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Abstract: As a classical combinatorial optimization problem, the traveling salesman problem (TSP)
has been extensively investigated in the fields of Artificial Intelligence and Operations Research. Due
to being NP-complete, it is still rather challenging to solve both effectively and efficiently. Because of
its high theoretical significance and wide practical applications, great effort has been undertaken to
solve it from the point of view of intelligent search. In this paper, we propose a two-stage probe-based
search optimization algorithm for solving both symmetric and asymmetric TSPs through the stages
of route development and a self-escape mechanism. Specifically, in the first stage, a reasonable
proportion threshold filter of potential basis probes or partial routes is set up at each step during the
complete route development process. In this way, the poor basis probes with longer routes are filtered
out automatically. Moreover, four local augmentation operators are further employed to improve
these potential basis probes at each step. In the second stage, a self-escape mechanism or operation
is further implemented on the obtained complete routes to prevent the probe-based search from
being trapped in a locally optimal solution. The experimental results on a collection of benchmark
TSP datasets demonstrate that our proposed algorithm is more effective than other state-of-the-art
optimization algorithms. In fact, it achieves the best-known TSP benchmark solutions in many
datasets, while, in certain cases, it even generates solutions that are better than the best-known TSP
benchmark solutions.

Keywords: traveling salesman problem (TSP); probe machine; filter; local augmentation operators;
self-escape mechanism; route modification and development

MSC: 90B10; 90B20; 68P10

1. Introduction

The traveling salesman problem (TSP) is a well-known combinatorial optimization
problem, which can be specifically expressed as the problem of finding the lowest-cost route
throughout a given set of cities. It has been proven to be one of the most difficult NP-hard
problems, i.e., NP-complete problems [1,2], so there is no algorithm to effectively solve it in
polynomial time via the conventional computer systems. Because of its wide applicability
and computational complexity, many researchers have been attracted to investigating
the TSP for effective and efficient solutions. Actually, a variety of feasible optimization
algorithms have been designed and exploited in the last few decades. According to [2,3],
these algorithms can be categorized into two main streams: exact algorithms and heuristic
algorithms. Each stream offers different tradeoffs in terms of solution quality, computational
efficiency, and applicability to different problem instances. The exact algorithms guarantee
optimal solutions, but the execution time is increased exponentially with the problem size.
They are only suitable for small-size TSPs and become rather difficult for medium- to large-
scale problems, even though supercomputer systems are adopted in the computational
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process [4]. Therefore, the exact algorithms may become computationally prohibitive.
On the other hand, heuristic algorithms are designed with some efficient search rules or
systems to obtain good approximate solutions instead.

Heuristic optimization algorithms are more applicable in practice because of their abil-
ity to deal with large-scale TSPs. These algorithms, however, cannot guarantee an optimal
solution but can provide a satisfactory solution with an affordable computational cost. They
are generally designed with the help of certain specific knowledge and intuitive experiences
to construct a reasonable route solution. During the search process, they use some greedy
strategies for a better solution to guide the search operation within a limited solution space.
In this way, the solutions become better and better in the sequential iterations while the
search is always set in a local mode. It is clear that better heuristic algorithms require a
deeper understanding of the solution domains and structures, from which high-quality
solutions can be found effectively and efficiently. However, a heuristic algorithm can
perform well on certain specific instances but not work well for other instances, and it is
often expensive to adapt to new instances and problems. In general, heuristic algorithms
can serve as building blocks for more sophisticated meta-heuristic approaches.

Meta-heuristic approaches are more generic and flexible than heuristic algorithms and
are often used when heuristic approaches are insufficient or impractical. Indeed, they have
been widely adopted for TSPs due to their ability to efficiently explore large solution spaces
and find good approximate solutions. Most of these meta-heuristic algorithms are inspired by
natural and biological behaviors and employ certain top-level strategies for the solutions of
TSPs. Actually, they can offer high-quality solutions with relatively less computational cost. In
such an approach, the search scheme is generally designed to guide some local improvement
operators in an intelligent way so that a robust iterative generation process can be produced
through a proper balance regarding the diversification and intensification strategy during each
search iteration. Diversification and intensification refer to the exploration and exploitation in
the solution search space, respectively. The strength of meta-heuristics is the effectiveness of
the employed intensification and diversification strategy, and the efficiency depends on the
decision between the global search reinforcement and convergence search in the promising
region. However, they often meet with the problem of premature convergence, which traps
the search process in a local optimum solution. Moreover, meta-heuristics utilize many
parameters that need to be tuned. In addition, most of these approaches yield probabilistic
solutions due to the randomness in the process. It may be possible to enhance the effectiveness
of meta-heuristics by combining two or more algorithms into a hybrid form. The performance
of the hybrid algorithm is certainly better; however, it necessitates a higher computational
cost, while effective hybridization is difficult to achieve.

In 2016, a new conceptual computational model named Probe Machine (PM) was pro-
posed by Xu [5]. It is a completely parallel computing model in which the data placement
mode is nonlinear. Motivated by the probe concept and data structure of the PM, we first
designed a PM-based optimization algorithm for solving symmetric TSPs [6]. It is a route
construction and search procedure coupled with a certain filtering mechanism. Specifically,
it starts with all the possible sub-routes consisting of three cities, and then each potential
sub-route is extended and enhanced step by step from its two ends until complete routes are
finally formed. At the same time, the worst routes are filtered out according to the filtering
proportion value. Its advantages are the clarity of the idea and the easy implementation.
However, there is no scope of modifying and developing the possible routes from the current
existing potential routes, so certain potential routes may easily be left out.

To ameliorate this potential drawback, we further designed a dynamic route con-
struction optimization algorithm for both symmetric and asymmetric TSPs through the
integration of the probe concept and local search mechanism [7]. This PM-based dynamic
algorithm adopts the route modification and development as the routes are built. In fact,
the embedded local search operators are imposed consecutively on the retained potential
routes to produce more potential routes before each subsequent expansion. In this paper,
we extend and develop our previous study of the PM-based search optimization framework
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methodologically and theoretically. Specifically, we design a two-stage search optimization
algorithm for solving both symmetric and asymmetric TSPs through the stages of probe-
based route development and a self-escape mechanism. In the first stage, the key idea is to
design a potential route filter in each step of the probe-based route development process
such that at least a sufficient number of potential or valuable partial routes are retained in
each step; hence, the probability of producing the best complete route is increased under
limited computational resources. Moreover, certain local augmentation operators are further
employed to extend and improve the retained potential partial routes in each step. In the
second stage, a self-escape mechanism is implemented regarding the obtained complete
routes from the first stage to prevent the above probe-based search from being trapped in a
locally optimal solution. Therefore, a local optimal solution can be skipped and the global
optimization search capability can be enhanced. In fact, it is an effective search optimization
framework in which the first stage is to construct and develop a set of better complete routes
step by step dynamically and the second stage is to self-escape from the stagnant routes (if
possible). The main contributions of this work are summarized as follows:

• A two-stage probe-based search optimization algorithm is designed for solving both
symmetric and asymmetric TSPs through the stages of probe-based route development
and a self-escape mechanism. The experimental results demonstrate that our proposed
algorithm performs better than the other state-of-the-art algorithms with respect to
the quality of the solution over a wide range of TSP datasets.

• A proportion value threshold filter is designed and integrated into the probe-based
search optimization framework to retain at least a sufficient number of potential routes
in each step of the route development process. Actually, we set up an initial value for
the proportion value of the potential partial route filtering in the first step and then
dynamically adjust it in the following steps.

• Four local augmentation operators are designed and employed on each of the devel-
oped potential routes in an efficient manner so that all the retained potential routes
are further augmented and improved consecutively at each step.

• A self-escape mechanism is further implemented on the obtained complete routes
from the first stage to prevent the probe-based search from being trapped in a locally
optimal solution.

• A statistical analysis is conducted to validate the computed results of our proposed
algorithm against the other benchmark optimization algorithms by using the Wilcoxon
signed rank test.

The rest of this paper is organized as follows. The mathematical description of the
TSP is provided in Section 2. Then, the concept of the probe is introduced in Section 3.
We further describe our adopted proportion threshold filter in the probe-based search in
Section 4 and our employed local augmentation operators in Section 5. Section 6 presents our
proposed probe-based search optimization algorithm in detail. The experimental results and
discussion are summarized in Section 7. Finally, we include a brief conclusion in Section 8.

2. TSP Mathematical Description

The TSP is a path planning optimization problem of finding the lowest-cost route
through a given set of cities. The route must be designed in such a way that each city is
visited once and only once and eventually returns to the starting city. It is known to be
NP-complete, meaning that there is no known effective algorithm that can solve it for large
instances in polynomial time. As the number of cities increases, the number of possible
routes grows factorially, making it computationally infeasible to find the optimal solution
through brute force for large instances. Despite its computational complexity, the TSP has
attracted great attention from scientists and engineers due to its great value for practical
applications and its connections to other optimization problems. Until now, no general
method has been able to tackle this problem effectively [8].

