoldþη � ∂JðΘkÞ
∂ϕ

; ϕAfβj;μj;Bj; vjgkj ¼ 1
; ð12Þ

where ηð40Þ denotes the learning rate. The iteration will stop
when ΔJ ¼ j JðΘnew

k Þ� JðΘold
k ÞjoTterm, where Ttermð40Þ is a

threshold value for termination.
3.3. Implementation details

We finally turn to the implementation details of the proposed
gradient BYY harmony learning algorithm that should be further
discussed or explained, including the initialization of the para-
meters, the update of the learning rate and the deletion of extra
components. For simplicity, our proposed algorithm is referred to
as the BYY-t algorithm here and hereafter.

Initialization of the parameters: Before we start the iterations of
the gradient BYY harmony learning with Eq. (12), we need to set
some reasonable initial values for all the parameters. The number
k of components should be (initially) set to be greater than the
true number kn of actual components. However, a too big k may
increase not only the time of computation, but also the risk of
selecting a wrong model. The mixing proportions fαjgkj ¼ 1 are

initialized as αj ¼ 1
k; j¼ 1;…; k, that is, fβjgkj ¼ 1

are initialized
equally. The covariance matrix and degree of freedom in multi-
variate t-distribution are set as Σ j ¼ Bj ¼ Id and νj ¼ vj ¼ 1 for
j¼ 1;…; k. As for fμjgkj ¼ 1

, they are initialized simply by k samples
which are randomly selected from the dataset.

For the more accurate initialization, we can firstly divide the
data points into k groups by a simple clustering analysis algorithm
(like the k-means algorithm or the RPCL algorithm [7,24]), esti-
mate the parameters of the j-th component with only the samples
in the j-th group, and use the estimated values as the initialization
settings of the parameters for the BYY-t algorithm. For example, αj

can be estimated as the proportion of the sample number of the j-
th cluster over the whole sample number, and μj can be estimated
as the cluster center.

Update of the learning rate: The learning rate η is an important
parameter for a gradient-type learning algorithm. A small learning
rate can make the algorithm converge slowly, while a large
learning rate may lead to unstable iterations. To overcome this
problem, we can update the learning rate dynamically during the
iterations, instead of setting it to a fixed value. Actually, the



Table 1
The actual parameters of four typical 2D t-mixture datasets S1�S4.

Dataset j μ1
j μ2

j B11
j

Bj
12 ¼ Bj

21
B22

j νj αj

1 0 �3.0 0.50 0 0.50 3 0.25
S1 2 �3.0 0 0.50 0 0.50 3.5 0.25
N¼1600 3 0 3.0 0.50 0 0.50 4 0.25

4 3.0 0 0.50 0 0.50 4.5 0.25

1 0 �3.0 0.45 �0.25 0.55 3 0.34
S2 2 �3.0 0 0.65 0.20 0.25 3.5 0.28
N¼1600 3 0 3.0 1 0.10 0.35 4 0.22

4 3.0 0 0.30 0.15 0.80 4.5 0.16

1 2.5 0 0.20 �0.20 0.50 3 0.50
S3 2 0 2.5 0.40 0.10 0.20 3.5 0.30
N¼1200 3 �1.5 �1.5 0.80 �0.20 0.30 4 0.20

1 0 �3.0 0.28 �0.20 0.32 3 0.16
S4 2 �3.0 0 0.34 0.20 0.22 3.5 0.22
N¼200 3 0 3.0 0.50 0.04 0.12 4 0.28

4 3.0 0 0.10 0.05 0.50 4.5 0.34
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learning rate is updated as follows:

ηðtþ1Þ ¼ ηðtÞ � 1:05; JðΘðtþ1Þ
k Þ� JðΘðtÞ

k Þ40;
0:7; else:

