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We present a study of generalised Hopfield networksapacity of a Hopfield network witin neurons is
for associative memory. By analysing the radius ofn/(2 logn) patterns, if exact recall is required [2];
attraction of a stable state, the Object Perceptronand the memory capacity is about OnlB a little
Learning Algorithm (OPLA) and OPLA scheme are noise is permitted [3].
proposed to store a set of sample patterns (vectors) The Hopfield network is a single layer recurrent
in a generalised Hopfield network with their radii network of n bipolar (or binary) neurons uniquely
of attraction as large as we require. OPLA modifiesdefined by W,6), where W is a symmetric zero-
a set of weights and a threshold in a way similar diagonal real weight matrix, whil@ is a real thres-
to the perceptron learning algorithm. The simulation hold vector. When the weight matrix is changed to
results show that the OPLA scheme is more effectivan asymmetric and zero-diagonal one, we usually
for associative memory than both the sum-of-outercall the network anasymmetricHopfield network.
produce scheme with a Hopfield network and theln this paper, we define a generalised Hopfield
weighted sum-of-outer product scheme with annetwork as a network with a general (asymmetric
asymmetric Hopfield network. or symmetric) zero-diagonal weight matrix. Here-
after, we refer to the Generalised Hopfield Network
Keywords: Associative memory; Hopfield network; as GHN.
Neural network; Perceptron; Radius of attraction; As a dynamical system, the GHN can also have
Stable state similar content-addressable memory characteristics
to the Hopfield network, especially in randomly
asynchronous mode [4]. Therefore, we can apply
1. Introduction this kind of neural network to associative memory.
Given a sample setl = {X*,X?,...,X™ which con-
Associative Memories (AMs) have been used forsists of m different sample patterns (vectors) in
information storage and recall in many applications.{ —1,1}", where
Considerable effort has been devoted to the study X = [X1X 2. %" (j = 1,2,..,m) (1)

of AMs. The Hopfield network is an important 1o key problem concerning the use of a GHN as

associative memory model [1], and as proposed iy associative memory is how to construct its matrix
1982, the sum-of-outer product scheme was appliedyy and 9. which enables each OfXEX2,... X™ 10

to store sample patterns. Hopfield demonstrated bye the stable state of the network with a possibly
computer simulation that a network with neurons 596 hasin of attraction. Actually, several learning
can store about 0.E5patterns in the form of itS  gchemes have already been constructed on GHNs
stable states. It is now well known that the memorys,, associative memory [5-9]. Here, we summarise
them under two categories.
. . _ In one category, the sum-of-outer product scheme
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where §; is a Kronecker function and; is a weight  neuroni is now activated, its state at the next time
value to X'. In 1988, Gardner found a sufficient (i.e.t + 1) is computed by

condition between); and the sample patterns by 1 if H(X(D) = 0
which the asymmetric Hopfield network (i.e. the y(t 4 1) = Sgr(H,(X(1)) :{ A
GHN) enables each sample pattern to be stable with —1 otherwise

a nontrivial basin of attraction [5]. She also gave ayhere

learning scheme to compute the requirdd and 6
from the sample patterns under certain conditions.
Then Abbott and Kepler [6] improved the scheme
to be more efficient. In 1993 Wang etal [7] pro-
posed another scheme to computge of Eq. (2) The GHN can operate in different modes. If the
directly using a linear neural network. This kind of evaluation of Eq. (3) is performed at all neurons at
scheme has a long learning process. Even if théhe same time, we say that the GHN is operating
sample patterns can be stable with a certain basift synchronous modef the evaluation of Eq. (3)

of attraction in a GHN or linear network using theseis performed at a single neuron each time, we say
schemes, their basins of attraction are still as uncledhat the GHN is operating irasynchronous mode
as the desired patterns before the learning procedsurthermore, we say that the GHN is operating in
or the resulting ones after the learning process. randomly asynchronous modfethe single activation

In the other category of learning scheme, theneuron is selected from alh possible neurons of
spectral (or eigenvector) scheme [8] has been prothe GHN randomly with equiprobability.
posed to constructV (assumingd = 0) directly if A state X = [X3,%,--- X" of the GHN is called
n is small. The perceptron learning scheme [9] wasstable if
also proposed to compuM and 6 directly. These
two schemes can make a set of sample patterns  x = Sgr(H;(X))) = Sgn(
stable in a GHN, but they cannot guarantee that each
sample pattern has a nontrivial basin of attraction. (i=12..n) 5)

In this paper, we combine the ideas of researchers e
in the two leasing scheme categories, and proposee. if the state of the GHN never changes as a
the Object Perceptron Learning Algorithm (OPLA) result of evolution in synchronous or asynchronous
and OPLA scheme on GHNs for associativemode. Therefore, the definition of the stable state
memory. of the GHN is the same in any operation mode.