The TSP was first mathematically formulated by Karl Menger in 1930 [9] and, since
then, it has been extensively investigated in diverse applicable fields. Typical examples of
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the TSP real-life applications include transport routing, circuit design, X-ray crystallography,
micro-chip production, scheduling, mission planning, aviation, logistics management,
DNA sequencing, data association, image processing, pattern recognition, and many
more [10–12]. Therefore, it is very important and valuable to design and implement an
effective algorithm for the TSP solution.

The TSP can be represented as a graph-theoretic problem. Let Gn = (C, E) be a
directed graph, where C = {c1, c2, . . . , cn} is the set of vertices (nodes) and E = {eij : eij =
(ci, cj); (ci, cj) ∈ C× C; i ̸= j; i, j = 1, 2, . . . , n} is the set of edges. Each vertex (node) ci ∈ C
denotes the position of a city and each edge eij ∈ E indicates the path from the i-th city
to the j-th city. Moreover, a non-negative cost (distance) dij ∈ R+ is associated with each
edge eij ∈ E for representing the edge weight of the graph. If dij = dji; ∀eij ∈ E, the graph
Gn is referred to as symmetric TSP, whereas the asymmetric TSP corresponds to the case
with dij ̸= dji for at least one pair of edges eij and eji ∈ E of the graph Gn. The aim of this
problem is to construct a complete route T with n distinct cities such that the total traveling
cost (distance) function F(T) of the route is minimized; i.e., the fitness function of the route
f (T) is maximized. Let T = (c1, c2, . . . , cn, c1) with all distinct cities ci ∈ C be a complete
route and F(T) be its route cost (distance). Then, the objective function of the TSP can be
formulated as follows [13]:

Generate a complete route T = (c1, c2, . . . , cn, c1)

to minimize F(T) =
n−1

∑
i=1

dcici+1 + dcnc1

i.e., to maximize f (T) =
1

F(T)


(1)

where dcici+1 is the cost (distance) of the local path between the cities ci and ci+1. If ci(xi, yi)
and ci+1(xi+1, yi+1) are coordinates of ci and ci+1, then dcici+1 is calculated by Euclidean
distance as follows:

dcici+1 =
√
(xi − xi+1)2 + (yi − yi+1)2. (2)

3. Probe Concept

The probe is conceptually a detection device or related operator that accurately recognizes
a piece of a particular structure or pattern from the whole description of an object and
implements certain operations, such as connection or transmission, between the detected
structures. It has been extensively used for various purposes in diverse fields like medical,
engineering, biology, computer science, electronics, information security, archaeology, and so
on [5,14]. In the medical field, ultrasonic probes are utilized to generate acoustic signals and
detect return signals. These probes are an essential component of ultrasound systems and
work by emitting high-frequency sound waves into the body or material being examined and
then receiving the echoes that bounce back. On the other hand, a short single-stranded DNA
or RNA fragment (approximately 20 to 500 bp) is designed as a biological probe to detect its
complementary DNA sequence or locate a particular clone. In addition, the probe concept
is adopted in electronics to perform various electronic tests, while archaeologists use it to
interpret the soil’s nature and to decide where and how to excavate.

As a computer model, the Probe Machine (PM) [5] was developed where each probe
is assumed to be an operator to make a connection between any two pieces of fiber-tailed
data or to transmit information from one piece of fiber-tailed data to another if their tails
are consistent. The probe in PM accomplishes three different functions. First, it accurately
finds any two target data pieces with perfectly matching adjacent edges or fiber tails. Then,
it takes any pair of possible target data pieces from the database of available fiber-tailed
data. Finally, it performs some well-defined operations to extend fiber-tailed data step by
step to a problem solution. Motivated by the probe of the PM, we design a new kind of
probe for our PM-based search optimization approach to solving TSPs. In our approach,
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the probes are assumed to be a connection operator of city sequences or possible sub-routes
that are consistent so that the complete route can be produced step by step. The sub-route
consisting of (m− 1) edges is referred to as the m-city basis probe. The outer two edges are
called the wings of the natural probe. The actual probe performs two actions such that it
first finds out the required adjacent edges and then generates the next possible basis probes
based on the availability of these edges. Actually, each basis probe can use its wings to
accurately detect and append two other different adjacent edges on the route to extend the
current route solution. In this way, each basis probe is enhanced automatically on both
ends in every step of the procedure and continues until all cities are included in the basis
probe, i.e., until complete (n-city) basis probes are formed. Mathematically, to arrive at a
complete probe search of n-city problem, the procedure needs to execute [ n

2 ] steps, where

[
n
2
] =

 n
2 , if n is even;
n−1

2 , if n is odd.
(3)

To facilitate the understanding of the network expansion mechanism of the probe, it is
illustrated graphically in Figure 1. In the figure, a 5-city basis probe is hybridized with two 3-
city basis probes and generates a 7-city basis probe. In our model, the first step generates 3-city
basis probes, the second step generates 5-city basis probes, the third step generates 7-city basis
probes, and in this way the n-th step generates n-city basis probes. The number of cities visited
step-wise by the probe operation is provided in Table 1. The sample basis probes in the figure
are denoted by pmks, pijklm, and pltj, respectively. Actually, the probe pmks is a sub-route con-
sisting of three cities (cm, ck, cs) with the wings ω(pmks) = {pk

mks, ps
mks}. Similarly, the probe

pltj is a sub-route consisting of three cities (cl, ct, cj) having wings ω(pltj) = {pt
ltj, pj

ltj},
while the probe pijklm is a sub-route consisting of five cities (ci, cj, ck, cl, cm) with the wings
ω(pijklm) = {pl

ijklm, pm
ijklm}. For the expansion of the network of 5-city basis probe pijklm, it

explores for two 3-city basis probes through the wings pl
ijklm and pm

ijklm. On the other hand,

the wing pk
mks of the basis probe pmks and the wing pj

ltj of the basis probe pltj are consistent
with the wings of the probe pijklm. The other wings of the basis probes pmks and pltj are not
consistent with the basis probe pijklm. After finding these types of basis probes, the 5-city
basis probe pijklm hybridizes with these 3-city basis probes through the wings pl

ijklm and pm
ijklm.

This hybridization leads to the expansion of the current network pijklm and generates a 7-city
basis probe comprising the cities (ci, cj, ck, cl, cm, cs, ct). The new 7-city basis probe is denoted
by pijklmst, and it also has two wings, namely ps

ijklmst and pt
ijklmst. In this way, the hybridized

probes extend their network, and the redundant probes not being hybridized are left out.

Figure 1. Illustration of probe hybridization mechanism: (a) 3-city basis probe; (b) 5-city basis probe;
(c) 3-city basis probe; (d) resulting 7-city basis probe by the probe hybridization of (b) with (a,c).

Table 1. The number of cities visited step-wise by the probe operation.

Step Number 1 2 3 · · · · · · k k + 1 · · · · · · [ n
2 ]

# of Cities 3 5 7 · · · · · · 2k + 1 2k + 3 · · · · · · n
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4. Adopted Filtering Mechanism

In searching for the solution of a TSP, a ”filter” typically refers to a technique or
mechanism of reducing the search space or eliminating the unpromising solutions during
the optimization process. This technique can play a crucial role in improving the efficiency
of the algorithms that aim to determine the optimal or near-optimal solutions to the TSP.
Some of the key filtering concepts used in TSPs include bounding filters, dominance rules,
symmetry-breaking filters, etc. These filters can significantly improve the efficiency of the
algorithms for solving the TSP, enabling the exploration of the larger spaces and finding
the near-optimal solutions within a reasonable time frame.