(

And the initial value of the learning rate is set as ηð0Þ ¼ 0:5.
Deletion of extra components: During the BYY harmony learning

process, the mixing proportions of these extra components in the
mixture will be forced to attenuate to zero eventually. In order to
make the convergence efficiently, we can delete the extra com-
ponents directly during the parameter learning. In fact, as the
initial k is greater than the true value kn, the BYY-t algorithm will
use only kn components to match the actual component dis-
tributions, and attenuate the mixing proportions of the other ðk�
knÞ extra components to zero (approximately). So, in order to
realize the automated model selection and accelerate the con-
vergence of the BYY-t algorithm, we can check the mixing pro-
portions of the existing components at each iteration. If αjoTα
(where Tα is a threshold value for component deletion and is fixed
to Tα ¼ 0:05 in our following experiments), the j-th component
will be deleted, and the number of components is set as k ( k�1.
By adding this checking and deleting mechanism to the original
gradient algorithm, the BYY-t algorithm can achieve automated
model selection during parameter learning more effectively and
efficiently.
4. Simulation experiments

In this section, simulation experiments are carried out to
demonstrate the performance of the BYY-t algorithm on synthetic
datasets generated from various multivariate t-mixtures, in com-
parison with some competitive algorithms.

4.1. Performance of model selection

We firstly implement the BYY-t algorithm on 2D synthetic
datasets S1–S4, which are sampled from four typical 2-
dimensional t-mixtures whose actual parameters are shown in
Table 1: (a) S1 is composed of four components which have the
same mixing proportion and covariance. (b) The four components
in S2 have different mixing proportions and covariances. (c) S3 has
only three components, and their mixing proportions have a big
difference. (d) S4 is similar to S2, but only with a small number of
samples. The sketches of these four datasets are shown in Fig. 1,
respectively.

To investigate the performance of model selection and para-
meter estimation, we implement the BYY-t algorithm on S1�S4

for different initial kAfkn;2kn;3kn;4kng, where kn denotes the
number of actual components in the dataset. To make the algo-
rithm converge faster, the mixing proportions and cluster centers
in BYY-t are initialized via a RPCL procedure. For each dataset and
each initial value of k, we run the algorithm for 100 times to get
stable results. Table 2 shows the percentages of Correct Model
Selection (CMS) for BYY-t algorithm, as well as comparisons with
three other competitive algorithms. Here, “BYY-t” is our proposed
algorithm, while “EM-AIC” and “EM-BIC” denote the EM algo-
rithms for t-mixtures together with the AIC [1] and BIC [2] model
selection criteria, respectively. Besides, “EM-MML” denotes the
unsupervised learning algorithm based on EM algorithm and MML
criterion [6], and similar to the BYY-t algorithm, it is a typical and
competitive learning algorithm for the finite mixture models with
automated model selection. Note that the cluster centers in these
three EM-based algorithms are initialized with randomly selected
samples. Actually, their performances become worse and unstable
when the cluster centers are initialized with the RPCL procedure.
According to the data listed in Table 2, we can find out the
following facts: (1) The BYY-t algorithm gains high percentages of
CMS for most cases (on different datasets with different initial k).
(2) The BYY-t algorithm outperforms EM-AIC, EM-BIC and EM-
MML algorithms considerably, by more than 10 percentage points
for most cases, and this gap becomes much bigger in some cases
with critical conditions (e.g., small data size and large initial k).
(3) The BYY-t algorithm seems to keep high percentages of CMS
when the initial value of k increases, which may benefit from the
precise initialization of cluster centers via the RPCL procedure. On
the other hand, if we compare the CMS% of the BYY-t algorithm on
different datasets, we can further see that: (a) For the simple
dataset S1 with round shaped components, the BYY-t algorithm
can always obtain the correct model selection. (b) The CMS% on S3

are not as high as that on S2, which may be ascribed to its more
unbalanced mixing proportions and more compact mixture com-
ponents. (c) The CMS% on S4 are relatively lower than that on S2,
due to its small data size.

