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Mixture of experts (ME) is a modular neural network architecture for su-
pervised classification. The double-loop expectation-maximization (EM)
algorithm has been developed for learning the parameters of the ME ar-
chitecture, and the iteratively reweighted least squares (IRLS) algorithm
and the Newton-Raphson algorithm are two popular schemes for learn-
ing the parameters in the inner loop or gating network. In this letter, we
investigate asymptotic convergence properties of the EM algorithm for
ME using either the IRLS or Newton-Raphson approach. With the help of
an overlap measure for the ME model, we obtain an upper bound of the
asymptotic convergence rate of the EM algorithm in each case. Moreover,
we find that for the Newton approach as a specific Newton-Raphson ap-
proach to learning the parameters in the inner loop, the upper bound of
asymptotic convergence rate of the EM algorithm locally around the true
solution �∗ is o(e0.5−ε(�∗)), where ε > 0 is an arbitrarily small number,
o(x) means that it is a higher-order infinitesimal as x → 0, and e(�∗) is a
measure of the average overlap of the ME model. That is, as the average
overlap of the true ME model with large sample tends to zero, the EM
algorithm with the Newton approach to learning the parameters in the in-
ner loop tends to be asymptotically superlinear. Finally, we substantiate
our theoretical results by simulation experiments.

1 Introduction

For a complex problem with different subtasks on different occasions, it
is often efficient to use the divide-and-conquer principle that divides a
single problem into simpler ones whose separate solutions can be com-
bined to yield a final solution. According to this principle, Jacobs, Jordan,
Nowlan, and Hinton (1991) proposed the mixture of experts (ME) in which
the data are assumed to be summarized by a collection of networks, each
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defined over a local region of the input space. That is, the ME architecture
is composed of several different expert networks plus a gating network
that decides which of the experts should be used for each training case.
Jordan and Jacobs (1992) further proposed the hierarchical mixture of ex-
perts (HME) model, which is a tree-structured model with a tree of gating
networks combining the expert networks in a larger group.

For learning the parameters in the ME architecture with a given data set,
Jordan and Jacobs (1994) established an expectation-maximization (EM) al-
gorithm under the EM framework (Dempster, Laird, & Rubin, 1977). A fur-
ther theoretical investigation on this EM algorithm was made by Jordan and
Xu (1995) to show its relation with the gradient ascent method. The EM algo-
rithm is a general technique for maximum likelihood estimation, consisting
of the expectation (E) step and the maximization (M) step. In the E-step, us-
ing the given observed data and the current estimates of the parameters, the
expectation of the log-likelihood function over the complete data space de-
fined by the so-called Q function is computed. In the M-step, the parameters
are updated to maximize the Q-function. Particularly for the ME architec-
ture, the M-step needs to solve two maximization problems—one associated
with the parameters in the gating network and the other with the param-
eters in the expert networks. Fortunately, the latter maximization problem
can be solved directly, and the former one can be solved in a double-loop
way by the iteratively reweighted least squares (IRLS) algorithm (Jordan
& Jacobs, 1994). Later, Chen, Xu, and Chi (1999) suggested the Newton-
Raphson approximation approach for implementing inner-loop learning in
the EM algorithm instead of the IRLS approach in order to improve stability.
Moreover, Ng and McLachlan (2004) proposed the use of an expectation-
conditional maximization (ECM) algorithm (Meng, 1994) to train the ME
network. The single-loop EM algorithms for ME were also proposed to
speed up the convergence (Xu, Jordan, & Hinton, 1994; Yang & Ma, 2009).

Although the EM algorithm for ME has been widely used in pattern
recognition and signal processing, its convergence properties have not been
investigated in depth. Jordan and Xu (1995) provided a good theoretical
analysis on the EM algorithm for ME through the IRLS approach showing
that the EM algorithm outperforms the gradient ascent algorithm by having
a positive projection on the gradient of the log likelihood. However, so far
there has not been any further theoretical result on the convergence of the
EM algorithm for ME. Recent theoretical investigations on the asymptotic
convergence properties of the EM algorithms for gaussian mixtures and
the mixtures of densities from exponential families (Xu & Jordan, 1996; Xu,
1997; Ma, Xu, & Jordan, 2000; Ma & Xu, 2005; Ma & Fu, 2005) provide a new
view on the EM algorithm for ME. In fact, these investigations found that
the asymptotic convergence behavior of the EM algorithm is closely related
to the overlap measure of the components in the true mixture to generate
the sample data. Since the input data of the ME can be considered from a
finite mixture with a certain degree of overlap, we can apply this overlap
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measure analysis to the EM algorithm for ME to investigate its asymptotic
properties.

In this letter, after defining a measure of average overlap of experts in the
ME architecture (in a similar way as that of gaussian mixtures), we investi-
gate the asymptotic convergence rate of the EM algorithm for ME using ei-
ther the IRLS or Newton-Raphson scheme. In each case, we obtain an upper
bound of asymptotic convergence rate of the EM algorithm. Moreover, we
found that for the Newton method as a specific Newton-Raphson approach
to learning the parameters in the inner loop, the asymptotic convergence
rate of the EM algorithm locally around the true solution �∗ tends to be zero,
as the measure of average overlap in the true ME architecture tends to zero.
As the average overlap of the true ME architecture using a large sample
tends to zero, the EM algorithm for ME with the Newton approach to learn-
ing the parameters in the inner loop tends to be asymptotically superlinear.

The rest of the letter is organized as follows. In section 2, we introduce
the EM algorithm for ME, as well as a general upper bound of its asymp-
totic convergence rate. We then present several definitions, conditions, and
lemmas in section 3. Section 4 contains the main theorems. We further sub-
stantiate them by simulation experiments in section 5. A brief conclusion is
given in section 6.

2 The EM Algorithm and Its Asymptotic Convergence Rate

We consider the following ME model,

P(y|x,�) =
K∑

j=1

P( j |x)P(y|x, θ j ) =
K∑

j=1

g j (x, θ0)P(y|x, θ j ), (2.1)

where

g j (x, θ0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
es j (x,θ0)

1 + ∑K−1
i=1 esi (x,θ0)

, j = 1, . . . , K − 1,

1

1 + ∑K−1
i=1 esi (x,θ0)

, j = K ,

(2.2)

P(y|x, θ j ) = 1
(2π )m/2|� j |1/2

× exp
{
− 1

2
[y − f j (x, θ j )]T�−1

j [y − f j (x, θ j )]
}
. (2.3)

K is the number of experts in the mixture, x ∈ R
n denotes the input vector,

and y ∈ R
m is the output vector. � is the set of all the parameters, includ-

ing θ0 = [θT
01, · · · , θT

0(K−1)]
T and component parameter vectors θ j with the
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corresponding covariance matrices � j , which are assumed positive defi-
nite or diagonal. All of the functions f j and s j are assumed to be linear in
the parameters

f j (x, θ j ) = XTθ j , j = 1, . . . , K ,

s j (x, θ0) = [xT , 1]θ0 j , j = 1, . . . , K − 1,

where

XT =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xT 0 · · · · · · 0 | 1 0 · · · · · · 0
0 xT 0 · · · 0 | 0 1 0 · · · 0
...

...
... | ...