The adopted filter of our approach is a proportion threshold filter that is set up rigorously
in the probe-based search process. Actually, it assists the search operator in retaining the
least but necessary number of potential partial routes in each step of the complete route
development process. The potential routes of the current step are used to generate possible
basis routes in the next step during the route construction process. Therefore, the performance
of the probe-based search process is highly influenced by the appropriate choice of the filtering
proportion value. In fact, setting an appropriate proportion value of generated routes is a
rather challenging problem for the effectiveness of our approach. An inappropriate choice
of proportion value leads to trapping the whole process, which not only yields a worse
solution but consumes a longer computational time. Specifically, a larger proportion value
may provide more chances to produce a better optimum solution. However, this also means
that the number of possible basis routes generated in the next step is increased rapidly and
the computational cost is increased too, and, sometimes, the model cannot even produce a
feasible complete route. On account of this, it is important to set up a reasonable proportion
threshold filter in the working steps so that the worst generated routes are filtered out in each
filtering process. Through theoretical analysis and the experiments, we set a proportion value
function ψ2k+1 for the kth step as follows:

ψ2k+1 =
γ

n + 3
√

k
, (4)

where k denotes the step number that changes in {1, 2, · · ·, [ n
2 ]}, n stands for the number of

cities contained in the test dataset, and γ is a constant. Actually, the value of γ is dependent
on the value of n and can be fitted by the trial and error method. It can be observed from
the experiments that, in some cases, a smaller value of γ is needed to provide a good
solution, while, in some other cases, a larger value of γ is required to obtain a satisfactory
solution. Therefore, the value of γ is not biased, and it offers different tradeoffs in terms of
solution quality, computational efficiency, and applicability to different problem instances.
The experiments and theoretical analysis demonstrate that the value of γ lies within an
interval of [ n+1

n3−3n2+2n , 900n+900
n3−3n2+2n ] ⊂ R+, i.e., γ ∈ [ n+1

n3−3n2+2n , 900n+900
n3−3n2+2n ] ⊂ R+, which is a

good adjustment for computing a satisfactory solution in an acceptable time frame.
The design of the adopted filter with the threshold value in Equation (4) is based on

the idea that, initially, the routes are too short to clear. As the step increases, the routes
are also gradually becoming more and more clear. Thus, it is reasonable to set up a large
proportion value in the first step and then to reduce with time in the following steps,
i.e., ψ3 > ψ5 > · · · > ψ2[ n

2 ]+1. From the experiments, it can be found that, as the number
k of steps increases, the number nrl (l = 3, 5, 7, . . . , n) of retaining potential partial routes
is increased at first in a few steps and then starts to decrease. From the step where the
reduction begins, it is decreased very rapidly in the remaining steps; in some cases, it
even retains one single route. To mitigate this problem, we can fix the proportion value
unchanged after conducting 50% of the whole steps. In addition, if the number nrl of
retaining potential partial routes at any step is too small (e.g., nrl = 1), it is believed that
the procedure has already fallen into the trap of local optimum solution. Once trapped,
it cannot jump out from there as the proportional value is still decreasing and it retains
one single route in the remaining steps. To get rid of having one single possible route,
the proportion value can be increased at that step. This increment is created in such a



Mathematics 2024, 12, 1340 7 of 27

way that the number nrl of retaining potential routes belongs to an interval of [1, 100] ⊂ N.
After that, it is decreased as before in the remaining steps of the procedure. This strategy
allows the proportion value to be increased in certain steps of the procedure. More precisely,
it can be said that we set up an initial filtering proportion value in the first step, and then
the algorithm dynamically adjusts it in the rest of the steps. Therefore, the search process
is able to avoid having one single route, and hence the probability of producing a better
complete route is increased.

The filtering mechanism can be explained through a concrete example. Suppose that
we would like to solve a six-city symmetric TSP problem. In the first step of our approach,
60 basis sub-routes of three cities will be generated. If we set the proportion value to 1

2 in
the first step, then 30 potential 3-city sub-routes will be retained before leaving the first
step, and the remaining 30 routes will be filtered out based on their fitness value. These
retained potential basis routes are then modified and improved into good routes through
the local augmentation operators, which are discussed in the next section. These good
sub-routes are referred to as the root basis probes or sub-routes. In the second step, 5-city
basis sub-routes will be generated using these 30 good basis routes. Let us say 180 basis
sub-routes are produced in the second step, and, if we set 1

3 as the proportion value in this
step, then 60 basis sub-routes will be retained for route extension. These 60 basis sub-routes
are used to construct 6-city complete routes, and, finally, a best 6-city complete route is
found from there.

5. Employed Local Augmentation Operators

In our solution augmentation process, four types of local augmentation operators
are employed consecutively on each retained potential basis probe or sub-route in each
step of the route development procedure. These operators help to modify the existing
sub-route iteratively and potentially improve its quality. Actually, the local augmenta-
tion operators are adopted in the first improvement manner; i.e., once an improvement is
found, subsequent improvements are explored based on this improvement. In addition,
a well-defined decision function for each operator is used to avoid generating a worse
route and consuming a longer time. We briefly describe them in the following subsections,
respectively. The pseudocode of improving potential basis probes or sub-routes through
local augmentation operators is offered in Algorithm 1.

Algorithm 1: Pseudocode of the potential basis probe improvement procedure
via local augmentation operators

Input: A retained potential basis probe p1×l , l = 5, 7, 9, · · ·, n, Fitness value of the basis probe f (p),
Distance matrix dn×n

Output: Improved basis probe pim, Fitness value of the improved basis probe f (pim)
1. For each city ci ∈ p, i = 1 to n− 2 for 2-opt, i = 1 to n− 1 for reversion and swap, i = 1 to n for

insertion. For an n-city probe, i− 1 = n when i = 1
2. For each city cj ∈ p, j = i + 2 to n for 2-opt, j = i + 1 to n for reversion and swap, j = 1 to n, j ̸= i

for insertion. For an n-city probe, j + 1 = 1 when j = n
3. Check the inequality defined in Equations (5)–(8) of carrying operator
4. If the inequality is satisfied, then
5. Generate a new basis probe p

′
based on p by applying carrying operator

6. Compute the fitness value of p
′
, i.e., f (p

′
) by using Equation (1)

7. In case of asymmetric TSP, calculate the fitness value in reverse order also of p
′

and then take the
best one from { f (p

′
original order), f (p

′
reverse order)}

8. If f (p
′
) > f (p), then

9. Update the older potential basis probe p by assigning p← p
′

10. Update the fitness value f (p) by assigning f (p)← f (p
′
)

11. End if
12. End if
13. End for
14. End for
15. Assign pim ← p and f (pim)← f (p)
16. Return pim and f (pim)
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5.1. The 2-Opt Operator

The 2-opt operator eliminates two edges from the existing potential basis probes
and reconnects them together to create a new good basis probe or possible route. Let
(ci, ci+1), where i = 1, 2, · · ·, n − 2, and (cj, cj+1), where j = i + 2, · · ·, n, be the two
edges of a potential basis probe p = (c1, c2, · · ·, ci, ci+1, · · ·, cj, cj+1, · · ·, cl), where l =
5, 7, 9, · · ·, n. Then, the 2-opt operator reverses the local path between the cities ci+1 and
cj, and generates a new good basis probe, which is denoted by p

′
and is defined by

p
′
= (c1, c2, · · ·, ci, cj, cj−1, · · ·, ci+2, ci+1, cj+1, · · ·, cl). To avoid generating a worse basis

probe by the 2-opt operator, it can be dominated by the following decision inequality:

2-opt(i, j) : {d(ci, ci+1) + d(cj, cj+1)} > {d(ci, cj) + d(ci+1, cj+1)}. (5)

5.2. Reversion Operator

The reversion operator first locates the position of two different cities of a potential
basis probe and then reverses the local path between these two cities. Consider a potential
basis probe p = (c1, c2, · · ·, ci−1, ci, ci+1, · · ·, cj−1, cj, cj+1, · · ·, cl), where l = 5, 7, 9, · · ·, n,
and the two cut points i(i = 1, 2, · · ·, n− 1) and j(j = i + 1, · · ·, n) on p. This reversion
operator generates a new good basis probe, which is denoted by p

′
and is defined by

p
′
= (c1, c2, · · ·, ci−1, cj, cj−1, · · ·, ci+1, ci, cj+1, · · ·, cl). To determine whether the reversion is

beneficial, we can check the following inequality:

Reversion(i, j) : {d(ci−1, ci) + d(cj, cj+1)} > {d(ci−1, cj) + d(ci, cj+1)}. (6)

5.3. Swap Operator

The swap operator simply exchanges the positions of two cities of a potential basis
probe to create a new good basis probe. Let the two positions i(i = 1, 2, . . . , n− 1) and
j(j = i + 1, . . . , n) be selected from a potential basis probe p = (c1, c2, . . . , ci−1, ci, ci+1, . . . ,
cj−1, cj, cj+1, . . . , cl), where l = 5, 7, 9, . . . , n. The new good basis probe through swap operator
on p is denoted by p

′
and is defined by p

′
= (c1, c2, · · ·, ci−1, cj, ci+1, . . . , cj−1, ci, cj+1, . . . , cl).

We accept the new basis probe if the following inequality holds:

Swap(i, j) =


{d(ci−1, ci) + d(ci, ci+1) + d(cj−1, cj) + d(cj, cj+1)} >
{d(ci−1, cj) + d(cj, ci+1) + d(cj−1, ci) + d(ci, cj+1)}, j− i ̸= 1;
{d(ci−1, ci) + d(cj, cj+1)} > {d(ci−1, cj) + d(ci, cj+1)}, j− i = 1.