4.2. Performance of parameter estimation

As for parameter estimation, we evaluate the performance by
relative square error. For a set of parameters w¼ fwjgk

n

j ¼ 1, let their

actual values be fwn

j gk
n

j ¼ 1
and the corresponding estimates be

fŵjgk
n

j ¼ 1, then the relative square error of w is defined by

Δw¼
Xk
j ¼ 1

Jŵj�wn

j J
2

Jwn

j J
2 : ð13Þ

For each dataset S1–S4, we fix the initial k as k¼ 2kn and repeat
the experiments until the algorithms have obtained correct model
selection for 100 times. We then average the relative errors for
parameter α;μ;Σ;ν, respectively, as is list in Table 3. From this
table we can find out that the relative errors of BYY-t algorithm are
small in most cases, which means it can achieve relative accurate
and stable parameter estimations in various conditions. However,
compared with the EM-based algorithms, the errors of BYY-t
algorithm is slightly larger. This is reasonable since the BYY-t
algorithm achieves automated model selection by competitive
learning, which causes certain deviation for parameter estimation,
while the EM-based algorithms lead to a maximum likelihood
estimate which is consistent with the true parameters.

Unlike α;μ;Σ, the degree of freedom ν just reflects the tail of
t-distribution, which can not be simulated well in the synthetical
datasets unless a very large number of samples are generated.
Therefore, the estimation of ν is difficult and unstable for
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Fig. 1. The sketches of datasets S1�S4.

Table 2
The percentages of CMS for different algorithms (on datasets S1–S4, with initial
kAfkn;2kn;3kn;4kng).

Datasets Algorithm k¼ kn k¼ 2kn k¼ 3kn k¼ 4kn

S1 BYY-t 100 100 100 100
EM-AIC 80 61 64 64
EM-BIC 71 65 65 71
EM-MML 77 60 61 66

S2 BYY-t 100 96 97 96
EM-AIC 84 42 47 56
EM-BIC 84 67 69 68
EM-MML 84 48 53 58

S3 BYY-t 100 90 86 91
EM-AIC 86 75 73 63
EM-BIC 85 88 82 74
EM-MML 87 72 68 58

S4 BYY-t 100 93 85 82
EM-AIC 86 11 9 10
EM-BIC 80 66 62 55
EM-MML 87 9 6 9
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simulated datasets. Many algorithms have some “uncomfortable
cases” in which the algorithms may return a bad estimation for ν,
like the BYY-t algorithm on S1 and the EM-based algorithms on S4.
These algorithm-specific uncomfortable cases may be caused by
small data size, big component overlap, specific data shape, etc.
Though they exist, the uncomfortable cases are not frequent, and
in most cases the BYY-t algorithm or EM-based algorithms can
obtain a good estimation for ν. Moreover, the influence of
uncomfortable cases can be weaken by increasing the data size. In
fact, further experiments have shown that, when the number of
samples in S1 increases to 5000, the relative error of ν for the BYY-
t algorithm is 0.977170.2714, and if the size increases to 50,000,
the relative error further decreases to 0.824470.0744.
4.3. Influence of component overlap

To investigate the influence of dataset overlap to the perfor-
mance of the BYY-t algorithm, we generate another two datasets
S5 and S6, which have the same mixing proportions and covar-
iances with S1 and S2, respectively, but with different cluster
centers. As is shown in Fig. 2, the component overlaps in S5 and S6

are much bigger than that in S1 and S2, respectively. For each of S5

and S6, we fix the initial k as k¼ 2kn and repeat the experiments to
get the percentages of CMS and relative estimation errors, which
are listed in Table 4. From this table we can see that, though
affected by the heavy component overlaps, the BYY-t algorithm
still gains high percentages of CMS and good parameter estima-
tion. Further experiments also show that the BYY-t algorithm can
achieve correct model selection for most cases, provided that the
component overlap is “weak” enough (i.e., below a certain
threshold). The influence of component overlap on EM-based
algorithms is not as large as that on BYY-t algorithm. However,
the BYY-t algorithm still outperforms EM-AIC, EM-BIC and EM-
MML algorithms on model selection.