...
0 · · · · · · 0 xT | 0 · · · · · · 0 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

For convenience, we let sK (x, θ0) = 0.
Given a training set S = {x(t), y(t)}N

t=1 from the mixture of experts de-
scribed by equation 2.1, the log-likelihood function can be written as

l(�,S) =
N∑

t=1

ln
K∑

j=1

g j (x(t), θ0)P(y(t)|x(t), θ j ). (2.4)

To maximize l(�,S), the EM algorithm was established by Jordan and
Jacobs (1994) and further detailed by Jordan and Xu (1995), which can be
given iteratively in two steps as follows. In the E-step, we compute the
posterior probabilities h(k)

j (t) by

h(k)
j (t) = P( j |x(t), y(t),�(k)) = g j (x(t), θ

(k)
0 )P(y(t)|x(t), θ

(k)
j )∑K

i=1 gi (x(t), θ
(k)
0 )P(y(t)|x(t), θ

(k)
i )

. (2.5)

In the M-step, we update the parameters as follows:

θ
(k+1)
0 = θ

(k)
0 + γg(R(k)

g )−1e (k)
g , (2.6)

θ
(k+1)
j = (R(k)

j )−1c(k)
j , (2.7)

�
(k+1)
j = 1∑N

t=1 h(k)
j (t)

N∑
t=1

h(k)
j (t)

[
y(t) − f j (x(t), θ

(k)
j )

]
× [

y(t) − f j (x(t), θ
(k)
j )

]T
, (2.8)
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where

e (k)
g =

N∑
t=1

K−1∑
j=1

[
h(k)

j (t) − g j (x(t), θ
(k)
0 )

]∂s j
(
x(t), θ

(k)
0

)
∂θ

(k)
0

,

R(k)
g =

N∑
t=1

K−1∑
j=1

g j
(
x(t), θ

(k)
0

)(
1 − g j

(
x(t), θ

(k)
0

))∂s j
(
x(t), θ

(k)
0

)
∂θ

(k)
0

∂s j
(
x(t), θ

(k)
0

)
∂θ

(k)T
0

,

c(k)
j =

N∑
t=1

h(k)
j (t)Xt

(
�

(k)
j

)−1
y(t),

R(k)
j =

N∑
t=1

h(k)
j (t)Xt

(
�

(k)
j

)−1
XT

t ,

and γg is the learning rate. It is clear that R(k)
j is nonsingular with probability

one when the sample size N becomes sufficiently large.
If we consider the above iteration paradigm as a global loop of parameter

learning, it actually contains an inner loop for learning the parameters
θ0 in the gating network by equation 2.6. Actually, this inner loop needs
to implement the IRLS algorithm for a number of iterations. In order to
improve the performance of the EM algorithm, Chen et al. (1999) suggested
implementing the Newton-Raphson method in the inner loop, which can
be given iteratively as

θ
(k+1)
0 = θ

(k)
0 − αH−1

g

(
θ

(k)
0 ,S

)
J
(
θ

(k)
0 ,S

)
, (2.9)

where α is the learning rate and 0 < α ≤ 1. Hg is the Hessian matrix of the
log-likelihood function associated with the parameters θ0:

lg(θ0,S) =
N∑

t=1

K∑
j=1

h j (t)logg j (x(t), θ0), (2.10)

and J is the first derivative of lg(θ0,S) with respect to θ0. Specifically, the
Newton-Raphson method becomes the Newton method when α = 1.

For theoretical analysis, Jordan and Xu (1995) established the following
relationship between the EM update of the IRLS approach and the gradient
of the log likelihood:

θ
(k+1)
0 − θ

(k)
0 = P (k)

g
∂l
∂θ0

|
θ0=θ

(k)
0

, (2.11)
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θ
(k+1)
j − θ

(k)
j = P (k)

j
∂l
∂θ j

|
θ j =θ

(k)
j

, (2.12)

vec
[
�

(k+1)
j

] − vec
[
�

(k)
j

] = P (k)
� j

∂l
∂vec[� j ]

|
� j =�

(k)
j
, (2.13)

where

P (k)
g = γg

(
R(k)

g

)−1
,

P (k)
j = (

R(k)
j

)−1
,

P (k)
� j

= 2∑N
t=1 h(k)

j (t)
�

(k)
j ⊗ �

(k)
j ,

vec[B] denotes the vector obtained by stacking the column vectors of the
matrix B and ⊗ denotes the Kronecker product. For convenience, we set
P(�(k)) = diag[P (k)

g , P (k)
1 , . . . , P (k)

K , P (k)
�1

, . . . , P (k)
�K

] be the projection matrix.
Jordan and Xu (1995) further found that P(�(k)) makes the EM algorithm

superior to the gradient ascent algorithm by implementing a positive projec-
tion on the gradient of the log likelihood. Moreover, this relation constructs
a theoretical foundation for our analysis on the convergence rate of the EM
algorithm. Theoretically, the EM iterative procedure converges to a local
maximum of the log-likelihood (Dempster et al., 1977). We suppose that �̂

is a local solution to maximizing the log-likelihood function given equation
2.4 and the EM algorithm converges to it. Furthermore, we assume that
the sample data {x(t), y(t)}N

t=1 (as the training data) are generated from the
mixture of experts of the parameters �∗ in an independent and identically
distributed (i.i.d.) manner with the help of a given probability density func-
tion P(x) for generating the component sample data x(t), and that the EM
algorithm asymptotically correctly converges to this true parameter (i.e.,
when N is large, the EM algorithm converges to �̂ with limN→∞�̂ = �∗).
We now analyze the local convergence rate around this consistent solution
in the limit form. Following the same analysis of the EM algorithm for
gaussian mixtures (Ma et al., 2000) by simplifying the inner-loop learning
as a one-step iteration, we found that the local convergence rate of the EM
algorithm for ME around �̂ is bounded by

r = lim
k→∞

||�(k+1) − �̂||
||�(k) − �̂|| ≤ ||I + lim

N→∞
P(�∗)H(�∗)||, (2.14)

where H(�∗) is the Hessian matrix of l(�,S) at � = �∗ under the sample
data set. It should be noted that as compared with equation 2.21 given in
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Ma et al. (2000) for the EM algorithm for gaussian mixtures, there is no E
matrix because there is no constraint on θ0.

According to equation 2.14, the local convergence rate of the EM algo-
rithm for ME around the true solution �∗ is dominated by the convergence
result of the matrix product P(�∗)H(�∗). Thus, we will try to analyze the
convergence behavior of P(�∗)H(�∗) as N increases to infinity in the fol-
lowing sections.

3 Definitions and Lemmas

Inspired by the definition of the average overlap measure for gaussian
mixtures with the true parameters (Ma et al., 2000), we can also utilize
γi j (t) = hi (t)(δi j − h j (t)) to measure the overlap between experts i and j per
sample (x(t), y(t)), where δi j is the Kronecker function and

h j (t) = P( j |x(t), y(t),�∗) = g j (x(t), θ∗
0 )P(y(t)|x(t), θ∗

j )∑K
i=1 gi (x(t), θ∗

0 )P(y(t)|x(t), θ∗
i )

. (3.1)

With a training set S = {(x(t), y(t))}N
t=1 from the mixture of K experts of the

parameters �∗, we can asymptotically define a set of quantities on the
overlap of any two experts (i.e., expert distributions), including one and
itself, as follows:1

ei j (�∗) = lim
N→∞

1
N

N∑
t=1

|γi j (t)| =
∫

|γi j (x, y)|P(x, y|�∗) dxdy,

where γi j (x, y) = hi (x, y)(δi j − h j (x, y)), h j (x, y) = P( j |x, y,�∗) and
P(x, y|�∗) = P(x)P(y|x,�∗).

As for the average overlap measure for the ME model with the true
parameters �∗, we consider the worst case and define

e(�∗) = max
i, j

ei j (�∗), for i, j = 1, . . . , K .

For further analysis, we also define

ei j (x,�∗) =
∫

|γi j (x, y)|P(y|x,�∗) dy

1Here the overlap measure between one and itself means the sum of the overlap
measures of this expert to all the other experts.
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and

e(x,�∗) = max
i, j

ei j (x,�∗), for i, j = 1, . . . , K .

Just as in the case of gaussian mixtures, e(�∗) can tend to zero when the
experts in the ME model can be well separated. Actually, the ME model is
simplified to a gaussian mixture if x is fixed. For convenience of the analysis,
we make some assumptions that regularize the manner of e(�∗) tending to
zero:

Condition 1: gi (x, θ∗
0 ) ≥ ω, for i = 1, . . . , K ,

where ω is a positive constant. Our second assumption is that the eigenval-
ues of all the covariance matrices satisfy

Condition 2: βλ(�∗) ≤ λik ≤ λ(�∗), for i = 1, . . . , K , k =1, . . . , m,

where β is also a positive constant and λ(�∗) is defined to be the maximum
eigenvalue of the covariance matrices �∗

1 , . . . , �∗
K , that is,

λ(�∗) = max
i,k

λik .