In the following, the absolute radius of attraction When the GHN operates from an initial state, it
is introduced for the stable state of a GHN, and aprobably enters a stable state. It has been proved
lower bound of the absolute radius of attraction is[4] that the GHN with nonnegative weights is stable
obtained in Section 2. Then the OPLA and OPLAiIn randomly asynchronous mode, and it is also
scheme are proposed and analysed in Section 3. lshown by simulation experiments that almost any
Section 4, the simulation experiments are presente@GHN having a stable state is stable in randomly
to show that the proposed algorithm and scheme arasynchronous mode. Thus, the GHN can have the
effective for associative memory. A brief conclusion same stability as a Hopfield network, especially in

3

H(X(@) = >, wix(t) + 6, 4)

j=1

> WX+ 9i>

j=1

appears in Section 5. randomly asynchronous mode, and therefore we can
apply this neural network model to associative mem-
_ _ ory.
2. The Absolute Radius of Attraction Obviously, the domain of attraction of a stable
of a Stable State state dominates the behaviour of content-addressable

memory of the GHN on this stable state. Thus, the
We first give the mathematical model of a GHN. concept of a domain of attraction is very important
A GHN with n neurons is uniquely defined by to associative memory. We now begin to study the
(W,0). Here, W is an n X n zero-diagonal real domain of attraction of a stable state of the GHN.
matrix, where elementy;; denotes the weight of the Since the domain of attraction of a stable state
connection from neurof to neuroni, 6 is a vector varies with the operation mode, we study it in
of dimensionn, and where componen, denotes synchronous and randomly asynchronous modes,
the threshold value of neurdn The state of neuron respectively.
i at timet is denoted byx(t), and it is either ‘1’ We now assume thak* = [x%x%,....x%]T is a
or ‘—1'. The state vector of the GHN at timeis  stable state of the GHN, and study the domain of
denoted by X(t) = [X(t).Xa(t),.-. X,()]T. When attraction of X*.
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Definition 1. Suppose the GHN operates inthe radius of attraction ofX*. However, D(X*)
synchronous mode. We define the domain of attracgenerally has a very complex structure, and there
tion of X* as does not exist any effective method to directly com-
o pute it from V,6). Although we cannot obtain the
D(X*) = {Xe{-1.1" radius of attraction ofx*, we will obtain a lower
X has the path of state transition t&}X (6) bound of it in the following. This lower bound will
. be called the absolute radius of attraction Xt
When the GHN operates in synchronous mode 14 gy,qy the radius of attraction of a stable state,

obe Fonous.
and starts from an initial statd e D(X*), it will o 6w introduce the dominating vector function
evolve to X* with certainty. as follows

Definition 2. Suppose the GHN operates in ran- Definition 4. For a GHNN = (W,0), we define

domly asynchronous mode. We define the domairk(xy 45 the dominating vector function of the net-

of attraction ofX* as work N at any stateX e {—1,1}" by

D(X*) = {X e {—1,1}": X has only possible paths E(X) = TE.(X).E(X).... E.OOT 9
of state transition to X (X) = [ECO.EL,--- Ea(X)] ©)
but the other stable where
states or the random N
state cycles @) E(X) = (E W% + 6, )xi (i=12,..,n

When the GHN operates in randomly asynchro- =1
nous mode and starts from an initial state, its state (10)

will finally be attracted in a stable state, or a random
state cycle defined to be a hole of the network in By Egs (3) and (5), we have
the state space in Ma [4]. A random state cycle of n .
the GHN is a set of states within which the state E(X*) = (E Wi X5 + 6 )x*, =0(=12,..n)
of the GHN will always transit randomly when the =1
state of the GHN becomes any one of the set of (11)
the s'_[ates. Thergfore, a random state cycle is closel%r the stable statex*.
and like a hole in the ground. However, there mayfollowing theorem:
exist a state cycle which is open to the stable states
or random state cycles. Here if the GHN starts fromTheorem 1. For a GHNN = (W,6) and a stateX,
an initial stateX e D(X*), there may exist an event if the dominating vector function satisfies
where the state of the GHN will always transit in .
some open state cycle(s). But the probability of this EX)>0( =121 (12)
event is zero, as the time converges to infinity,then X is a stable state of the GHN.