4.4. Influence of high dimensionality and multiple classes

To test the effect of the BYY-t algorithm for higher-dimensional
dataset, we further generate a dataset S7 which is a 3-dimensional
t-mixture with 4 components (see Fig. 3(a)). In this case, the BYY-t
algorithm can achieve correct model selection (with the initial
k¼ 2kn), and the estimated proportions [0.2483, 0.2536, 0.2489,
0.2492] are very close to the actual values [0.25, 0.25, 0.25, 0.25].
Along this direction, we even implement the BYY-t algorithm on a
20-dimensional dataset of 4 components with the similar degree
of overlap, and find out that the BYY-t algorithm works well for
such a high-dimensional dataset, obtaining the correct model
selection and good parameter estimation as well.



Table 3
The relative errors of parameter estimation for different algorithms (on datasets S1�S4, with initial k fixed as k¼ 2kn).

Datasets Algorithm α μ Σ ν

S1 BYY-t 0.004370.0000 0.000770.0000 0.231470.0046 1.265270.0429
EM-AIC 0.003170.0000 0.000770.0000 0.175470.0036 0.146670.0145
EM-BIC 0.003170.0000 0.000770.0000 0.175470.0035 0.146170.0142
EM-MML 0.003170.0000 0.000770.0000 0.175370.0035 0.146570.0144

S2 BYY-t 0.006870.0017 0.001170.0003 0.105870.0228 0.176270.0228
EM-AIC 0.005670.0003 0.000570.0000 0.038370.0027 0.053170.0234
EM-BIC 0.005570.0007 0.000570.0000 0.041970.0233 0.544573.6455
EM-MML 0.005670.0003 0.000570.0000 0.038370.0025 0.052670.0225

S3 BYY-t 0.012570.0019 0.053470.1080 0.000170.0005 0.368470.3667
EM-AIC 0.006770.0000 0.010470.0000 0.062270.0025 0.166170.0338
EM-BIC 0.006770.0000 0.010470.0000 0.062270.0024 0.166070.0326
EM-MML 0.006770.0000 0.010470.0000 0.062270.0025 0.165670.0341

S4 BYY-t 0.169470.3388 0.110270.5699 0.000170.0000 0.187970.1359
EM-AIC 0.073570.0000 0.003170.0000 0.305270.0139 8.780777.4462
EM-BIC 0.073570.0000 0.003170.0000 0.307070.0098 7.712875.2874
EM-MML 0.073570.0000 0.003170.0000 0.304370.0153 9.282978.2308
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Fig. 2. The sketches of datasets S5 and S6.

Table 4
The percentages of CMS and relative estimation errors for different algorithms (on datasets S5 and S6, with initial k fixed as k¼ 2kn).

Datasets Algorithm CMS(%) Δα Δμ ΔΣ Δν

S5 BYY-t 96 0.156970.0125 0.014670.0035 1.020770.1359 8.180771.5123
EM-AIC 86 0.069570.0030 0.004670.0005 0.235170.0239 0.165570.0834
EM-BIC 92 0.069670.0030 0.004670.0004 0.234870.0231 0.164570.0807
EM-MML 86 0.069570.0030 0.004670.0005 0.235170.0239 0.165570.0834

S6 BYY-t 93 0.052270.0114 0.034870.0119 0.234070.0447 0.300370.0645
EM-AIC 44 0.028470.0001 0.003670.0000 0.174470.0023 0.129970.0080
EM-BIC 80 0.028470.0001 0.003670.0000 0.173770.0021 0.127570.0072
EM-MML 80 0.028470.0001 0.003670.0000 0.173770.0021 0.127570.0072
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Fig. 3. The sketches of datasets S7 and S8. (a) S7 is a 3-dimensional t-mixture with 4 components; (b) S8 is a 2-dimensional t-mixture with 10 components.
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Besides, we also generate a dataset S8 from a 2D t-mixture with
10 components (see Fig. 3) to test the effect of the BYY-t algorithm
for multi-class datasets. The BYY-t algorithm can also get the
correct model selection. However, when kn420, the threshold
value for deleting extra components should not be set as Tα ¼ 0:05,
and need to be reduced in certain degree for the correct model
selection.