The third assumption is that

Condition 3: νDmax(�∗, x) ≤ Dmin(�∗, x) ≤ || fi (x, θ∗
i ) − f j (x, θ∗

j )||
≤ Dmax(�∗, x), for i 
= j,

where Dmax(�∗, x) = maxi 
= j || fi (x, θ∗
i ) − f j (x, θ∗

j )||, Dmin(�∗, x) = mini 
= j

|| fi (x, θ∗
i ) − f j (x, θ∗

j )||, ν is still a positive constant.
We then define three kinds of special polynomial functions that we often

meet in the further analyses.

Definition 1. q (y, x,�∗) is called a regular function if it satisfies:

i. If both �∗ and x are fixed, q (y, x,�∗) is a polynomial function of the
component variables y1, . . . , ym of y.

ii. If y is fixed, q (y, x,�∗) is a polynomial function of the elements
of f1(x, θ∗

1 ), . . . , fK (x, θ∗
K ), g1(x, θ∗

0 ), . . . , gK (x, θ∗
0 ), g1(x, θ∗

0 )−1
, . . . , gK

(x, θ∗
0 )−1, as well as �∗

1 , . . . , �∗
K , �∗

1
−1, . . . , �∗

K
−1.

Definition 2. q (y, x,�∗) is called a balanced function if it satisfies (i) and

iii. If y is fixed, q (y, x,�∗) is a polynomial function of the elements
of f1(x, θ∗

1 ), . . . , fK (x, θ∗
K ), g1(x, θ∗

0 ), . . . , gK (x, θ∗
0 ), g1(x, θ∗

0 )−1
, . . . , gK

(x, θ∗
0 )−1, �∗

1 , . . . , �∗
K , λ(�∗)�∗

1
−1, . . . , λ(�∗)�∗

K
−1.
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Definition 3. For a regular function q (y, x,�∗), if there is a positive number s
such that λs(�∗)q (y, x,�∗) is converted into a balanced function, then q (y, x,�∗)
is called a regular and convertible function.

We now describe the four lemmas we will use in the proofs of the main
theorems.

Lemma 1. Let D ⊂ R
n be a bounded closed set such that

∫
D P(x)dx = 1, for any

x in D, P(x) > 0, and �∗ as well as x ∈ D satisfy conditions 1 to 3. As e(�∗) → 0
is considered an infinitesimal,

i. Letting D̃ be a subset of D such that x ∈ D̃ iff e(x,�∗) → 0, the complemen-
tary set D − D̃ is a zero measure set.

ii. Letting e(�∗) = e pq ′ (�∗), and ||1/e pq ′ (·,�∗)||∞ denote the supremum
of |1/e pq ′ (x,�∗)| on D, there exists a positive number M such that
lime(�∗)→0 ||1/e pq ′ (·,�∗)||∞e(�∗) ≤ M.

Proof. Let λi
max = max j {λi j }, ηi j (x,�∗) = (λi

max)
1
2 (λ j

max)
1
2 /|| fi (x, θ∗

i ) −
f j (x, θ∗

j )||, and η(x,�∗) = maxi 
= j ηi j (x,�∗). As proved by Ma et al. (2000),
e(x,�∗) → 0 is equivalent to η(x,�∗) → 0, and as η(x,�∗) → 0, η(x,�∗),
ηi j (x,�∗), and ζi j (x,�∗) � λi

max/|| fi (x, θ∗
i ) − f j (x, θ∗

j )|| are all equivalent
infinitesimals.

Let δD = maxx 
=x′∈D ||x − x′||. Let e(�∗) = e pq ′ (�∗) and x0 be a point in D̃,
noting that zero point cannot be in D̃. Obviously there exists such an x0; oth-
erwise, e(�∗) cannot tend to 0. Let q = q ′ if q ′ 
= p; otherwise, q may be any
other component index except for p. For e pp(x0,�

∗) = ∑
q 
=p e pq (x0,�

∗),
we have e pq (x0,�

∗) → 0 as e(x0,�
∗) → 0. For any other point x in D,

we have || f p(x, θ∗
p) − fq (x, θ∗

q )|| − || f p(x0, θ
∗
p) − fq (x0, θ

∗
q )|| ≤ || f p(x, θ∗

p) −
fq (x, θ∗

q ) − f p(x0, θ
∗
p) + fq (x0, θ

∗
q )|| ≤ (δD + 1)||θ∗

p − θ∗
q ||. Therefore, we get

ζpq (x0,�
∗)

ζpq (x,�∗)
= || f p(x, θ∗

p) − fq (x, θ∗
q )||

|| f p(x0, θ∗
p) − fq (x0, θ∗

q )|| ≤ (δD + 1)||θ∗
p − θ∗

q ||
|| f p(x0, θ∗

p) − fq (x0, θ∗
q )|| +1.

It can be seen from the above inequality that as ζpq (x0,�
∗) tends to zero, for

any x in D̃, ζpq (x,�∗) tends to zero with the same or a lower order. Since
x0 can be any point in D̃, we further achieve that as e(�∗) → 0, for any x in
D̃, e pq ′ (x,�∗) tends to 0 with the same order.

By the definition of e(�∗), we have

1 = lim
e(�∗)→0

∫
e pq ′ (x,�∗)

e(�∗)
P(x) dx (3.2)

=
∫
D̃

lim
e(�∗)→0

e pq ′ (x,�∗)
e(�∗)

P(x) dx +
∫
D−D̃

lim
e(�∗)→0

e pq ′ (x,�∗)
e(�∗)

P(x) dx.

(3.3)
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If the set D − D̃ is not a zero measure set, the second term in the right side
of equation 3.3 tends to infinity because e pq ′ (x,�∗)/e(�∗) tends to infinity
as e(�∗) → 0. Thus, the measure of D − D̃ must be zero. So i is proved.

Furthermore, for any x in D̃, as e(�∗) → 0, e pq ′ (x,�∗) and e(�∗) are
equivalent infinitesimals. Otherwise, e pq ′ (x,�∗)/e(�∗) tends to infinity
or zero, and the first term on the right side of equation 3.3 cannot be
1. For any x in D̃, x′ in D − D̃, we have lime(�∗)→0 ||1/e pq ′ (x′,�∗)|| <

lime(�∗)→0 ||1/e pq ′ (x,�∗)||. Hence, there exists a positive number M, such
that

lim
e(�∗)→0

∣∣∣∣∣∣∣∣ 1
eq p′ (·,�∗)

∣∣∣∣∣∣∣∣
∞

e(�∗) ≤ M. (3.4)

Therefore, ii is also proved.

Lemma 2. Let D ⊂ R
n be a bounded closed set such that

∫
D P(x)dx = 1, for

any x in D, P(x) > 0 and �∗ as well as x satisfy conditions 1 to 3. Suppose
that q (y, x,�∗) is a regular and convertible function and u(x) is a polynomial
function of the component variables x1, . . . , xn of x. As e(�∗) → 0 is considered
as an infinitesimal, we have

lim
N→∞

1
N

N∑
t=1

|γi j (t)|q
(

y(t), x(t),�∗
)

u
(

x(t)
)

=
∫

|γi j (x, y)|q (y, x,�∗)u(x)P(x, y|�∗)dydx = o(e0.5−ε(�∗)),

where ε > 0 is an arbitrarily small number.

Proof. Let e(�∗) = ∫
D e pq ′ (x,�∗)P(x)dx, where e pq ′ (x,�∗) = ∫ |γpq ′ (x, y)|

P(y|x,�∗)dy. According to lemma 1, as e(�∗) → 0 is considered
as an infinitesimal, there is a positive number M such that
lime(�∗)→0 ||1/e pq ′ (·,�∗)||∞e(�∗) ≤ M.