) S
therefore the GHN will evolve toX* with a prob Proof. When E(X) > 0, H(X) = Sf, wix + 0

ability of one. dx h th . Theref
Since the attractive action should be equal in all@"d% Nave the same sign. Therefore,

Obviously, we have the

directions aroundX* for associative memory, we x = Sgr(H,(X)) (13)

further introduce the radius of the domain of )

attraction. BecauseEi(X) >0 fori = 1,2,....,n, Eq. (13) holds
For clarity, we first define théneighbourhood of for I = 1,2,..n. Therefore,X is a stable state of

X* as the network.

By Theorem 1, we find that a state of the GHN

N(X*) = {X e {-1,1}": du(X,X*) =t} (8) s stable if the dominating vector components are

where dy,(X.X*) is the Hamming distance between all positive at thi; state. In fact this condition is not
X and X* necessary, only in a special case where some of the
dominating vector components become zero. There-

Definition 3. Suppose thaD(X*) is the domain of fore, the dominating vector function dominates
attraction of X*. If N(X*) C D(X*), we say that almost all the stable states of the GHN. Moreover,
N/(X*) is a basin of attraction ofX*, and t is a it also dominates the radii of attraction of the stable
possible radius of attraction ok*. The radius of states, to a certain degree. We now discuss the
attraction of X* is defined as the greatest of the relation between the radius of attraction of a stable

possible radiuses of attraction of. state and the dominating vector components.
Clearly, if we know D(X*), we certainly know For the stable stat¥*, we consider the dominat-
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ing vector componenE;(X*). In the case ofx% =  Theorem 2. Suppose thaiX* is a stable state of
1, E(X*) =3, w;x5 + 6 =0, there may be two the GHN N = (W,0) and E is a positive real
kinds of w,x* terms in the sum: the nonnegative number.b is also a positive real number and satisfies
and negative ones. We assume that an error appears e

in the jth component ofX* and the error patteriX b= maxijw,| :i.j = 1.2....n} (19)
= X4 XA, =X XA, X T is input to the  If E(X*) = E fori = 1,2,..,n, then

GHN. If w;,x% < 0, thenw; ;x = —w;;x% > 0. Thus, .

the sum (;fij”:lwi,jxj + eili Ei(X*),J sJo the evol- r(x?) = E/2bl] (20)
ution of the network will always let the&h compo- where XOis the integer part of the real numbgr
nent of the state of the network be stablexitin
synchronous or randomly asynchronous mode
Therefore, this kind of error is good for the attrac-
tion of the error pattern t&X* on the ith component. i

However, if w;;x% = 0, the sum ofSlowx + 6 (X} = max{j DY) 2ck = E(X¥) }

will be decreased td5(X*) — 2w ;x%. If we expect k=1

that theith component of the state of the network j

will also be stable atx* after the evolution(s) of = max{j : 2 2b = E} = [E/2b00  (21)
the network, it is sufficient thaE(X*) — 2w ;X% = k=1

0, i.e. 2v;x = E(X*). In this way, when there are
more errors appearing in different components of
X*, the error pattern can also be attractedXbon

the ith component ifE(X*) is great enough. We

define a nonnegative real vectGr= [c,,C,,...,C,] as 3. The OPLA and OPLA Scheme

wi x5 if wi x>0
C = {0 ot = 0 (14)  In this section, we propose the OPLA and OPLA
A scheme, and analyse the convergence of OPLA. We
and rearrange its components to form another vectosissume that the sample sétt = {X%X?... X"} is
C* = [c4,c%,...,c1] in the following way: given. For a reasonable associative memory, and
(15) according to the above definitions and coding theory,

the radius of attraction ok should be equal to or
Then the maximum number of errors which can bejess thanh[k], which is computed by

corrected directly byE;(X*) in the ith component — ) .
r(X*) — can be computed by h{k] = Hmin{dy(X*X) :

i j=1,..k—1k+1..m} — 1)/20 (22)
o) ~max| (X 2B | 19 ok~ 15, m
k=t We further define h as the least one of