In fact, in the next section, we will apply the BYY-t algorithm to
the image segmentation task. In this case, a 8-dimensional feature
vector is extracted for each pixel, and there may be about 10
segments for some images. Thus, it is really a high-dimensional
Fig. 4. Four segmentation examples of BSDS300 general images. Left
and multi-class task, and the segmentation results will further
demonstrate that the BYY-t algorithm works well for such a task.

4.5. Conclusions for simulation experiments

The simulation experiments in this section have demonstrated
that the BYY-t algorithm outperforms EM-based algorithms on
model selection by over 10 points of CMS percentage in general.
Actually, this advantage becomes much bigger for some critical
cases (e.g., small sample size and large initial k). However, the
deviation of parameter estimation of the BYY-t algorithm is
slightly larger than those of EM-based algorithms in some cases,
column: original images. Right column: segmentation images.
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which may be caused by the de-learning action in the BYY har-
mony learning process. As the model selection is so important, we
can consider that the BYY-t algorithm is more effective and pow-
erful than the EM-based algorithms for t-mixtures.
Fig. 5. The percentages of PRI levels for the 100 test images in BSDS300.
5. Unsupervised image segmentation via the BYY-t algorithm
with contourlet texture features

Image segmentation is a fundamental research subject in image
processing and computer vision. In fact, it tries to divide an image
into some meaningful and homogeneous regions. If we can extract
a feature vector for each pixel in the given image, the pixels can be
considered as samples or points in the feature space. Then, image
segmentation becomes a clustering analysis problem on the fea-
ture space, with each cluster corresponding to a segment. How-
ever, there are still two major challenges on this segmentation-to-
clustering approach: (1) How to construct a proper feature space;
(2) How to select an appropriate number of clusters. In this sec-
tion, we utilize the contourlet texture features (plus the original
position and color features) and the BYY-t algorithm to meet these
two challenges.

5.1. Construction of the feature space

5.1.1. Contourlet texture features
To extract the texture features, we need to cut the image into

small patches, and then analyze the textures on these patches. The
extraction of contourlet texture features on each patch consists of
two steps: contourlet subband clustering and spectral clustering.

Contourlet subband clustering: Texture classification algorithms
based on wavelet transformation can be categorized into two
types: the model-based approaches assume that the coefficients of
wavelet subbands follow a specific distribution, while the feature-
based approaches intent to extract statistical features from the
wavelet subbands. However, the Contourlet Subband Clustering
(CSC) method [25] combines the advantages of both these two
categories. In particular, the CSC method applies the k-means
algorithm to the coefficients of each contourlet subband, and then
utilize the cluster centers (plus two other conventional features) to
represent the corresponding subband (coefficients). By making
such a clustering analysis on the contourlet subbands, the CSC
method fully employs the information in subband coefficients
without any hypothesis about their distributions, and has been
demonstrated to have outstanding performance on texture image
segmentation.

If we denote the number of levels for contourlet transformation
as L, while the number of decomposition levels for each Direc-
tional Filter Bank (DFB) as li; i¼ 1;2;…; L, then, for each image
patch, the contourlet transformation will generate S¼ 1þ PL

i ¼ 1 2
li

subbands, where the plus of one denotes the low-pass subband.
After applying the k-means algorithm to each subband's coeffi-
cients with the cluster number set as M, we can obtain the CSC
vector for the s-th subband as

f s ¼ ½cs;1; cs;2;…; cs;M ; cs;Mþ1; cs;Mþ2�; s¼ 1;…; S; ð14Þ
where fcs;jgMj ¼ 1 are the cluster centers of the s-th subband and are
Table 5
The mean and standard deviation of PRI scores on 100 test images in BSDS300.