Letting μi j (x,�∗) = ∫ |γi j (x, y)|q (y, x,�∗)P(y|x,�∗)dy, according to
lemma 4 given in Ma et al. (2000) and the above conditions, as e(x,�∗) → 0
is considered an infinitesimal, e(x,�∗) and e pq ′ (x,�∗) are equivalent in-
finitesimals, and μi j (x,�∗) = o(e0.5−ε(x,�∗)), where ε > 0 is an arbitrarily
small number. Thus, as e(�∗) → 0, for any x in D̃, we have e(x,�∗) → 0
and, further, μi j (x,�∗) = o(e0.5−ε

pq ′ (x,�∗)).
The polynomial function u(x) is bounded on D, and we can write it

as ||u||∞ ≤ δ, where δ is a positive number. By lemma 1, D − D̃ is a zero
measure set, so that integration on D is equivalent to D̃. Recalling Holder’s
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inequality
∫ |v1(x)v2(x)|dx ≤ ||v1||∞

∫ |v2(x)|dx, we have

lim
e(�∗)→0

∫ |γi j (x, y)|q (y, x,�∗)u(x)P(x, y|�∗) dydx
e0.5−ε(�∗)

= lim
e(�∗)→0

∫
D

μi j (x,�∗)u(x)e−0.5+ε(�∗)P(x) dx

= lim
e(�∗)→0

∫
D̃

u(x)
μi j (x,�∗)

e0.5−ε
pq ′ (x,�∗)

1

e−0.5+ε
pq ′ (x,�∗)

e−0.5+ε(�∗)P(x) dx

≤ lim
e(�∗)→0

δ|| μi j (·,�∗)

e0.5−ε
pq ′ (·,�∗)

||∞|| 1

e−0.5+ε
pq ′ (·,�∗)

||∞e−0.5+ε(�∗)

≤ δM−0.5+ε|| lim
e(�∗)→0

o(e0.5−ε
pq ′ (·,�∗))

e0.5−ε
pq ′ (·,�∗)

||∞

= 0.

Hence,
∫ |γi j (x, y)|q (y, x,�∗)u(x)P(x) dydx = o(e0.5−ε(�∗)). The proof is

completed.

Lemma 3. Let D ⊂ R
n be a bounded closed set such that

∫
D P(x)dx = 1, for any

x in D, P(x) > 0, �∗ as well as x satisfy conditions 1 to 3. Then there exists a
positive number δ for all j ∈ {1, . . . , K }, limN→∞ 1

N

∑N
t=1 h j (t) ≥ δ.

Proof. For any l 
= j , l, j ∈ {1, . . . , K }, fl (x)T�∗
l

−1 − f j (x)T�∗
j
−1 and

fl (x)T�∗
l

−1 fl (x) − f j (x)T�∗
j
−1 f j (x) are bounded on D where we use fl (x) as

a short expression of fl (x, θ∗
l ) in purpose of conciseness. EyyT and Ey are

bounded too. Hence, there exists a positive number M such that EyyT ≤
M, Ey ≤ M, || f T

l �∗
l

−1 − f T
j �∗

j
−1||∞ ≤ M, and || f T

l �∗
l

−1 fl − f T
j �∗

j
−1 f j ||∞ ≤

M. Let σ1 = maxl 
= j |�∗
l |1/2/|�∗

j |1/2, σ2 = maxl 
= j tr((�∗
l

−1 − �∗
j
−1)E(yyT )),

and σ3 = maxl 
= j ||( f T
l (�∗

l )−1 − f T
j (�∗

j )
−1)Ey||∞ where the notation tr(·)

stands for the trace of a matrix. Hence we get the following inequality:

∫
gl (x, θ∗

0 )
g j (x, θ∗

0 )
pl (y|x,�∗)
p j (y|x,�∗)

p(y, x|�∗) dydx

≤
∣∣∣∣∣∣∣∣ gl

g j

∣∣∣∣∣∣∣∣
∞

σ1

∫
exp

{
1
2

tr((�∗
j
−1 − �∗

l
−1)yyT ) + ( f T

l �∗
l

−1

− f T
j �∗

j
−1)y + 1

2
( f T

j �∗
j
−1 f j − f T

l �∗
l

−1 fl )
}

p(y, x|�∗) dydx

≤ (1 − ωK + ω)σ1

ω
exp

(
σ2

2
+ σ3 + M

2

)
� β.
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Furthermore, we have

lim N→∞
1
N

N∑
t=1

h j (t)

= 1

/(
1 +

∑
l 
= j

lim
N→∞

1
N

N∑
t=1

(
gl (x(t), θ∗

0 )pl (y(t)|x(t),�∗)
g j (x(t), θ∗

0 )p j (y(t)|x(t),�∗)

))

≥ 1
1 + (K − 1)β

.

Let δ = 1/(1 + (K − 1)β), and we reach the conclusion of the lemma.
Meanwhile, because

∑K
j=1 h j (t) = 1, we further get limN→∞ 1

N

∑N
t=1 h j (t) ≤

1 − (K − 1)δ.

Before we give the last lemma, we need to discuss the covariance matrix
of the random vector X subject to P(x), that is, cov(X) = E[(X − E X)(X −
E X)T ]. In general, it is positive definite. Obviously it is always nonnegative
definite. It is not positive definite only if X is distributed on a subspace of
Rn (i.e., the space of x). That is, P(x) is degenerated and distributed on a
subspace of Rn. In the following analysis, we always assume that cov(X) is
positive definite, without regard to those degenerated cases.

Lemma 4. Let a (t) = a (x(t), y(t)) be a K (n + 1) × d1–dimensional matrix func-
tion, b(t) = b(x(t), y(t)) be an m(n + 1) × d2–dimensional matrix function, and
c(t) = c(x(t), y(t)) be a d3 × d4–dimensional matrix function, where d1, d2, d3, and
d4 can be any positive integer.

i. If limN→∞ 1
N a (t) = o(e0.5−ε(�∗)), then limN→∞ R−1

g a (t) = o(e0.5−ε(�∗)).
If limN→∞ R−1

g a (t) = 0, then limN→∞ 1
N a (t) = 0.

ii. If limN→∞ 1
N b(t) = o(e0.5−ε(�∗)), then limN→∞ R−1

j b(t) = o(e0.5−ε(�∗)).
iii. If limN→∞ 1

N

∑N
t=1 c(t) = o(e0.5−ε(�∗)), then limN→∞ 1∑ N

t=1 h j (t)∑N
t=1 c(t) = o(e0.5−ε(�∗)).

Proof. (i). Let EX, EXXT be the expectations of X and XXT . Since cov(X)
is positive definite, there exists an orthogonal matrix Q such that QT E X =
β1e1, where β2

1 = ||E X||2 and e1 ∈ R
n denotes (1, 0, . . . , 0)T . There exists an

orthogonal matrix P such that cov(X) = P�PT , � = diag{λ1, . . . , λn},
where λ1 ≥ · · · ≥ λn > 0 are the eigenvalues of cov(X). Noticing
that EXXT = cov(X) + EXEXT , we therefore have EXT (EXXT )−1 EX =
β1eT

1 · QT P(� + β2
1 e1eT

1 )−1 PT Q · β1e1 = β2
1

λ1+β2
1

< 1. The determinant of ma-

trix (
EXXT EX
EXT 1 ) � A is |EXXT |(1 − EXT (EXXT )−1 EX) > 0. Therefore, the
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symmetric matrix (
EXXT EX
EXT 1 ) is positive definite with its maximum

and minimum eigenvalues denoted by λmax(A) and λmin(A), respectively.
Because α(1 − α) ≤ g j (t)(1 − g j (t)) ≤ 1

4 , we get λmax(limN→∞ Rg/N) ≤
1
4λmax(A) and λmin(limN→∞ Rg/N) ≥ α(1 − α)λmin(A). Hence, if
limN→∞ 1

N a (t) = o(e0.5−ε(�∗)), we get

lim
N→∞

R−1
g

N∑
t=1

a (t) = lim
N→∞

(
1
N

Rg

)−1( 1
N

N∑
t=1

a (t)) = o(e0.5−ε(�∗)
)

.