Proof. Becauseb = |w;;| = |w;;x*|, thenb = c¥
i = 12,...n):

ri=12,..,n. Hence,r(X*) = [E/2b0

x K x
ch=ch= ... =c

If xx = —1, we only need to chang€ as {h[1],h[2],...,h[m]}, i.e.
c - { Wi X i'f ;X% < 0 a7 h = min{h[1],h[2],...,A[m} (23)
0 if wi;x§ =0

and refer toh as the maximum of possible uniform
We define the absolute radius of attractionXf—  radii of attraction of the sample set.
r(x*) — by We now construct the OPLA scheme by improv-
. ing the perceptron learning algorithm [10] to OPLA.
rX) = min{ra(X<), rz(X*), . ra(X*)} (18) First, (0 = t; = h[i]) is selected as the object
From the above discussion and definitions, it can(required) value of the radius of attraction of the
be easily verified that the GHN will evolve t&* pattern X<k = 1,2...m), and b is the expected
with certainty (probability one) when it starts from maximum of the absolute values of the weighis.
any X € Nixy(X*) in synchronous (randomly is a positive constant as the learning rate, and we
asynchronous) mode. Thus, the absolute radfs) usually set is to be 0.15 is also a positive number,
is certainly a possible radius of attraction &F.  which is slightly greater than 0. For a set of the
Therefore,r(X*) is a lower bound ofR(X*) — the  object values t{,t,,...,t,) of the radii of attraction
radius of attraction ofX*. We further have a lower of the sample patterns, the OPLA for the weights
bound of the absolute radius of attraction Xif by  to and the threshold of neuranis given as follows.
the following theorem. Herew;; is always set to be zero.
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Step 1.Randomly select a set of initial weights Wil = b; (i,j = 1,2,..,n) 27)
W1, Wi -, Wi 1,- Wiy, @S Well ash; from n
the interval[—0.1,0.1]. E (XK = ( WX + 0_) =tDb

Step 2 At time t, select a new sample pattedf X9 2, Wi + 6| % =t

=1
from [X%,...,.X™ and use it to train the net- :

work? +83 =1,...,nk=1,...,m) (28)
Step 3 Computeu; by OPLA converges to a desired set ofwf...,
n Wii—q, Wiisq,e-- Wi, 6} for eachi(i = 1,2,..,n) as
u = Sgn( 2 WX T 6 — Xi(tb + 3)) the timet becomes large enough. We now try to
- ’ analyse the reason for the convergence of OPLA in

(24)  the remaining part of this section.
If { Wi -y Wijoq, Wiigq, ---, Wi, 0} satisfies the

Step 4 The weights and threshold are modified S, hove conditions (i.e. Eqs (27) and (28)), then there

follows. Let .
is a hyperplane
Aw;; = ?‘(Xk,i - L.Ii)xk,i _ (25) WiaXy + oo+ WiioaXiog + WX
(J =1,..,1 —1,j+ 1,...,n), + o+ W, X, + 6 = 0 (29)
A6 = alk — ) (26)  which linearly separatesX(i),...,X™(i)} according
Then forj = 1,...,01 — 1,i + 1,....n,  to {X1 .., Xm} Where

if |(w;; + Aw;;)| = bw;; is modified by N
Wi + ]Awi,j. JOtherwisé, w;;  remains K) = D o0 X Kiear o Xl
unchanged. 6, is always modified by#; fork=1,....m
+ A6,

Step 5 If all weights w;; and 6, are unchanged for
every sample pattern, then stop; otherwise Wi = [Wig, ooy Wijog Whjgy -oey Win] "
lett =t + 1 and go to Step 2.