(7)

5.4. Insertion Operator

The insertion operator first picks two positions i(i = 1, 2, · · ·, n) and j(j = 1, 2, · ·
·, n) with j ̸= i and then the city ci is inserted into the cj’s back position. Consider
a potential basis probe p = (c1, c2, · · ·, ci−1, ci, ci+1, · · ·, cj−1, cj, cj+1, · · ·, cl), where l =

5, 7, 9, · · ·, n. The new basis probe generated based on this operator is defined by p
′
=

(c1, c2, · · ·, ci−1, ci+1, · · ·, cj−1, cj, ci, cj+1, · · ·, cl). In fact, the new basis probe can be accepted
if the following inequality holds:

Insertion(i, j) =


{d(ci−1, ci) + d(ci, ci+1) + d(cj, cj+1)} >
{d(ci−1, ci+1) + d(cj, ci) + d(ci, cj+1)}, i < j;
{d(cj−1, cj) + d(ci−1, ci) + d(ci, ci+1)} >
{d(cj−1, ci) + d(ci, cj) + d(ci−1, ci+1)}, i > j.

(8)
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6. Two-Stage Search Optimization Algorithm

In order to maintain a good balance between the effectiveness and efficiency of probe-
based route development, we present a two-stage search optimization algorithm for solving
both symmetric and asymmetric TSPs. Functionally, the first stage is to construct and develop
an appropriate set of good complete routes through the probe extension step by step dynami-
cally, while the second stage is a self-escape loop to prevent the search from being trapped in
a locally optimal solution if possible. We describe the two stages in detail in the following two
subsections, respectively.

6.1. Stage 1—Good Complete Route Development

In the first stage, we consider the partial routes as basis probes and extend them step
by step to construct and develop a set of good complete routes in the end. In each step,
a proportion value threshold element is set as a filter to filter out the worst partial routes
or basic probes. Moreover, four local augmentation operators are employed to modify and
improve the existing partial routes. According to the number of cities in the given TSP, this
stage consists of certain steps (defined in Equation (3) to complete the route development.
Actually, except the first one, each step implements three operations: basis probes or partial
route generation, basis probe filtering, and basis probe improvement. The working steps of
the first stage can be described as follows:

Step-1: 3-city basis probes are generated by taking all possible local two-path routes for
each city as a center. Actually, a local two-path route is generated with three cities in which one
city is central or internal and the other two cities are adjacent to it. We simply refer to it as a
3-city basis probe. Considering an n-city TSP problem with city list L = {c1, c2, · · ·, cn}where
n ≥ 3, we let ci ∈ L be a city located at the ith position and L(ci) be a set of cities adjacent
to ci; i.e., L(ci) = L− {ci}. Then, the set of possible local two-path routes with internal city
ci(i = 1, 2, · · ·, n), with adjacent cities cj and ck, can be defined by L2(ci) as follows:

L2(ci) = {cjcick ≜ pijk : cj, ck ∈ L(ci); i ̸= j, k; j ̸= k; j = 1, 2, · · ·, n, and k = 1, 2, · · ·, n}, (9)

where pijk represents a 3-city basis probe whose outer two wings are pj
ijk = eij and pk

ijk = eik,
respectively. Actually, it can utilize these two wings to extend and develop the route in the next
step. In total, the set of possible 3-city basis probes is a union of all L2(ci) provided as follows:

Ω3 = ∪n
i=1L2(ci) = ∪n

i=1{pijk : cj, ck ∈ L(ci); i ̸= j, k; j ̸= k; j = 1, 2, · · ·, n, and k = 1, 2, · · ·, n} (10)

After generating all the possible basis probes, the quality or fitness function f (pijk) of basis
probe pijk can be defined and computed from its cost (distance). That is, the quality of the
basis probe is inversely proportional to its cost (distance); i.e., the basis probe with a higher
value of f (pijk) is fitter and vice versa. Then, these basis probes can be ordered through the
fitness function; e.g., the order of the fittest basis probe is 1, the order of the next fittest one
is 2, etc. Finally, we retain certain potential basis probes from all the generated ones with
the help of a threshold value filter (defined in Equation (4)). These retained basis probes
are considered as the good and root probes of this step. Actually, root probes are 3-city
potential basis probes that are kept for further route extension. Assuming that ψ3 is just the
threshold value of the filter or proportion value threshold element at this step, the set of
the retained good and root basis probes can be constructed as follows:

Π3 = {pijk : pijk ∈ Ω3; the order of (pijk) ≤ ψ3np3 ; np3 = |Ω3|}, (11)

where np3 denotes the number of generated 3-city basis probes in Ω3. For clarity, we let
ng3 = |Π3| be the number of the retained good and root basis probes of Π3.
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Step-2: In this step, we generate 5-city basis probes with the retained good basis
3-city probes obtained from Step-1. Indeed, each retained good basis probe of Step-1 can
be hybridized with other consistent 3-city basis probes and generate the next possible 5-city
basis probes. Actually, the set of possible 5-city basis probes can be constructed through
the connection operations as follows:

Ω5 = {pijklm : ∀pijk ∈ Π3; ∀pjli, pkim ∈ Ω3; l ̸= m; l, m ̸= i, j, k}, (12)

where pijklm ≜ clcjcickcm indicates a 5-city basis probe as it is a route of 5 different cities.
The outer two wings of this basis probe are pl

ijklm = el j and pm
ijklm = ekm, respectively.

Like in Step-1, the quality or fitness function f (pijklm) of basis probe pijklm can be defined
and computed in the same way to order the basis probes. Once the basis probes are
constructed and their orders are obtained, the lower fitness basis probes are filtered out
while the good potential basis probes are retained according to the threshold value of the
filter. Actually, assuming that the filtering threshold or proportion value at this step is
ψ5 (defined in Equation (4)), the set of possible potential basis probes can be constructed
as follows:

T5 = {pijklm : pijklm ∈ Ω5; order of (pijklm) ≤ ψ5np5 ; np5 = |Ω5|}, (13)

where np5 is the number of generated 5-city basis probes of Ω5. The number nr5 of
retaining potential basis probes can be denoted as nr5 = |T5|. For the possible improve-
ment of each potential basis probe pijklm ∈ T5, four local search operators (explained
in Section 5) are implemented consecutively on it. If any better or fitter basis probe is
developed, the earlier basis probe is directly replaced by the better basis probe. As a
result, these retained potential probes are developed and improved. For clarity, we refer
to the improved basis probes as the good basis probes. Therefore, the set of good basis
5-city probes can be constructed as follows:

Π5 = {p
′
ijklm : p

′
ijklm = LS(pijklm); ∀pijklm ∈ T5; f (p

′
ijklm) ≥ f (pijklm)}, (14)

where p
′
ijklm denotes the improved basis probe of pijklm, LS denotes the total operation of

implementing the four local augmentation operators consecutively, f (p
′
ijklm) and f (pijklm)

are the fitness functions of the developed and original basis probes, respectively. Therefore,
it can be easily found that ng5 = |Π5| ≤ nr5 = |T5| since Π5 ⊆ T5.

Like Step-2, the basis probe generation, filtering, and improvement operations can be
carried out in the remaining steps of the complete route development process. In general,
after completing the filtering task of the (k + 1)th step, we obtain the set of (2k + 3)-city
potential basis probes, which can be denoted by T2k+3 and constructed by

T2k+3 = {pijklm···tsvuhg : pijklm···tsvuhg ∈ Ω2k+3; order of (pijklm···tsvuhg) ≤ Ψ2k+3np2k+3 ;

np2k+3 =
∣∣Ω2k+3

∣∣}. (15)

In Equation (15), pijklm···tsvuhg is a retained (2k + 3)-city potential basis probe, Ω2k+3
denotes the set of possible generated basis probes at the (k + 1)th step, being expressed
by Equation (17), np2k+3 denotes the number of basis probes in Ω2k+3, and Ψ2k+3 is the
filtering proportion value at the (k + 1)th step. Each retained potential basis probe
pijklm···tsvuhg is further improved by the four local augmentation operators. Thus, the set
of (2k + 3)-city good basis probes is obtained at the end of the (k + 1)th step, which is
provided by

Π2k+3 = {p
′
ijklm···tsvuhg : p

′
ijklm···tsvuhg = LS(pijklm···tsvuhg); ∀pijklm···tsvuhg ∈ T2k+3;

f (p
′
ijklm···tsvuhg) ≥ f (pijklm···tsvuhg)},

(16)
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Ω2k+3 = {pijklm···tsvuhg : ∀pijklm···tsvu ∈ Π2k+1; ∀pvht, pusg ∈ Ω3; h ̸= g;

h, g ̸= v, t, · · ·, l, j, i, k, m, . . . , s, u},
(17)

In Equation (16), p
′
ijklm···tsvuhg is the improved basis probe obtained by implement-

ing the four local search operators on the basis probe pijklm···tsvuhg, f (p
′
ijklm···tsvuhg) and

f (pijklm···tsvuhg) represent the fitness values of the improved and original basis probes,
respectively.

In Equation (17), pijklm···tsvuhg ≜ {ch

(2k + 1)-city good probe︷ ︸︸ ︷
cvct . . . clcjcickcm . . . cscu cg︸ ︷︷ ︸

(2k + 3)-city generated probe

is a (2k + 3)-city gener-

ated basis probe having the outer wings ph
ijklm···tsvuhg = evh and pg

ijklm···tsvuhg = eug, Π2k+1

is the set of (2k + 1)-city good basis probes obtained from the kth step, and pvht and pusg
represent the 3-city basis probes in Ω3.