Analogously, if limN→∞ R−1
g a (t) = 0, then limN→∞ 1

N a (t) = 0.

(ii). limN→∞ 1
N

∑N
t=1 Xt�

∗
j
−1 XT

t =
(

�∗
j
−1 ⊗ E XXT �∗

j
−1 ⊗ E X

�∗
j
−1 ⊗ E XT �∗

j
−1 ⊗ 1

)
� B.

Because A and �∗
j
−1 are positive definite, it can be proved in a similar way

as the proof of A that B is positive definite. By lemma 3, there is a positive
number δ such that δ ≤ Eh j (X). Let λ be any eigenvalue of limN→∞ 1

N Rj ;
then we get δλmin(B) ≤ λ ≤ λmax(B). Further, λ−1

max(B) ≤ λ−1 ≤ λ−1
min(B)/δ.

Therefore, if limN→∞ 1
N b(t) = o(e0.5−ε(�∗)), we have

lim
N→∞

R−1
j

N∑
t=1

b(t) = lim
N→∞

(
1
N

Rj

)−1( 1
N

N∑
t=1

b(t)
)

= o(e0.5−ε(�∗)).

(iii). By lemma 3, there is a positive number δ such that
limN→∞ 1/( 1

N

∑N
t=1 h j (t)) ≤ 1/δ. Therefore, when limN→∞ 1

N

∑N
t=1 c(t) =

o(e0.5−ε(�∗)), we have

lim
N→∞

1∑N
t=1 h j (t)

N∑
t=1

c(t) = lim
N→∞

1
1
N

∑N
t=1 h j (t)

(
1
N

N∑
t=1

c(t)
)

= o(e0.5−ε(�∗)).

4 Main Theorems

With the explicit expressions of P(�∗) and H(�∗) with the training data
set S = {x(t), y(t)}N

t=1, we can obtain formulas for the blocks of P(�∗)H(�∗),
which can be written as follows. For notational convenience, we denote
[θ0, θ j , � j ] = [θ∗

0 , θ∗
j , �

∗
j ] throughout this section.

P(�∗)H(�∗) = diag[Pg, P1, . . . , PK , P�1 , . . . , P�K ]
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×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hθ0,θ
T
0

Hθ0,θ
T
1

· · · Hθ0,θ
T
K

Hθ0,�
T
1

· · · Hθ0,�
T
K

Hθ1,θ
T
0

Hθ1,θ
T
1

· · · Hθ1,θ
T
K

Hθ1,�
T
1

· · · Hθ1,�
T
K

...
...

. . .
...

...
. . .

HθK ,θT
0

HθK ,θT
1

· · · HθK ,θT
K

HθK ,�T
1

· · · HθK ,�T
K

H�1,θ
T
0

H�1,θ
T
1

· · · H�1,θ
T
K

H�1,�
T
1

· · · H�1,�
T
K

...
...

. . .
...

...
. . .

H�K ,θT
0

H�K ,θT
1

· · · H�K ,θT
K

H�K ,�T
1

· · · H�K ,�T
K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pg Hθ0,θ
T
0

Pg Hθ0,θ
T
1

· · · Pg Hθ0,θ
T
K

Pg Hθ0,�
T
1

· · · Pg Hθ0,�
T
K

P1 Hθ1,θ
T
0

P1 Hθ1,θ
T
1

· · · P1 Hθ1,θ
T
K

P1 Hθ1,�
T
1

· · · P1 Hθ1,�
T
K

...
...

. . .
...

...
. . .

PK HθK ,θT
0

PK HθK ,θT
1

· · · PK HθK ,θT
K

PK HθK ,�T
1

· · · PK HθK ,�T
K

P�1 H�1,θ
T
0

P�1 H�1,θ
T
1

· · · P�1 H�1,θ
T
K

P�1 H�1,�
T
1

· · · P�1 H�1,�
T
K

...
...

. . .
...

...
. . .

P�K H�K ,θT
0

P�K H�K ,θT
1

· · · P�K H�K ,θT
K

P�K H�K ,�T
1

· · · P�K H�K ,�T
K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Based on the expressions of the Hessian blocks (Gerald, 1980; Horn &
Johnson, 1986) and P matrix through the IRLS approach, letting g j (t), s j (t),
f j (t) denote g j (x(t), θ0), s j (x(t), θ0), f j (x(t), θ j ) respectively, we have:

Pg Hθ0,θ
T
0

= γg(Rg)−1
N∑

t=1

K∑
j=1

(h j (t)
∂s j (t)
∂θ0

−h j (t)
K∑

l=1

hl (t)
∂sl (t)
∂θ0

− g j (t)
∂s j (t)
∂θ0

+g j (t)
K∑

l=1

gl (t)
∂sl (t)
∂θ0

)
∂s j (t)
∂θT

0
,

Pg Hθ0,θ
T
j
= (Rg)−1

N∑
t=1

γgh j (t)
[
(y(t) − f j (t))T�−1

j XT
t

]

⊗
[

∂s j (t)
∂θ0

−
K∑

l=1

hl (t)
∂sl (t)
∂θ0

]
,

Pg Hθ0,�
T
j
= −1

2
(Rg)−1

N∑
t=1

h j (t)γgvecT [�−1
j − Uj (t)

]
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⊗
[

∂s j (t)
∂θ0

−
K∑

l=1

hl (t)
∂sl (t)
∂θ0

]
,

Pj Hθ j ,θ
T
0

= (Rj )−1
N∑

t=1

h j (t)
[
Xt�

−1
j

(
y(t) − f j (t)

)]

⊗
[

∂s j (t)
∂θT

0
−

K∑
l=1

hl (t)
∂sl (t)
∂θT

0

]
,

Pj Hθ j ,θ
T
i

= (Rj )−1
N∑

t=1

γi j (t)[(y(t) − fi (t))T�−1
i XT

t ]

⊗ [Xt�
−1
j (y(t) − f j (t))] − δi j I,

Pj Hθ j ,�
T
i

=−1
2

(Rj )−1
N∑

t=1

γi j (t)vec[�−1
i − Ui (t)]T

⊗ [
Xt�

−1
j (y(t) − f j (t)

] − 1
2

(Rj )−1
N∑

t=1

δi j h j (t)

×{[(y(t) − f j (t))T�−1
j

] ⊗ (Xt�
−1
j

)
+ (Xt�

−1
j ) ⊗ [(

y(t) − f j (t))T�−1
j

]},
P� j H� j ,θ

T
0

=− 1∑N
t=1 h j (t)

N∑
t=1

(� j ⊗ � j )vec[�−1
j − Uj (t)]

⊗
[

h j (t)
∂s j (t)
∂θ0

− h j (t)
K∑

l=1

hl
∂sl (t)
∂θ0

]T

,

P� j H� j ,θ
T
i

=− 1∑N
t=1 h j (t)

N∑
t=1

γi j (t)(� j ⊗ � j ){vec
[
�−1

j − Uj (t)
]

⊗ [(
y(t) − fi (t)

)T
�−1

i XT
t

]} − 1∑N
t=1 h j (t)

N∑
t=1

δi j h j (t)

(� j ⊗ � j ){
[
�−1

j

(
y(t) − f j (t))

] ⊗ [
�−1

j XT
t

]
+ [�−1

j XT
t ] ⊗ [�−1

j (y(t) − f j (t))]},

P� j H� j ,�
T
i

=− 1∑N
t=1 h j (t)