When the learning process has converged, wi

Furthermore, if we let

éhen

have the values of the weights to and the threshold {W?X"(i) + 6 =thb+ 9, if X, =1 (30)

of neuroni. Having completed these learning . .

processes of OPLA for from 1 to n, we obtain a WIX(Q) + 6= — (tb + 9), if xq = —1
desired W,0), i.e. a desired GHN. We refer to this for k = 1,2, ..., m.

learning process as th®PLA schemeof object In comparison with perceptron learning algorithm,
{tubs,. .t} If all object valuesty t,,... t,, are equal OPLA limits |\Ni,j| =bforj=1,...,i—1,i +

to an integert, we refer to it as the uniform OPLA 1, ..., n and make eaclx(i) be in the correct side

scheme of object. Moreover, the uniform OPLA  of the hyperplane with a proper distance, which is
scheme of object = h is referred to as theniform  determined by the constrair(X) = (WIX(i) +
OPLA schemeof maximum object. 0.)%.; = tb + 6. We now consideE;(X) as a func-

According to Theorem 2, the trained GHN by the tion of W and 6, and observe the variation of these
OPLA scheme enables each sample pat¥fto be  E(X4(k = 1, ..., m) in the learning process. It is
stable, with the radius of attraction being at leastclear that if E;(XY), ..., E(X™) can reach or exceed
t.. Therefore, the sample patterns really have reachegheir object valueg,b + §, ...,t.b + 8, respectively,
their object values of the radii of attraction, respect-in a finite number of times, OPLA is convergent.
ively. Since the complexity of computation of OPLA  We consider the learning process of OPLA. For
is almost the same as that of the perceptron learningach timet, we introduce
algorithm, we can thus implement OPLA as easily

as the perceptron learning algorithm. As to the AL = [Aa(),-- A0] (31)

convergence of OPLA, it has been shown by awhere

number of experiments that, if there exists such

a GHN, (i.e. a set of W,0)) which satisfies the =1, if wyt) + Awyl = b,j # i

following inequalities A =1=0, if|w,t) + Aw,| >b,j #i (32)
=0, ifj=i

2Note that we can simply selegt from X* to X™ repeatedly in Since Wi,J (0) is randomly selected in—0.1, 0.1]
the implementation. and b is much greater than 0.1, thdm;;(0) <<
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b. Therefore,A(t) is 1 forj =1, ..., 1 —1,i + 1, tial time. If it turns out to be lower than the object
...,n at the beginning stage of the learning processvalue again, it will exceed the object value quickly
On further learning, some,(t) may be zero forj by the recent modification withx¥. Thus, when

# i, but it will quickly be changed to 1 in the E(X¥) reaches or exceeds the object value at some
sequential times, becaudav;; varies in the positive time, it will remain greater than the object value in
and negative signs according to the selected samplealmost all the times. Therefore, ai(X¥) for k =

So we can assume that the great majority Agf) 1, ..., m will reach or exceed the object values,
are 1 in the whole learning process of OPLA. Inrespectively, at a certain time. That is, OPLA will
other words,n — 1 — 3, A(t) is much smaller have converged to a desired set of weights and

in comparison withn. threshold by this time.
With these symbols, we have We have made an analysis on the convergence
Wit + 1) = wi(t) + ABAW, (33) of OPLA when there exists a desired GHN under

a set of object values. Although the analysis is not
If the sample patterix* is selected at timé¢ andu;  so strict as a mathematical proof, it is reasonable
# X It is clear thatE(X) cannot reach the object and heuristic. Furthermore, it is consistent with the
value tb + 6. After the modification of OPLA, empirical results.

we have

AE,(X9) = a( DA + 1) (%i — U)X >0  (34) 4. The Simulation Results

j=1
In this section, several simulations are carried out
cation to evaluate the performance of OPLA or the OPLA

On the other hand, the sequential modification byscheme. Our simulation experiments were under-

. taken on a sample set of ten Arabic numerals
the other sampleX¥ may cause a drawback for .
E(X9. In this case, we have {0,1,2,3,4,5,6,7,8,9 } using the OPLA scheme and

uniform OPLA scheme. Ten sample patterns are
y n expressed by 7x 7 pixies, as shown in Fig. 1.
AE(X9 = o 2 A®%%e; + 1) (i~ Ui  (35)  Based on the Hamming distances between these
=1 sample patterns, we have

If AE(X¥) is negative, a drawback is actually made.