In this way, after executing the last step, the route development process has produced
a set of good basis probes, Πn, where each good basis probe consists of n cities, being a
complete one or a complete route for the TSP. It should be noted that, in the last step of the
even-number TSP, one city remains to be connected and thus the basis probe uses any one
of its wings to include the remaining city properly.

6.2. Stage 2—Self-Escape Mechanism

After the first stage, we arrive at a set of good complete basis probes or routes as
the search result of the TSP. However, there may be some stagnant complete basis probes
that can be considered as being trapped in a locally optimal solution during our route
development and search process. In order to alleviate this locally trapped search problem,
we can couple our general route development and search process (the first stage) with a
self-escape mechanism, which is referred to as the second stage, i.e., Stage 2. Through this
self-escape mechanism, we can enhance the diversity of the complete basis probes and
further improve the search results. In fact, the self-escape mechanism was first introduced
in the PSO algorithm by Wang et al. [15] in 2007. Recently, Wang et al. [16] applied it to
promote the performance of the DSOS algorithm. Here, we utilize it to solve our locally
trapped search problem such that, as a complete basis probe is trapped in a local optimum
solution, we enforce it to effectively jump out of itself and search for the better complete
basis probe. Specifically, this self-escape mechanism accomplishes two different tasks: first,
identifying whether a complete basis probe is trapped in a local optimum, and, second, if it
is, helping it to jump out of itself to develop a new solution.

Let pl , pbest ∈ Πn, where pl(l = 1, 2, . . . , gn) and pbest represent a complete basis probe
and the current best basis probe in Πn, respectively. We can judge whether a complete basis
probe pl is a local optimum solution if and only if the following inequality holds [15,16]:

|Γl | <
1
gn

gn

∑
l=1
|Γl | , (18)

where
Γl = E(pl) ∪ E(pbest), (19)

where E(pl) and E(pbest) denote the sets of edges in pl and pbest, respectively, Γl denotes
the set of common edges between E(pl) and E(pbest), |Γl | denotes the number of common
edges in Γl , and gn is the number of complete basis probes in Πn. That is, if the inequality
Equation (18) holds, it is believed that pl is trapped in a local optimum solution. In such a
situation, we implement the self-escape mechanism on pl as the following 3-opt operator
such that we can transform it into promising basis probes.
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We first remove 3 edges from the stagnant complete basis probe and divide it into
three partial routes as it is considered a ring route. We then connect these partial routes
in different ways to generate new complete routes that may be better than the original
route. For example, let pl be a stagnant complete basis probe and its three edges, namely
(ci, ci+1(mod n)) with i = 0, 1, 2, · · ·, n − 1, (cj, cj+1(mod n)), where j = i + m(mod n) and
m = 1, 2, . . . , n− 3, and (ck, ck+1(mod n)), where k = i + t(mod n) and t = m + 1, . . . , n− 1
are selected. Removing these 3 edges from pl makes 3 partial routes, namely plq, where
q = 1, 2, 3. The reverse of these partial routes is denoted by p

′
lq, where q = 1, 2, 3. Then,

the new complete probe can be generated by combining plq and p
′
lq in the following seven

different ways:

1. {p
′
l1, pl2, pl3}, Judge by the inequality {d(ci, ci+1(mod n)) + d(ck, ck+1(mod n))} >

{d(ci, ck) + d(ci+1(mod n), ck+1(mod n))}
2. {pl1, pl2, p

′
l3}, Judge by the inequality {d(cj, cj+1(mod n)) + d(ck, ck+1(mod n))} >

{d(cj, ck) + d(cj+1(mod n), ck+1(mod n))}
3. {pl1, p

′
l2, pl3}, Judge by the inequality {d(ci, ci+1(mod n)) + d(cj, cj+1(mod n))} >

{d(ci, cj) + d(ci+1(mod n), cj+1(mod n))}
4. {pl1, p

′
l2, p

′
l3}, Judge by the inequality {d(ci, ci+1(mod n)) + d(cj, cj+1(mod n)) +

d(ck, ck+1(mod n))} > {d(ci, cj) + d(ci+1(mod n), ck) + d(cj+1(mod n), ck+1(mod n))}
5. {p

′
l1, p

′
l2, pl3}, Judge by the inequality {d(ci, ci+1(mod n)) + d(cj, cj+1(mod n)) +

d(ck, ck+1(mod n))} > {d(ci, ck) + d(cj+1(mod n), ci+1(mod n)) + d(cj, ck+1(mod n))}
6. {p

′
l1, pl2, p

′
l3}, Judge by the inequality {d(ci, ci+1(mod n)) + d(cj, cj+1(mod n)) +

d(ck, ck+1(mod n))} > {d(ci, cj+1(mod n)) + d(ck, cj) + d(ci+1(mod n), ck+1(mod n))}
7. {p

′
l1, p

′
l2, p

′
l3}, Judge by the inequality {d(ci, ci+1(mod n)) + d(cj, cj+1(mod n)) +

d(ck, ck+1(mod n))} > {d(ci, cj+1(mod n)) + d(ck, ci+1(mod n)) + d(cj, ck+1(mod n))}
We use the cases of 3, 6, and 7 for the symmetric TSP and all cases for the asymmetric

TSP to generate new complete basis probes. The flowchart and pseudocode of our pro-
posed two-stage search optimization algorithm are sketched in Figure 2 and Algorithm 2,
respectively.

Figure 2. Flowchart of the proposed two-stage probe-based search optimization algorithm.



Mathematics 2024, 12, 1340 13 of 27

Algorithm 2: Pseudocode of the proposed two-stage probe-based search opti-

mization algorithm
Input: Distance matrix dn×n, Problem size n, Filter Ψ2k+1

Output: Best complete probe pbest, Fitness of best complete probe f (pbest)

1. For each city ci , i = 1 to n
2. Construct 3-city basis probes pijk with center ci and insert them in a set Ω3

3. Calculate fitness value f (pijk) of each basis probe pijk ∈ Ω3

4. End for
5. Determine order of each basis probe pijk ∈ Ω3 on the basis of f (pijk)

6. Retain potential basis probes based on filter Ψ3 and insert them in a set Π3

7. For each step k, k = 2 to maximum step, [ n
2 ]

8. Construct new basis probes pijk...2k+1 based on retained potential basis probes pijk...2k−1 ∈ Π2k−1

and insert them in a set Ω2k+1

9. Calculate fitness value f (pijk...2k+1) of each new basis probe ppijk...2k+1 ∈ Ω2k+1

10. Determine order of each basis probe pijk...2k+1 ∈ Ω2k+1 on the basis of f (pijk...2k+1)

11. Retain potential basis probes based on filter Ψ2k+1 and insert them in a set T2k+1

12. For each basis probe pl
ijk...2k+1 ∈ T2k+1, l = 1 to nr2k+1 = |T2k+1|

13. Improve the retained potential basis probe pl
ijk...2k+1 by applying

(i) 2-opt operator (ii) Insertion operator
(iii) Reversion operator (iv) Swap operator

14. Let pl
ijk...2k+1(im) be the improved probe and f (pl

ijk...2k+1(im)) be its fitness value

15. If f (pl
ijk...2k+1(im)) > f (pl

ijk...2k+1), then

16. Update the retained potential basis probe pl
ijk...2k+1 by assigning pl

ijk...2k+1 ← pl
ijk...2k+1(im)

17. Update fitness value f (pl
ijk...2k+1) by assigning f (pl

ijk...2k+1)← f (pl
ijk...2k+1(im))

18. End if
19. End for
20. The set T2k+1 of retained potential basis probes is updated and identified as a set of good basis

probes Π2k+1

21. End for
22. Apply self-escape mechanism on each stagnant complete basis probe (if any) of Π2[ n

2 ]+1

23. Determine best complete probe pbest from Π2[ n
2 ]+1, pbest = pijk...2[ n

2 ]+1(best) and its fitness
value f (pbest)

24. Return best complete probe pbest and its fitness value f (pbest)

7. Experimental Results and Analysis

In this section, various experiments are carried out to evaluate the performance of
our proposed algorithm on the typical benchmark datasets of the TSP with a different
number of cities [17–20]. The obtained experimental results are further compared with
the best-known TSP benchmark results reported by the data library, as well as with the
results obtained by the state-of-the-art algorithms. Finally, a rigorous statistical analysis
is conducted to substantiate the advantages of our proposed algorithm against the other
state-of-the-art optimization algorithms.