N∑
t=1

δi j h j (t)(� j ⊗ � j )(vecT [Im] ⊗ Im ⊗ Im)
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× (Im ⊗ M(t) ⊗ Im)(Im ⊗ Im ⊗ vec[Im])

+ 1
2

1∑N
t=1 h j (t)

N∑
t=1

γi j (t)(� j ⊗ � j )vecT [�−1
i − Ui (t)]

⊗ vec[�−1
j − Uj (t)],

where Id is the dth-order identity matrix and

Uj (t) =�−1
j

(
y(t) − f j (t)

)(
y(t) − f j (t)

)T
�−1

j ,

M(t) = ∂�−1
j

∂� j
− ∂�−1

j

∂� j

[
(y(t) − f j (t)

)(
y(t) − f j (t))T�−1

j

] ⊗ Im

−Im ⊗ [�−1
j (y(t) − f j (t))(y(t) − f j (t))T ]

∂�−1
j

∂� j
. (4.1)

We now have our first theorem on the EM algorithm for ME through the
IRLS approach as follows:

Theorem 1. Given i.i.d. sample data {x(t), y(t)}N
1 from a mixture of K expert

networks of parameters �∗ with the help of P(x) constrained on a bounded, closed
set D, that is,

∫
D P(x)dx = 1, for any x ∈ D, P(x) > 0 and �∗ as well as x satisfy

conditions 1 to 3. When e(�∗) is considered as an infinitesimal, as it tends to zero,
for the EM algorithm for ME through the IRLS approach, we have

lim N→∞ P(�∗)H(�∗)

=

⎛
⎜⎝−γg P̃gG + o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) − IK 2(n+1) o(e0.5−ε(�∗))
o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) − IK m2

⎞
⎟⎠ ,

where ε is an arbitrarily small positive number, and P̃g � limN→∞(Rg/N)−1,

G � lim
N→∞

1
N

×

⎛
⎜⎜⎜⎝

∑N
t=1(g1(t) − g2

1(t)) ∂s1(t)
∂θ01

∂s1(t)
∂θT

01
· · · − ∑N

t=1 g1(t)gK−1(t) ∂s1(t)
∂θ01

∂sK−1(t)
∂θT

0(K−1)

...
...

...
− ∑N

t=1 gK−1(t)g1(t) ∂sK−1(t)
∂θ0(K−1)

∂s1(t)
∂θT

01
· · · ∑N

t=1(gK−1(t) − g2
K−1(t)) ∂sK−1(t)

∂θ0(K−1)

∂sK−1(t)
∂θT

0(K−1)

⎞
⎟⎟⎟⎠ .
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Accordingly, we have an upper bound for the asymptotic convergence rate of the
EM algorithm:

r ≤ ||I − γg P̃gG|| + o(e0.5−ε(�∗)). (4.2)

Proof. Letting e1 = (1, 0, . . . , 0)T , . . . , eK−1 = (0, 0, . . . , 1)T denote the
canonical basis vectors of R

K−1, by equation 2.4, we then have

∂s j (t)
∂θ0

= e j ⊗ [(x(t))T , 1]T .

For convenience of notation, we let xt denote [(x(t))T ; 1]T ; we thus have
∂s j (t)/∂θ0 = e j ⊗ xt . Since we always set sK (t) = 0, we have ∂sK (t)/∂θ0 = 0.
We begin to consider the block Pg Hθ0,θ

T
0

. By lemmas 2 and 4, we have:

lim
N→∞

γg(Rg)−1
N∑

t=1

K∑
j=1

(h j (t)
∂s j (t)
∂θ0

− h j (t)
K∑

l=1

hl (t)
∂sl (t)
∂θ0

)
∂s j (t)
∂θT

0

= lim
N→∞

γg(Rg)−1
N∑

t=1

⎛⎜⎝ (h1(t) − h2
1(t))xtxT

t · · · −h1(t)hK−1(t)xtxT
t

...
. . .

...
−hK−1(t)h1(t)xtxT

t · · · (hK−1(t) − h2
K−1(t))xtxT

t

⎞⎟⎠

= lim
N→∞

γg(Rg)−1
N∑

t=1

⎛⎜⎝
∑K−1

l=2 γ1l (t)xtxT
t · · · −γ1(K−1)(t)xtxT

t
...

. . .
...

−γ1(K−1)(t)xtxT
t · · · ∑K−2

l=1 γ(K−1)l (t)xtxT
t

⎞⎟⎠
= o(e0.5−ε(�∗)).

Hence, Pg Hθ0,θ
T
0

= −γg P̃gG + o(e0.5−ε(�∗)).
We then consider the block Pg Hθ0,θ

T
j
. The elements of ∂s j (t)/∂θ0 −∑K

l=1 hl (t)∂sl (t)/∂θ0 are −hl (t)xt (l 
= j), or (1 − h j (t))xt . By lemma 2, we
have

lim
N→∞

1
N

N∑
t=1

γgh j (t)
[
(y(t) − f j (t))T�−1

j XT
t

]

⊗
[

∂s j (t)
∂θ0

−
K∑

l=1

hl (t)
∂sl (t)
∂θ0

]
= o(e0.5−ε(�∗)),

and by lemma 4, we further get

lim
N→∞

Pg Hθ0,θ
T
j

= o(e0.5−ε(�∗)).
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Analogously, we can get

lim
N→∞

Pg Hθ0,�
T
j

= o(e0.5−ε(�∗)),

lim
N→∞

Pj Hθ j ,θ
T
0

= o(e0.5−ε(�∗)),

lim
N→∞

Pj Hθ j ,θ
T
i

= o(e0.5−ε(�∗)) − δi j I,

lim
N→∞

−1
2

N∑
t=1

γi j (t)(Rj )−1vec[�−1
i − Ui (t)]T

⊗ [Xt�
−1
j (y(t) − f j (t)] = o(e0.5−ε(�∗)),

lim
N→∞

P� j H� j ,θ
T
0

= o(e0.5−ε(�∗)),

lim
N→∞

− 1∑N
t=1 h j (t)

N∑
t=1

γi j (t)(� j ⊗ � j ){vec
[
�−1

j − Uj (t)
]

⊗ [(y(t) − fi (t))T�−1
i XT

t ]} = o(e0.5−ε(�∗)),

lim
N→∞

1
2

1∑N
t=1 h j (t)

N∑
t=1

γi j (t)(� j ⊗ � j )vecT [�−1
i − Ui (t)

]
⊗ vec[�−1

j − Uj (t)] = o(e0.5−ε(�∗)).

We further consider the block 1
2 (Rj )−1 ∑N

t=1 δi j h j (t)[(y(t) − f j (t))T�−1
j ] ⊗

(Xt�
−1
j ). According to the EM iteration, equation 2.7, we have

lim
N→∞

R−1
j

N∑
t=1

h j (t)Xt�
−1
j (y(t) − f j (t)) = 0.

Suppose that �−1
j = (σkl ), k, l = 1, . . . , m, and y(t) − f j (t) � z(t). We then

have

h j (t)Xt�
−1
j (y(t) − f j (t)) = h j (t)

[
m∑

l=1

x(t)
1 σ1l zl (t), . . . ,

m∑
l=1

x(t)
n σ1l zl (t),

m∑
l=1

x(t)
1 σ2l zl (t), . . . ,

m∑
l=1

x(t)
n σ2l zl (t), . . . ,

m∑
l=1

x(t)
n σml zl (t),

m∑
l=1

σ1l zl (t), . . . ,
m∑

l=1

σml zl (t)

]T

.
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By lemma 4, we also have

lim
N→∞

1
N

N∑
t=1

h j (t)
m∑

l=1

x(t)
d σkl zl (t) = 0, lim

N→∞
1
N

N∑
t=1

h j (t)
m∑

l=1

σkl zl (t) = 0

(4.3)

for all d ∈ {1, . . . , n + 1}, k ∈ {1, . . . , m}. Since

h j (t)
[
(y(t) − f j (t))T�−1

j

] ⊗ (Xt�
−1
j )

= h j (t)

[
m∑

i=1

zi (t)σ1i , . . . ,

m∑
i=1

zi (t)σmi

]T

⊗ (Xt�
−1
j ),

Xt�
−1
j =

⎛⎜⎜⎜⎜⎜⎜⎝
σ11x(t)

1 · · · σ11x(t)
n · · · σm1x(t)

1 · · · σm1x(t)
n | σ11 · · · σm1

σ12x(t)
1 · · · σ12x(t)

n · · · σm2x(t)
1 · · · σm2x(t)

n | σ12 · · · σm2

...
...