Method Mean of PRI Std of PRI

RPCL 0.727 0.132
CAC 0.732 0.154
BYY-t-DCT 0.737 0.108
BYY-t-CL 0.743 0.112
sorted in the ascending order, while cs;Mþ1 and cs;Mþ2 are the
variance and norm-2 energy of the s-th subband defined by

cs;Mþ1 ¼
1
Ns

XNs

i ¼ 1

xs;i�xs
� 	2

; xs ¼
1
Ns

XNs

i ¼ 1

xs;i;

cs;Mþ2 ¼
1
Ns

XNs

i ¼ 1

x2s;i; ð15Þ

where fxs;igNs
i ¼ 1 are the coefficients of the s-th subband.

As for the CSC feature vector of an image patch, it is just the
concatenation of the S subbands' CSC vectors, that is,

F ¼ f 1; f 2;…; f S

 �

: ð16Þ
Spectral clustering: The CSC features are just a representation of

texture information. However, for image segmentation task, what
matters is the distinctiveness between different textures, not the
textures themselves. Besides, the dimensionality of an image
patch's CSC vector may be too high for the BYY-t algorithm. Hence,
for the BYY-t algorithm based segmentation task, it is reasonable
to re-extract the CSC features by emphasising the dissimilarity/
similarity between different CSC vectors and reduce the feature
dimensionality. This feature re-extraction or dimension reduction
can be done by the spectral clustering analysis.

Before doing so, we need to define a similarity matrix for dif-
ferent image patches. Given two image patches A and B, and their
corresponding CSC vectors FA ¼ ff A1 ; f A2 ;…; f AS g and FB ¼ ff B1; f B2;
…; f BS g, where f As ¼ ½cAs;1;…; cAs;Mþ2� and f Bs ¼ ½cBs;1;…; cBs;Mþ2�,
s¼ 1;…; S, are the subbands’ CSC vectors, then the similarity
between patches A and B is defined as

SimðFA; FBÞ ¼ 1

τþDistðFA; FBÞ
; ð17Þ

where τ is a small value to avoid the zero value divisor, and the
distance between FA and FB is just the sum of the relative-L1 dis-
tances between their corresponding subbands’ CSC vectors, that is,

DistðFA; FBÞ ¼
XS
s ¼ 1

RL1ðf As ; f Bs Þ ¼
XS
s ¼ 1

XMþ2

j ¼ 1

j cAs;j�cBs;j j
1þj cAs;j j þ j cBs;j j

: ð18Þ

After obtaining the similarity matrix, we can utilize the spectral
clustering algorithm to represent image patches with certain
principal eigenvectors. Refer to [26] for detailed spectral clustering
procedure and eigenvector selection method. Eventually, after the
contourlet subband clustering and spectral clustering analysis, we
get the final contourlet texture features for each image patch.

5.1.2. Position/color features
The position features of pixel (x,y) is simply its corresponding

coordinate values, that is, its horizontal coordinate x and vertical



Fig. 6. Segmentation examples of Prague-generated multi-texture images: part I. Left column: original images. Right column: segmentation images.
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coordinate y. In fact, these position features are also important to
the overall segmentation of an object in an image.