We now compare the absolute values Mi;(X®) ([1].h(2],h[3], h{4],h[5]. h{6],h[7]. h(8],h[9]. h[10])
in two cases. In fact, the sample pattetds and = (3,6,5,4,9,4,5,8,3,4)
X< should have enough Hamming distance in order, _
to be stored in a GHN. TherS{x ;| wil andh = 3. We take a GHN of 49 neurons and use

. ; : this sample set to train it for associative memory.
become much smaller in comparison with Thus ' ; . :
N . One simulation experiment consists of two pro-
IS A (O%gXe; + 1 is also much smaller than

Ny o cesses. In the first process, OPLA is applied to train
)E(L'Zligj(tr)njcﬁ Z;‘qearﬁ;?r%;?]e t?]icr%acsrgaiﬁsxex )EV(V)'(tg the network. In our experimenty, and 6 of OPLA

with XK are always selected to be 100 and 1, respectively.

By above analysisE(XY) increases considerably When this learning process ends with success, i.e.
when X* is selected for the modification, but it may
increase or decrease slightly when the other sampl€ eeses. ..o

Therefore,E;(X¥) has increased after this modifi-

e. (X111 ] . 000 . . (] ]
pattern X< is selected for the modification. We see MR P A : Y O
that the key mechanism of OPLA is that the modifi- e... e .. e... ......e ..eee.. e...0..
cation of the weights and threshold enableéx) g0 g It oo 2RO
to increase on average in a period f imMesS t0  .eeeee. .evcee. ccecces ..0ee.. ...cce.
the object value. Since the object value BfX) is
fixed to betb + 8, E(X¥) will reach or exceed it '
in a finite number of times. S&(X¥) will increase PASSOIENRSAAAAIEERAAAASAIIIARAEASEPAR A
in mtime batches to the object value E(X¥) iS  eeeees. .o..... ....0.. e.....0 o....0.
lower than the object value. Furthermore, two or ------3 -9%¢®® . ----9--  -eeees  .esees
more E;(X¥) for different integers ok can increase ..... e .e....e ....0.. e..... e o....0
to their object values in the same way synchron- -®®®®®-  --eeee.  ....e.. soeee -eeee

ously. _When someEi(Xk) first reaches Or'exceeds Fig. 1. Sample patterns of ten arabic numerals
the object value, it may decrease slowly in sequen{o,1,2,3,4,5,6,7,8,9}.
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a GHN is obtained, we turn to the second processncrease the object value of the radius of attraction
by which the radii of attraction of the sample pat- or {t,t,,...,t;g}.
terns are estimated as follows. We then carry out a simulation experiment with

For the sample patterdX(k = 1,2, ..., 10) and the uniform OPLA of maximum objedt = h = 3.
the numberj(j = 1,2, ...,9) (Here 9 is the greatest The learning process cannot be completed success-
of {h[1],h[2],...,h[10]}), we randomly select 1000 fully under this uniform object, but when the learn-
initial patterns with a Hamming distance pfto X«. ing process is forced to stop after a large number
These initial patterns can be consideredXspol-  of iterations, we have still obtained a useful network
luted by j errors in somej components of the by which the radius of attraction of the first pattern
pattern. Then the trained network operates in ranf is 2 instead of the object value 3, and the radii
domly asynchronous mode with each initial pattern.of attraction of the other sample patterns are either
We check whether the network finally evolve 5  equal to or greater than 3. Moreover, the radii of
or not. If the network evolves tX* for all 1000 attraction of some sample patterns is greater than the
polluted patterns, we are sure thjatis a possible corresponding radii of attraction listed in Table 1.
radius of attraction ofX<. In this way, we can We further carry out a simulation experiment with
estimate the radius of attraction & the OPLA scheme of objectt{ = 2,t, = 4, t; =

We first carry out a simulation experiment with 3,t, = 2, t; = 5,tg = 3,t;, = 3,tg = 5, t, = 2,
the uniform OPLA of objectt = 2. The learning t,, = 3}. The learning process is completed success-
process of the OPLA scheme is completed succesdully, and the simulation results are listed in Table 2.
fully with a network, and the simulation results are From Table 2, we find that six radii of attrac-
listed in Table 1. tion are greatly increased, and the percentages