...
...

...
...

... | ...
...

...

σ1mx(t)
1 · · · σ1mx(t)

n · · · σmmx(t)
1 · · · σmmx(t)

n | σ1m · · · σmm

⎞⎟⎟⎟⎟⎟⎟⎠

T

,

the elements of h j (t)[(y(t) − f j (t))T�−1
j ] ⊗ (Xt�

−1
j ) take the forms of

h j (t)
∑m

i=1 zi (t)σpiσkl x
(t)
d and h j (t)

∑m
i=1 zi (t)σpiσkl , where d ∈ {1, . . . , n},

p, k, l ∈ {1, . . . , m}. According to equation 4.3, we have

lim
N→∞

1
N

N∑
t=1

h j (t)
m∑

i=1

zi (t)σpiσkl x
(t)
d = 0

and

lim
N→∞

1
N

N∑
t=1

h j (t)
m∑

i=1

zi (t)σpiσkl = 0.

Therefore, we have

lim
N→∞

1
2

(Rj )−1
N∑

t=1

δi j h j (t)
[
(y(t) − f j (t))T�−1

j

] ⊗ (
Xt�

−1
j

) = 0.



Asymptotic Convergence of the EM Algorithm 2159

Similarly, we also have

lim
N→∞

1
2

N∑
t=1

δi j h j (t)(Rj )−1(Xt�
−1
j

) ⊗ [
(y(t) − f j (t))T�−1

j

] = 0,

lim
N→∞

1∑N
t=1 h j (t)

N∑
t=1

δi j h j (t)(� j ⊗ � j )
{[

�−1
j (y(t) − f j (t)

)]
⊗ [

�−1
j XT

t

] + [
�−1

j XT
t

]
⊗ [

�−1
j (y(t) − f j (t))

]} = 0.

By the EM iteration, equation 2.8, we have

lim
N→∞

1∑N
t=1 h j (t)

N∑
t=1

h j (t)
[
� j − (y(t) − f j (t)

)
(y(t) − f j (t))T ] = 0,

which helps us get the following limitation about equation 4.1:

lim
N→∞

1∑N
t=1 h j (t)

N∑
t=1

h j (t)M(t) = −∂�−1
j

∂� j
.

In this way, we get

lim
N→∞

− 1∑N
t=1 h j (t)

(� j ⊗ � j )

×
N∑

t=1

h j (t)(vecT [Im] ⊗ Im ⊗ Im)(Im ⊗ M(t) ⊗ Im)(Im ⊗ Im ⊗ vec[Im])

= −(� j ⊗ � j )(�−1
j ⊗ �−1

j ) = −I.

Summing up all the results, we obtain:

lim
N→∞

P(�∗)H(�∗)

=

⎛⎜⎝−γg P̃gG + o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) − IK 2(n+1) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) − IK m2

⎞⎟⎠ ,
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According to equation 2.14 and the norm inequality, we finally have

r ≤ lim
N→∞

||I + P(�∗)H(�∗)|| = ||I + lim
N→∞

P(�∗)H(�∗)||

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
⎛⎜⎝I − γg P̃gG + o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗))

⎞⎟⎠
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

= ||I − γg PgG|| + o(e0.5−ε(�∗)).

Remark 1. According to equation 4.2, the asymptotic convergence rate of
the EM algorithm for ME through the IRLS approach is generally bounded
by a positive number ||I − γg PgG|| since γg PgG 
= I in general, even if
the average overlap measure of the ME model tends to zero. So we can
consider that the EM algorithm through the IRLS approach maintains a
linear convergence rate around the true solution with a large sample.

We further consider the EM algorithm for ME through the Newton-
Raphson approach and have our second theorem as follows:

Theorem 2. Under the same assumptions as stated in theorem 1, for the EM
algorithm for ME through the Newton-Raphson approach, we have

lim
N→∞

P(�∗)H(�∗)

=

⎛
⎜⎝

−α I(K−1)(n+1) + o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) − IK 2(n+1) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) − IK m2

⎞
⎟⎠ ,

where ε is an arbitrarily small positive number. Accordingly, we have an upper
bound of the asymptotic convergence rate of the EM algorithm:

r ≤ |1 − α| + o(e0.5−ε(�∗)). (4.4)

Proof. As compared to the proof of theorem1, we need only to compute
Pθ0 H. For the Newton-Raphson method, Pθ0 = −αHg , where Hg is the Hes-
sian matrix of equation 2.10. Actually, Hg has the following expression:

Hg =
N∑

t=1

K∑
j=1

(−g j (t)
∂s j (t)
∂θ0

+ g j (t)
K∑

l=1

gl (t)
∂sl (t)
∂θ0

)
∂s j (t)
∂θT

0
.
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In comparison with the expression of Hθ0,θ
T
0

, we find that Hg is just the sum
of the last two terms of Hθ0,θ

T
0

. Then we have

lim
N→∞

−αH−1
g Hθ0,θ

T
0

= lim
N→∞

−αH−1
g

N∑
t=1

K∑
j=1

(h j (t)
∂s j (t)
∂θ0

− h j (t)
K∑

l=1

hl (t)
∂sl (t)
∂θ0

)
∂s j (t)
∂θT

0
− α

= lim
N→∞

−α

(
1
N

Hg

)−1

× 1
N

N∑
t=1

⎛⎜⎝
∑K−1

l=2 γ1l (t)xtxT
t · · · −γ1(K−1)(t)xtxT

t
...

. . .
...

−γ1(K−1)(t)xtxT
t · · · ∑K−2

l=1 γ(K−1)l (t)xtxT
t

⎞⎟⎠ − α.

By lemma 2, we further have

lim
N→∞

−αH−1
g Hθ0,θ

T
0

= −α + o(e0.5−ε(�∗)).

Thus, we have

lim
N→∞

||I + Pθ0 Hθ0,θ
T
0
|| = 1 − α + o(e0.5−ε(�∗)).

Since the rest of the proof is identical to that of theorem 1, we therefore have

lim
N→∞

P(�∗)H(�∗)

=

⎛⎜⎝−α I(K−1)(n+1) + o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) − IK 2(n+1) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) − IK m2

⎞⎟⎠ .

According to equation 2.14 and the norm inequality, we finally have

r ≤ lim
N→∞

||I + P(�∗)H(�∗)|| = ||I + lim
N→∞

P(�∗)H(�∗)||

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
⎛⎜⎝ (1 − α)I(K−1)(n+1) + o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗))

o(e0.5−ε(�∗)) o(e0.5−ε(�∗)) o(e0.5−ε(�∗))

⎞⎟⎠
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

= |1 − α| + o(e0.5−ε(�∗)).

Specifically for the Newton approach with α = 1, by theorem 2, we have
the following corollary.
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Corollary 1. Under the same assumptions as stated in theorem 2, for the EM
algorithm for ME through the Newton approach, we have an upper bound of its
asymptotic convergence rate:

r = o(e0.5−ε(�∗)). (4.5)

Remark 2. Corollary 1 has proved that the asymptotic convergence rate of
the EM algorithm for ME through the Newton approach locally around the
true solution �∗ tends to zero as the average overlap measure e(�∗) tends
to zero. In other words, the large sample local convergence rate for the EM
algorithm tends to be asymptotically superlinear when e(�∗) tends to zero.