As shown by Ooi and Lim [27], the CIE color representation
could be the best for image segmentation. So, we adopt the CIE-
LUV color space and each pixel is represented by a tri-tuple
fLn;un; vng, where Ln is the initialism of lightness, while un and vn

are color measurements. In consideration of the robustness to
noises, a mean filter with 3�3 kernel size is applied to the original
LUV color image.
5.2. Application of the BYY-t algorithm to image segmentation

Due to the ability of automated model selection and clustering
analysis, the BYY-t algorithm is capable of unsupervised image
segmentation. Firstly, we need to extract the contourlet texture
features on each image patch. The patch size is set as 50�50 after
we double-size the original image. The parameters in the subband
clustering step are set as L¼ 4; li ¼ 3; i¼ 1;2;3;4 and M¼3, and
we choose 3 principal eigenvectors in the spectral clustering step.



Fig. 7. Segmentation examples of Prague-generated multi-texture images: part II. Left column: original images. Right column: segmentation images.
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Secondly, we extract 8-dimensional pixel-level feature vector for
each pixel, including the contourlet texture features of its corre-
sponding patch (3D), position features (2D) and LUV color features
(3D). Finally we apply the BYY-t algorithm to the feature space of
image pixels, assign each pixel to the component with the max-
imum posterior probability, and thus obtain the image segments.
Usually, a post-process is also applied to delete “small pieces” in
the segmentation results. For short, we refer to our segmentation
method based on the contourlet texture features and the BYY-t
algorithm as “BYY-t-CL”.
5.2.1. Segmentation performance for the general images
To evaluate the performance of BYY-t-CL, we test it on the popular

Berkeley Segmentation Data Set (BSDS300) [28], which covers a variety
of images with complex scenarios and has manually produced
ground-truth segmentation for each image. As for the evaluation of
segmentation performance, we adopt the Probability Rand Index (PRI)
[29], which is ranged in ½0;1�, with the higher the better.

As in Fig. 4, there are four typical segmentation results on
BSDS300 general images. In the first image, the grassland, stones
and mountains have different colors, BYY-t-CL segments them



Fig. 8. Segmentation examples of VisTex multi-texture images. (a) Original corridor image. (b) Original city-sea image. (n-1) segmentation by BYY-t-CL; (n-2) segmentation by
BYY-t-DCT; (n-3) segmentation by Gaussian-EM algorithm; (n-4) segmentation by the k-means algorithm, where n refers to (a) or (b).
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clearly. Moreover, even if the mountains with different distances
have similar colors, but with different brightness, BYY-t-CL still
distinguishes them correctly. This shows that BYY-t-CL is
effective for the general images with different colors and
brightness, which may be ascribed to the utilization of LUV color
features.
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In the second image, the skin of the gecko has similar color and
brightness with its surrounding stones, but BYY-t-CL differentiates
them almost correctly due to the small difference between their
texture patterns. This indicates that BYY-t-CL can grab the texture
information and distinguish them by the texture variations. It also
shows the effectiveness of the contourlet texture features. The
relatively low PRI score is mainly caused by the legs and tail of the
gecko since they are in slender shapes and it is quite difficult to
extract the patch-based texture features accurately for them.

As for the third image and the fourth image, both the skin of
the fish and the clothes on the person have dazzling spots with
much different colors, but they form obvious texture patterns as a
whole. From the segmentation results we can see that BYY-t-CL
clearly distinguishes them from the surroundings, without split-
ting them into small pieces. This indicates that BYY-t-CL is more
sensitive to texture variation than to color variations.

Furthermore, we test BYY-t-CL on a set of 100 test images in the
BSDS300. k is set as 12, 10, 8, or 6, differently in consideration of the
complexity of the images. Table 5 lists themean and standard deviation
of the 100 PRI scores, as well as the comparisons with some relative
segmentation methods, e.g., the Rival Penalized Competitive Learning
(RPCL) algorithm [7,24], the Competitive Agglomeration Clustering
(CAC) algorithm [30]. Besides, we also conduct a comparative
experiment by replacing the contourlet texture features with the
Discrete Cosine Transformation (DCT) texture features [31] in the BYY-
t algorithm, which is denoted as “BYY-t-DCT” for short. From the
Table 5 we can see that the two BYY-t approaches achieve better
segmentation results than the RPCL and CAC algorithms (with a higher
mean of PRI), and are more stable (with a lower standard deviation of
PRI). Besides, in comparison with the DCT texture features, the con-
tourlet texture features really improve the segmentation performance.
Fig. 5 shows the percentages of different PRI levels. From this figure
we can see that about 70% images obtain relatively good segmentation
results with PRI larger than 0.7, and only 2% images have very bad
segmentation results with PRI lower than 0.5.