7.1. Experimental Configurations and Evaluation Protocol

To conduct the experiments on the datasets whose city size is up to 561, we use a
desktop computer with the specifications of Intel Core i5-4590 3.30 GHz processors, 8 GB
RAM, and 64-bit Windows 10 operating system. For the other datasets, we run with
a 2 core GPU Linux operating system due to requiring high computational resources.
The proposed algorithm is implemented in MATLAB R2019a programming language for
all the simulations. Two performance evaluation indicators, error (measured in %) and
computational time (measured in seconds), are calculated to evaluate the performance
of the proposed algorithm. The percentage deviation of the simulated result from the
best-known results (i.e., error) is enumerated based on the following formulae:
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Error(%) =
Z(p)− Z∗(p)

Z∗(p)
× 100, (20)

where Z(p) and Z∗(p) denote the obtained solution and best-known solution on a particular
TSP dataset, respectively. For the execution time, we run the algorithm 10 times independently
on each TSP dataset and compute the average and standard deviation (SD) of the times.

7.2. Performance Evaluation and Analysis

In this subsection, we conduct the experiments of our proposed algorithm on 83 sym-
metric and 18 asymmetric benchmark TSP test problems to evaluate its performance.
Actually, the experimental results are summarized in Table 2, where the “BKS” column
element indicates the best-known solution reported by the data library, while the “Our
Result” column element indicates the solution obtained by our proposed algorithm. The
“Difference” and “Error(%)” column elements denote the deviation and the percentage de-
viation of the obtained result from the best-known result, respectively. The computational
time(s) column element denotes the average execution time (in seconds) of the algorithm
with the SD value in 10 runs. We boldface the names of the datasets whose best-known
solutions or new solutions are obtained by our proposed algorithm.

Table 2. Computational results of our proposed algorithm for 83 symmetric and 18 asymmetric
benchmark TSP datasets.

S/N Datasets No. of Cities BKS Our Result Difference Error (%) Computational Time (s)

Symmetric Travelling Salesman Problem (STSP)

1 burma14 14 3323.000 3323.000 0.00000 0.00000 0.00840000 ± 0.005700
2 p01 15 291.0000 291.0000 0.00000 0.00000 0.00710000 ± 0.002700
3 F15 15 1105.000 1105.000 0.00000 0.00000 0.12410000 ± 0.010400
4 ulysses16 16 6859.000 6859.000 0.00000 0.00000 0.04010000 ± 0.002800
5 gr17 17 2085.000 2085.000 0.00000 0.00000 0.00820000 ± 0.002300
6 C20 20 62,575.00 62,575.00 0.00000 0.00000 0.15070000 ± 0.005400
7 S21 21 60,000.00 60,000.00 0.00000 0.00000 0.87340000 ± 0.082000
8 gr21 21 2707.000 2707.000 0.00000 0.00000 0.06220000 ± 0.003800
9 ulysses22 22 7013.000 7013.000 0.00000 0.00000 2.26550000 ± 0.091800
10 gr24 24 1272.000 1272.000 0.00000 0.00000 0.66050000 ± 0.016800
11 fri26 26 937.0000 937.0000 0.00000 0.00000 0.02900000 ± 0.005500
12 bays29 29 2020.000 2020.000 0.00000 0.00000 0.03010000 ± 0.004600
13 bayg29 29 1610.000 1610.000 0.00000 0.00000 0.03540000 ± 0.004600
14 wi29 29 27,603.00 27,601.00 −2.0000 −0.0072 0.19490000 ± 0.005300
15 C30 30 62,716.00 62,716.00 0.00000 0.00000 0.30170000 ± 0.011600
16 ncit30 30 48,873.00 48,872.00 −1.0000 −0.0020 0.56890000 ± 0.020600
17 F32 32 84,180.00 84,180.00 0.00000 0.00000 0.34970000 ± 0.009600
18 C40 40 62,768.00 62,768.00 0.00000 0.00000 0.55040000 ± 0.026900
19 F41 41 68,168.00 68,168.00 0.00000 0.00000 1.75490000 ± 0.102800
20 dantzig42 42 699.0000 699.0000 0.00000 0.00000 0.27560000 ± 0.003400
21 swiss42 42 1273.000 1273.000 0.00000 0.00000 0.16430000 ± 0.006000
22 gr48 48 5046.000 5046.000 0.00000 0.00000 0.78070000 ± 0.021500
23 att48 48 10,628.00 10,628.00 0.00000 0.00000 0.47480000 ± 0.014700
24 hk48 48 11,461.00 11,461.00 0.00000 0.00000 0.71980000 ± 0.011700
25 brazil58 58 25,395.00 25,395.00 0.00000 0.00000 0.13380000 ± 0.006700
26 ncit64 64 6400.000 6400.000 0.00000 0.00000 1.09990000 ± 0.009400
27 pr76 76 108,159.0 108,159.0 0.00000 0.00000 1.88750000 ± 0.015000
28 pg88 88 6548.000 6544.000 −4.0000 −0.0611 5.79330000 ± 0.091300
29 gr96 96 55,209.00 55,209.00 0.00000 0.00000 59.1940000 ± 0.835700
30 rd100 100 7910.000 7910.000 0.00000 0.00000 1.20260000 ± 0.025700
31 kroA100 100 21,282.00 21,282.00 0.00000 0.00000 62.6235000 ± 2.465600
32 kroB100 100 22,141.00 22,139.08 −1.9200 −0.00870 35.3965000 ± 0.767400
33 kroC100 100 20,749.00 20,749.00 0.00000 0.00000 161.282400 ± 3.299000
34 kroD100 100 21,294.00 21,294.00 0.00000 0.00000 5.74360000 ± 0.040300
35 kroE100 100 22,068.00 22,068.00 0.00000 0.00000 94.3792000 ± 1.119300
36 lin105 105 14,379.00 14,379.00 0.00000 0.00000 189.325800 ± 1.374200
37 pr107 107 44,303.00 44,301.68 −1.3200 −0.0030 85.5968000 ± 0.555200
38 gr120 120 6942.000 6942.000 0.00000 0.00000 88.2677000 ± 2.551300
39 pr124 124 59,030.00 59,030.00 0.00000 0.00000 7.40980000 ± 0.450500
40 ch130 130 6110.000 6110.000 0.00000 0.00000 333.304540 ± 1.121356
41 pr136 136 96,772.00 96,770.92 −1.0800 −0.00112 549.330100 ± 9.581700
42 gr137 137 69,853.00 69,853.00 0.00000 0.00000 119.285700 ± 0.847900
43 pr144 144 58,537.00 58,535.22 −1.7800 −0.00304 0.88570000 ± 0.020300
44 ch150 150 6528.000 6530.900 2.90000 0.04442 589.790700 ± 8.477500
45 kroA150 150 26,524.00 26,524.00 0.00000 0.00000 346.632200 ± 3.379500
46 kroB150 150 26,130.00 26,127.36 −2.6400 −0.0101 730.277200 ± 2.632800
47 pr152 152 73,682.00 73,682.00 0.00000 0.00000 198.222800 ± 3.427600
48 u159 159 42,080.00 42,075.67 −4.3300 −0.01028 4.60580000 ± 0.235000
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Table 2. Cont.

S/N Datasets No. of Cities BKS Our Result Difference Error (%) Computational Time (s)