In Table 1 as well as two other tables in this (R(X¥)/h[k])% are improved to a satisfactory level.
paper, X< in the first row represents the sample The radius of attraction of sample pattern 7 is even
pattern,t, in the second row represents the objectgreater tharh[8] = 8, which may be caused by the
value of the radius of attraction of used in the fact that some sample patterns cannot have their
OPLA schemeR(XX) in the third row represents the radii of attraction reach the corresponding object
estimated radius of attraction of< on the trained values. From this experiment, we see that the OPLA
network; R(X¥)/h[k]% in the last row represents the scheme with a set of carefully selected individual
percentage of achieving the maximum reasonable@bject values for the sample patterns is more valu-
value of the radius of attraction ok — h[k] by  able for associative memory than the uniform OPLA
R(X9). According to Table 1, we can find that the scheme. However, it is difficult to select an optimum
trained network has the required function of associ-set of these individual object values. One possible
ative memory. In fact, its function is even better method is that we begin to let it benffl],...,h[m]}
than what we expect. The radii of attraction of five and test it using the OPLA scheme. If the learning
sample patterns are equal to 2 as we require, bytrocess can be completed successfully, this set of
the radii of attraction of the other five sample object values is just the optimum. Otherwise, we
patterns is greater than 2. We see that the samplglowly decrease the individual object values and test
patterns may have different actual radii of attractionit using the OPLA scheme until the learning process
on the trained network, even if they have the saméds completed successfully. Then we have obtained
object value of the radius of attraction in the OPLA the optimum set of object values as well as the
scheme. Moreover, the actual radius of attraction ohetwork. In fact, {2,4,3,2,5,3,3,5,2,3} is optimum
a sample patterrx seems to have a relation with for the sample patterns of ten Arabic numerals in
h[K]. Although we have obtained a desired network,our experiments.
the percentage of achieving the maximum reasonable In the above experiments, the trained GHN are
value of radius of attraction is really low for some operating in randomly asynchronous mode in the
sample patterns. To improve these results, we try t@econd process. We now let the trained network

Table 1. Simulation result of ten Arabic numerals with Table 2. The simulation result of ten Arabic numerals

the uniform OPLA of object = 2 with the OPLA scheme

X« 0 1 2 3 45 6 7 8 9 XK 0 12 3 4 56 78 9
ty 2 2 2 2 2 2 2 2 2 2 te 2 43 2 5 33 52 3
R(XY) 2 4 2 2 4 2 3 3 2 3 R(X¥) 2 63 2 8 43 92 3
(RX9/M[K)% 67 67 40 50 44 50 60 38 67 75 (RXXY/MK)% 67 10075 50 89 10075 11367 75
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operate in synchronous mode, and estimate the radfiable 3. Simulation result of ten Arabic numerals in
of attraction of the sample patterns in the sameSynchronous mode with the OPLA scheme
way. We carry out a simulation on the trained GHN _,

of the above experiment to estimate the radii oft (2) ‘11 g ‘;’ g 2 g ; 82; 2

attraction of the ten sample patterns in synchronouﬁ .

mode. The simulation results are listed in Table 3 (X9 2 862 85 592 5
' “(ROM/M[K)% 67 13312050 89 80 100 113 67 120

From the data listed in Table 3, we find that the
radii of attraction of the ten sample patterns are
really equal to or greater than the object values,
respectively. Moreover, four radii of attraction are
obviously improved, in comparison with the results
of the randomly asynchronous mode listed in Tabl
2. Therefore, the OPLA scheme is also useful an
effective for the GHNs in synchronous mode for
associative memory.

In comparison with the other methods, we also

each sample pattern, with its radius of attraction
being equal to or greater than an object value. A
euristic analysis is made on the convergence of
PLA when there exists a desired GHN under a
set of object values. The OPLA can be implemented
as easily as the perceptron learning algorithm, and
it has been shown by the simulation experiments

carry out two simulation experiments on the teny,,; the OPLA scheme is effective for associative
numeral patterns to check the performance of th‘?’nemory.

sum-of-outer product learning scheme with a Hop-

field network and the weighted sum-of-outer product

learning scheme with a GHN. In fact, it is shown

by one simulation experiment that the ten sampleReferences
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