5 Experimental Results

To substantiate our theoretical results on the asymptotic convergence of
the EM algorithm for ME through the Newton or IRLS approach, we
implement the EM algorithm on two groups of synthetic data sets with
attenuating measures of overlap among the expert distributions. We first
consider the data set from a mixture of two experts: K = 2. The experts
are two line segments with noises—y = a1x + a2 + nt for x ∈ [xL , xU]
and y = b1x + b2 + nt for x ∈ [x

′
L , x

′
U], where nt ∼ N (0, σ 2) denotes a

gaussian distribution with zero mean and variance σ 2. In order to make
the average overlap measure between two experts attenuate to zero, we
push the two intervals [xL , xU] and [x

′
L , x

′
U] away along the x-axis. In

our experiments, we let a1 = 1, a2 = −1, b1 = −1, b2 = 1, σ 2
1 = σ 2

2 = 0.4,
[xL , xU] = [−2, 1] − mx and [x

′
L , x

′
U] = [1, 4] + mx , where the variable mx

increases from −0.5 to 1.25. Along each noisy line segment or expert in
the mixture, we generate 5000 i.i.d. samples. Typically we select mx =
−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1, 1.25, and establish eight data sets denoted
by S1,S2, . . . ,S8, respectively. For illustration, four of them are sketched in
Figure 1. Obviously as mx increases gradually, the average overlap measure
(AOM) of the two experts attenuates to zero (see Figure 2). We run the EM
algorithm through the Newton approach on the eight data sets 50 times
with different randomly initialized parameters, and the algorithm is termi-
nated when the change of the log-likelihood function between two epochs
is less than 10−5. We compute the absolute errors between the average esti-
mated parameters and the corresponding true parameters: �i j = |θ i

j − θ∗i
j |,

� j = |σ 2
j − σ ∗

j
2|. The experimental results of the EM algorithm through the

Newton approach on those eight data sets are listed in Table 1.
It can be seen from Table 1 that as the AOM of a data set falls from

a considerable value (i.e., 0.09), the parameter estimation becomes more
accurate. Specifically, the accuracy rate of parameter estimation on S2 is
higher than that on S1, and the accuracy rate of parameter estimation on
S4 is higher than that on S3. However, as the AOM moves closer to zero,
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Figure 1: Sketches of four typical data sets of the first group with attenuating
AOMs. The notations ∗ and o represent samples from the two classes or experts,
respectively. (a, b, c, d). Sketches of the data sets S1, S2, S3, and S7, respectively,
where the overlap measure of S1 is the largest and that of S7 is the smallest,
being close to zero.

the accuracy rate of parameter estimation remains almost the same, but
the number of epochs for the convergence of the EM algorithm decreases
considerably. That is, the EM algorithm converges at a higher speed as the
AOM decreases. This result is consistent with our theoretical result that
the large sample local convergence rate for the EM algorithm tends to be
asymptotically superlinear as e(�∗) is close to zero.

We further implement the EM algorithms through both the IRLS and
Newton approaches on the second group of five synthetic three-category
data sets with attenuating AOMs (shown in Figure 3 and denoted by
Sa , . . . ,Se , respectively), where data points in each data set are generated
from a mixture of three gaussian distributions centered at [−γ , 0 ], [0, γ ],
[γ , 0], respectively, with γ > 0 dominating its AOM. In each data set, we
generate 1000 i.i.d. samples from a gaussian distribution. In the first four
data sets, the gaussian distributions have a common covariance matrix [0.5,
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Figure 2: Sketch of the AOM of the two experts with respect to mx .

Table 1: Experimental Results of the EM Algorithm for ME Through the Newton
Approach on Eight Synthetic Data Sets with Attenuating AOMs.

Data Set S1 S2 S3 S4 S5 S6 S7 S8

mx −0.5 −0.25 0 0.25 0.5 0.75 1 1.25
AOM 0.090 0.075 0.055 0.035 0.019 0.009 0.004 0.001
�11 0.029 0.022 0.036 0.008 0.017 0.004 0.009 0.009
�12 0.089 0.011 0.012 0.019 0.007 0.001 0.002 0.06
�21 0.042 0.013 0.014 0.001 0.038 0.010 0.001 0.020
�22 0.242 0.015 0.034 0.034 0.006 0.003 0.001 0.029
�1 0.002 0.011 0.011 0.014 0.012 0.012 0.003 0.005
�2 0.001 0.001 0.018 0.008 0.018 0.001 0.003 0.004
LLF −0.9946 −0.9758 −0.9601 −0.9756 −0.957 −0.9537 −0.9494 −0.9549
CR 0.924 0.973 0.956 0.908 0.860 0.605 0.324 0.033
Epochs 24.6 31.6 32.6 35.9 27.1 23.2 20.84 20.2

Note: Epochs denotes the number of epochs the EM algorithm has taken before stop;
CR denotes the convergence rate; which is the maximum eigenvalue of the matrix
I + P(�)H(�); and LLF denotes the obtained log-likelihood function on a given data
set.

0; 0, 0.5], where γ = 1, 1.5, 2, 2.5, respectively. As to the fifth data set Se , the
gaussian distributions keep the same centers as those of Sd but have a dif-
ferent covariance matrix [0.3, 0; 0, 0.3]. This three-category problem is used
to evaluate the convergence performance of the EM algorithms through
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Figure 3: Sketches of five typical data sets of the second group with attenuating
AOMs. Data points of each data set are generated from a mixture of three
gaussian distributions and denoted by ∗, +, and o, respectively.

both the IRLS and Newton approaches on the data sets with attenuating
AOMs.

In the experiments, an ME architecture consisting of three experts is
adopted, and the learning rates for the two approaches are both set to 1.
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Figure 4: Average number of epochs taken for the convergence of the EM algo-
rithm through either the IRLS or Newton approach on Sa , · · ·, Se , respectively.

In the same way, we run the EM algorithms through both the IRLS
and Newton approaches 50 times with different randomly initialized
parameters, and the algorithms stop when the change of the log-likelihood
function between two epochs is less than 10−5. The average numbers of
epochs taken for the convergence of the EM algorithm through either the
IRLS or Newton approach on these data sets is illustrated in Figure 4. It can
be observed that on the data sets with a relatively large overlap (e.g., Sa ,
Sb), the EM algorithm through the IRLS approach may converge a bit faster
than the EM algorithm through the Newton approach. However, the EM
algorithm through the Newton approach converges much faster than the
EM algorithm through the IRLS approach on the lower AOM data sets (e.g.,
Sc , Sd , Se ). In fact, on Se whose AOM is very close to zero, the EM algorithm
through the Newton approach is terminated after about 38 epochs, while
the EM algorithm through the IRLS approach is terminated after about 55
epochs (see Figure 5). The experimental results are consistent with our the-
oretical results on the asymptotic convergence rates of the EM algorithms
through the IRLS and Newton approaches. As the AOM tends to zero, the
asymptotic convergence rate of the Newton approach also tends to zero.
However, the asymptotic convergence rate of the IRLS approach does not
tend to zero because the projection matrix for the IRLS approach is different



Asymptotic Convergence of the EM Algorithm 2167

Figure 5: Evolution sketch of the log-likelihood function with respect to the
number of epochs during the EM iterations on data setSe , where the dashed and
dot-dash lines represent values of the log-likelihood functions of the Newton
and IRLS approaches, respectively.

from that for the Newton approach. This is why the IRLS approach could
not converge as fast as the Newton approach when the AOM is very small.

6 Conclusion

We have presented an analysis on the asymptotic convergence rate of the
EM algorithm for the mixture-of-experts architecture through the IRLS and
Newton-Raphson approaches. By introducing the average overlap measure
of the ME architecture, we obtain an upper bound of the asymptotic con-
vergence rate of the EM algorithm for both approaches. Specifically, for the
Newton approach with the large sample, when the average overlap tends
to zero, the EM algorithm tends to converge superlinearly. Moreover, these
theoretical results are demonstrated by simulation experiments.
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