49 si175 175 21,407.00 21,407.00 0.00000 0.00000 526.824300 ± 3.132500
50 brg180 180 1950.000 1950.000 0.00000 0.00000 10.8813000 ± 0.573100
51 qa194 194 9352.000 9353.660 1.66000 0.01775 899.238500 ± 12.65310
52 kroA200 200 29,368.00 29,385.72 17.7200 0.06033 277.726900 ± 0.901200
53 kroB200 200 29,437.00 29,441.38 4.38000 0.01488 217.566400 ± 4.342400
54 gr202 202 40,160.00 40,187.00 27.0000 0.06723 163.689300 ± 3.651700
55 tsp225 225 3916.000 3865.004 −50.996 −1.30225 145.628300 ± 0.862400
56 ts225 225 126,643.0 126,643.0 0.00000 0.00000 1363.19560 ± 15.66020
57 pr226 226 80,369.00 80,374.33 5.33000 0.00663 1643.20400 ± 17.55140
58 gr229 229 134,602.0 134,658.0 56.0000 0.04160 658.919400 ± 6.308800
59 gil262 262 2378.000 2389.050 11.0500 0.46467 4659.63020 ± 55.62780
60 pr264 264 49,135.00 49,135.00 0.00000 0.00000 1981.23760 ± 22.60660
61 a280 280 2579.000 2587.800 8.80000 0.34121 7792.27620 ± 67.94830
62 pr299 299 48,191.00 48,200.16 9.16000 0.01900 1261.25450 ± 17.86110
63 lin318 318 42,029.00 42,082.42 53.4200 0.12710 1307.43090 ± 4.553100
64 rd400 400 15,281.00 15,307.15 26.1500 0.17112 2434.54950 ± 343.0932
65 fl417 417 11,861.00 11,914.45 53.4500 0.45063 17,069.3660 ± 1581.106
66 att532 532 27,686.00 27,786.00 100.000 0.36119 26,496.9020 ± 1888.922
67 ali535 535 202,339.0 203,016.0 677.000 0.33459 60,731.8600 ± 2354.098
68 si535 535 48,450.00 48,450.00 0.00000 0.00000 390,160.000 ± 912.5270
69 pa561 561 2763.000 2775.000 12.0000 0.43431 69,279.8030 ± 1121.304
70 u574 574 36,905.00 37,049.29 144.290 0.39098 74,990.6660 ± 4201.612
71 rat575 575 6773.000 6851.730 78.7300 1.16241 74,209.5970 ± 2722.342
72 p654 654 34,643.00 34,646.83 3.83000 0.01106 105,823.570 ± 1893.281
73 d657 657 48,912.00 49,127.83 215.830 0.44126 102,080.410 ± 3084.854
74 gr666 666 294,358.0 295,988.0 1630.00 0.55375 104927.200 ± 3639.270
75 u724 724 41,910.00 42,124.40 214.400 0.51157 128,591.020 ± 3094.913
76 rat783 783 8806.000 8934.090 128.090 1.45458 154466.440 ± 5676.663
77 pr1002 1002 259,045.0 259,250.0 205.000 0.07914 180,250.380 ± 6114.756
78 si1032 1032 92,650.00 92,650.00 0.00000 0.00000 235990.000 ± 1234.210
79 pcb1173 1173 56,892.00 57,528.29 636.290 1.11842 259,876.200 ± 13, 507.02
80 d1291 1291 50,801.00 51,618.54 817.540 1.60929 329533.800 ± 12680.29
81 rl1323 1323 270199.0 272,083.96 1884.96 0.69762 646416.070 ± 9695.350
82 fl1400 1400 20,127.00 20,315.84 188.840 0.93824 737,727.33 ± 8046.5143
83 d1655 1655 62,128.00 63,268.61 1140.61 1.83590 12,166.5.30 ± 28, 064.93

Aymmetric Travelling Salesman Problem (ATSP)

1 br17 17 39.00000 39.00000 0.00000 0.00000 0.00890000 ± 0.002700
2 ftv33 34 1286.000 1286.000 0.00000 0.00000 0.19100000 ± 0.006800
3 ftv35 36 1473.000 1473.000 0.00000 0.00000 0.38450000 ± 0.009900
4 ftv38 39 1530.000 1530.000 0.00000 0.00000 31.7042000 ± 0.396400
5 p43 43 5620.000 5620.000 0.00000 0.00000 0.18200000 ± 0.006900
6 ftv44 45 1613.000 1613.000 0.00000 0.00000 28.6533000 ± 0.290400
7 ftv47 48 1776.000 1776.000 0.00000 0.00000 51.4585000 ± 1.589600
8 ry48p 48 14,422.00 14,422.00 0.00000 0.00000 33.9627000 ± 0.754800
9 ft53 53 6905.000 6905.000 0.00000 0.00000 134.984900 ± 1.949300
10 ftv55 56 1608.000 1608.000 0.00000 0.00000 35.1772000 ± 0.669600
11 ftv64 65 1839.000 1850.000 11.0000 0.59815 18.8923000 ± 0.177000
12 ftv70 71 1950.000 1950.000 0.00000 0.00000 94.5148000 ± 3.095900
13 ft70 70 38,673.00 38,869.00 196.000 0.50681 178.463400 ± 1.380800
14 kro124p 100 36,230.00 36,230.00 0.00000 0.00000 4.31640000 ± 0.094300
15 rbg323 323 1326.000 1331.000 5.00000 0.37707 3268.51000 ± 178.4000
16 rbg358 358 1163.000 1164.000 1.00000 0.08598 4293.80000 ± 451.2900
17 rbg403 403 2465.000 2465.000 0.00000 0.00000 7500.67580 ± 278.5200
18 rbg443 443 2720.000 2720.000 0.00000 0.00000 8742.91860 ± 366.8200

Average Percentage Error (SD): 0.137823
(0.381285)

Note: Best-known solution or a new solution obtained by our proposed algorithm is set in bold.

It can be observed from Table 2 that our proposed algorithm yields the closest best-
known solutions on the considered symmetric and asymmetric TSP test problems. In fact,
the errors are very small. Our proposed algorithm has found exactly the best-known
solution for each symmetric TSP dataset whose city size is up to 180 (except ch150) and some
other symmetric TSP datasets such as tsp225, ts225, pr264, si535, and si1032, and almost all
the asymmetric TSP datasets (except ftv64, ft70, rbg323, and rbg358). Specifically, in some
cases (shown separately in Table 3), it exhibits a strong global exploration capability and
produces better solutions than the best-known solutions with negative percentage error
entries in the table. Statistically, our proposed algorithm obtains exactly the best-known
solution in 65.06% of the symmetric datasets (54 out of 83), and in 77.78% of the asymmetric
datasets (14 out of 18). For the rest of the TSP test problems, the loss of efficiency is no
more than 1.84% and 0.60% for symmetric and asymmetric cases, respectively. In addition,
the error belongs to an interval of [0.007%, 0.70%] in 26.73% (27 out of 101) cases, while
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only in 4.95% (5 out of 101) cases is it more than 1%. Furthermore, the average error over
the entire 101 datasets is 0.14%, with a standard deviation value of 0.38, which strongly
demonstrates the outstanding performance of our proposed algorithm.

On the other hand, in terms of execution time, our proposed algorithm consumes a small
amount of time to solve a small-scale TSP problem. As the scale of the TSP problem expands
(n < 417), its computational time may be relatively increased or decreased. For example, it
takes 59.19 s to solve the gr96 problem, while it requires only 10.88 s for the brg180 problem.
In the case of large-scale datasets (n ≥ 417), it is rapidly increased with the scale of the
TSP problem. Although our proposed algorithm takes a longer time in the large-scale case,
the quality of the solution is satisfactory (the maximum error is equal to 1.84%). On average,
its computational time is acceptable. Therefore, we can consider that our proposed algorithm
is a reliable search optimization method that can provide a good-quality solution for a general
TSP within an acceptable time frame. Most importantly, it is deterministic; i.e., we run it to
obtain the same result on a TSP dataset or problem at any time. The new best routes with the
route length found by our proposed algorithm are further displayed in Figure 3.

Figure 3. The new best route with route length found by our proposed algorithm for the datasets (a)
wi29, (b) ncit30, (c) pg88, (d) kroB100, (e) pr107, (f) pr136, (g) pr144, (h) kroB150, (i) u159, and (j) tsp225.

Table 3. Best solutions found thus far by our proposed algorithm compared with the best-known
solutions from data library.

S/N Datasets No. of Cities BKS Our Result Difference Error (%) Computational Time (s)

1 wi29 29 27,603.00 27,601.00 −2.0000 −0.0072 0.19490000 ± 0.005300
2 ncit30 30 48,873.00 48,872.00 −1.0000 −0.0020 0.56890000 ± 0.020600
3 pg88 88 6548.000 6544.000 −4.0000 −0.0611 5.79330000 ± 0.091300
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Table 3. Cont.

S/N Datasets No. of Cities BKS Our Result Difference Error (%) Computational Time (s)

4 kroB100 100 22,141.00 22,139.08 −1.9200 −0.00870 35.3965000 ± 0.767400
5 pr107 107 44,303.00 44,301.68 −1.3200 −0.0030 85.5968000 ± 0.555200
6 pr136 136 96,772.00 96,770.92 −1.0800 −0.00112 549.330100 ± 9.581700
7 pr144 144 58,537.00 58,535.22 −1.7800 −0.00304 0.88570000 ± 0.020300
8 kroB150 150 26,130.00 26,127.36 −2.6400 −0.0101 730.277200 ± 2.632800
9 u159 159 42,080.00 42,075.67 −4.3300 −0.01028 4.60580000 ± 0.235000
10 tsp225 225 3916.000 3865.004 −50.996 −1.30225 145.628300 ± 0.862400

Note: The new solution obtained by our proposed algorithm is set in bold.

7.3. Performance Comparison

In this subsection, we further compare our proposed algorithm with the state-of-the-
art optimization algorithms. Table 4 describes the details of our selected state-of-the-art
optimization algorithms for solving the TSPs. Specifically, our proposed algorithm is first
compared with the state-of-the-art optimization algorithms with a self-escape mechanism
and then compared with the other state-of-the-art algorithms (without a self-escape mech-
anism). Actually, the experimental results of our proposed approach are compared with
those of the comparative algorithms reported in the literature, displayed in Tables 5–8.
The average (of solution route length) on all the TSP problems or datasets and the number
of BKSs found corresponding to each comparison are presented at the bottom of each
compared algorithm. Indeed, the number of BKSs found indicates how many datasets in
which the algorithm can exactly find the best-known solution.

Table 4. List of state-of-the-art optimization algorithms of TSPs considered for comparison.