5.2.2. Segmentation performance for multi-texture images
To further investigate the effects of the contourlet texture

features in our BYY-t-CL approach, we test it on some multi-
texture images, including synthetic images and real-world images.
Multi-texture image means that the image is composed by several
regions, with each region having evident texture pattern, and the
textures are uniform within regions, but different among regions.

The synthetic multi-texture images are generated by the Prague
Texture Segmentation Datagenerator [32]. The generator randomly
selects several different texture patterns from a texture database,
places them to a single image with random shapes, and thus obtains
the multi-texture image. Some segmentation examples by BYY-t-CL
are shown in Figs. 6 and 7, where the initial number of clusters is fixed
to 10. From these two figures we can see that all the synthetic images
are composed by regions with ruleless shapes, and each region cor-
responds a texture pattern. Most texture patterns are in large scales,
with cluttered colors or objects, and thus very difficult for recognition.
However, in most cases, our method recognizes the texture pattern
accurately, and segments the images by texture variations. The PRI
scores on these synthetic images are all greater than 0.9, which are
much higher than the mean PRI on BSDD images. This indicates that
BYY-t-CL is more suitable for multi-texture images than for general
images, and it mainly benefits from the effective contourlet texture
features we used in the BYY-t algorithm.

The real-world multi-texture images are come from the Vision
Texture Database [33], which provides texture images that are
representative of real world conditions. Two segmentation examples
are shown in Fig. 8, as well as the comparisons with three other
algorithms,i.e., BYY-t-DCT, Gaussian-EM algorithm [34] and the k-
means algorithm. The initial number of clusters is set as 3.
As is shown in Fig. 8(a), the walls on both sides of the corridor
have consistent texture patterns but varied colors and brightness.
the Gaussian-EM and k-means algorithms are too sensitive to
image color and brightness, and assign the walls to different
clusters. In comparison, BYY-t-CL captures the texture features in
the image, correctly obtains the actual number of clusters and
segments the image into two parts,i.e., wall and corridor.

Fig. 8 (b) shows the scenery of a city around the sea. Since the color
of sea is more similar with buildings than with sky, the other algo-
rithms are more potential to group the sea and buildings together. In
contrast, BYY-t-CL is more discriminating with texture variations, and
correctly distinguishes the city from the sea. However, the segmen-
tation boundaries via BYY-t-CL are still coarse (almost with square
wave shape) due to the patch-based texture feature extraction strat-
egy and need to be further improved.

In summary, the BYY-t algorithm is successfully applied to
unsupervised image segmentation as the contourlet features are
mainly utilized. The experimental results show that it leads to
more reasonable and accurate segmentations for both general and
multi-texture images, especially when the textures are involved.
6. Conclusions

We have extended the BYY harmony learning to the case of
multivariate t-mixtures and derived a gradient BYY harmony
learning algorithm for t-mixtures. In fact, our proposed algorithm
can automatically determine the number of actual t-distributions
in the dataset during the parameter learning. The simulation
experiments have demonstrated its effectiveness for automated
model selection and parameter estimation. Moreover, our pro-
posed algorithm is successfully applied to unsupervised image
segmentation as the contourlet features are mainly utilized. It is
demonstrated by the experiments that this new segmentation
approach is more discriminating with texture variations, and gains
better segmentation performances for both general and multi-
texture images. Since texture is often more consistent than color
and brightness with image objects, this new approach is more
suitable for the segmentation of images with complex and varied
contents.
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