S/N Abbreviation Authors Year Name of the Optimization Algorithms

1 SEHDPSO [15] Wang et al. 2007 Self-escape hybrid discrete particle swarm optimization algorithm
2 ASA-GS [21] Geng et al. 2011 Adaptive simulated annealing algorithm with greedy search
3 GSA-ACO-PSO [22] Chen and Chien 2011 Genetic simulated annealing ant colony system with particle swarm optimization algorithm

4 GA-PSO-ACO [23] Deng et al. 2012 Hybrid swarm intelligence optimization algorithm based on the genetic algorithm, particle
swarm optimization and ant colony optimization

5 HGA+2local [24] Wang 2014 Hybrid genetic algorithm with two local optimization strategies
6 DIWO [25] Zhou et al. 2015 Discrete invasive weed optimization algorithm
7 IBA [26] Osaba et al. 2016 Improved discrete bat algorithm
8 DSOS [27] Ezugwu and Adewumi 2017 Discrete symbiotic organisms search algorithm
9 DWCA [28] Osaba et al. 2018 Discrete water cycle algorithm
10 IVNS [29] Hore et al. 2018 Improving variable neighborhood search algorithm
11 ABCSS [30] Khan and Maiti 2019 A swap sequence based artificial bee colony algorithm
12 ECSDSOS [16] Wang et al. 2019 Discrete symbiotic organism search with excellence coefficients and self-escape mechanism
13 HSIHM+2local [31] Boryczka and Szwarc 2019 Harmony search algorithm with additional improvement of harmony memory
14 MCF-ABC [32] Choong et al. 2019 Artificial bee colony algorithm with modified choice function
15 PRGA((2019)) [33] Kaabi and Harrath 2019 Permutation rules and genetic algorithm
16 DSCA+LS [34] Tawhid and Savsani 2019 Discrete sine-cosine algorithm with local search
17 MMA [2] Naser et al. 2019 A multi-matching approximation algorithm
18 DSMO [35] Akhand et al. 2020 Discrete spider monkey optimization algorithm
19 VDWOA [36] Zhang et al. 2021 An improved whale optimization algorithm
20 SCGA [37] Deng et al. 2021 A hybrid cellular genetic algorithm
21 MPSO [3] Yousefikhoshbakht 2021 A modified metaheuristic algorithm
22 DSSA [8] Zhang and Han 2022 Discrete sparrow search algorithm
23 DA-GVNS [38] Karakostas and Sifaleras 2022 A double-adaptive general variable neighborhood search algorithm

7.3.1. Comparison with Self-Escape Mechanism-Based Algorithms

We begin by comparing our proposed algorithm with the state-of-the-art optimization
algorithms with the self-escape mechanism. In fact, the self-escape strategy or mechanism
was adopted to solve symmetric TSPs [15,16]. In the self-escape hybrid DPSO (SEHDPSO)
algorithm [15], the five nearest neighbors for each node were considered to skip out the
local optimum of the current best route. On the other hand, a swap-based randomized local
search operator was coupled with the self-escape hybrid DSOS (ECSDSOS) algorithm [16]
to find a satisfactory solution. However, these algorithms tend to produce a longer route or
relatively worse solution. To find a better-quality solution, we actually employ an efficient
3-opt operator in our proposed algorithm at the self-escape mechanism stage.

Specifically, Table 5 displays the comparison results of our proposed algorithm with
self-escape mechanism-based algorithms such as the SEHDPSO and ECSDSOS algorithms.
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In comparison with the SEHDPSO algorithm, it can be seen from Table 5 that our proposed
algorithm finds better solutions than the average as well as the best solutions of the SEHDPSO
algorithm in almost all the TSP test problems or datasets. In fact, the average error of our
proposed algorithm over 20 datasets is −0.013864%, which is significantly better than the
average error 0.20200% and the best solution error 0.09200% of the SEHDPSO algorithm.
At the same time, our proposed algorithm captures the best-known solutions in more datasets
(fourteen cases) than the SEHDPSO algorithm (one case and eight cases in the two versions).
In comparison with the ECSDSOS algorithm, it can also be seen from Table 5 that the average
error and BKS finding number of our proposed algorithm over 24 datasets are 0.20601% and
11, respectively, while those of the ECSDSOS algorithm are, respectively, 0.89683% and 0 (on
the average solution version), and 0.45110% and 9 (on the best solution version). In addition,
our proposed algorithm yields new solutions on certain datasets (negative entries in the
table), but neither of these two algorithms can find such a solution. It can be further observed
from Table 5 that, for certain small-scale datasets, all three algorithms are capable of finding
the best-known solution. However, as the scale becomes larger and larger, our proposed
algorithm shows better performance than both the SEHDPSO and ECSDSOS algorithms.

Table 5. Performance comparison of our proposed algorithm with the state-of-the-art optimization
algorithms containing self-escape mechanism.

Comparison with SEHDPSO Comparison with ECSDSOS

S/N Datasets Scale BKS
SEHDPSO(2007) [15]

Our Error (%) S/N Datasets Scale BKS
ECSDSOS(2019) [16]

Our Error (%)
PDavg. (%) PDbest (%) PDavg. (%) PDbest (%)

1 pr76 76 108,159 0.05000 0.02000 0.00000 1 kroA100 100 21,282.0 0.04793 0.00000 0.00000
2 kroB100 100 22,141.0 0.09000 0.0000 −0.00870 2 kroB100 100 22,141.0 0.04968 0.00452 −0.00870
3 kroC100 100 20,749.0 0.01000 0.0000 0.00000 3 kroC100 100 20,749.0 0.01928 0.00000 0.00000
4 kroD100 100 21,294.0 0.05000 0.1200 0.00000 4 kroD100 100 21,294.0 0.18785 0.00000 0.00000
5 rd100 100 7910.00 0.25000 0.3000 0.00000 5 kroE100 100 22,068.0 0.24410 0.02266 0.00000
6 lin105 105 14,379.0 0.03000 0.0000 0.00000 6 pr107 107 44,303.0 0.22120 0.00000 −0.0029
7 pr107 107 44,303.0 0.18000 0.0000 −0.0029 7 pr124 124 59,030.0 0.20159 0.00000 0.00000
8 pr124 124 59,030.0 0.23000 0.3000 0.00000 8 pr136 136 96,772.0 0.52834 0.00930 −0.00001
9 bier127 127 118,282 0.10000 0.0000 0.00974 9 pr144 144 58,537.0 0.24087 0.00000 −0.0030
10 ch130 130 6110.00 0.29000 0.1100 0.00000 10 ch150 150 6528.00 0.45415 0.39828 0.04442
11 kroA150 150 26,524.0 0.05000 0.0000 0.00000 11 pr152 152 73,682.0 0.25450 0.00000 0.00000
12 kroB150 150 26,130.0 0.18000 0.1000 −0.0101 12 pr226 226 80,369.0 0.30236 0.00000 0.00663
13 u159 159 42,080.0 0.00000 0.0000 −0.01028 13 pr264 264 49,135.0 0.10909 0.00000 0.00000
14 kroB200 200 29,437.0 0.25000 0.0500 0.01488 14 pr299 299 48,191.0 1.32075 0.61630 0.01900
15 ts225 225 126,643 0.08000 0.0200 0.00000 15 lin318 318 42,029.0 0.89938 0.48062 0.12710
16 tsp225 225 3916.00 0.23000 0.0000 −1.30225 16 rd400 400 15,281.0 1.17793 0.69367 0.17112
17 a280 280 2579.00 0.15000 0.0300 0.34121 17 fl417 417 11,861.0 1.94672 0.76722 0.45063
18 rd400 400 15,281.0 0.25000 0.1600 0.17112 18 pr439 439 107,217.0 2.28788 1.28338 0.20000
19 p654 654 34,643.0 0.93000 0.4100 0.01000 19 u574 574 36,905.0 1.73229 0.97277 0.39000
20 u724 724 41,910.0 0.64000 0.2200 0.51000 20 d657 657 48,912.0 1.69120 1.16127 0.44000

Average 0.20200 0.09200 −0.013864 21 u724 724 41,910.0 1.05249 0.51778 0.51000
BKS found/No. of datasets 1/20 8/20 14/20 22 pr1002 1002 259,045.0 2.13205 1.20982 0.07000

23 rl1323 1323 270,199.0 1.84053 0.79756 0.69000
24 d1655 1655 62,128.0 2.58177 1.89126 1.84000

Average 0.89683 0.45110 0.20601
BKS found/No. of datasets 0/24 9/24 11/24

7.3.2. Comparison with the Other State-of-the-Art Optimization Algorithms

We further compare our proposed algorithm with the other typical state-of-the-art
optimization algorithms without a self-escape mechanism. Actually, those optimization
algorithms were tested on different sets of datasets. Thus, we use different sets of datasets
in each group to compare the proposed algorithm with them. Specifically, Tables 6–8
offer side-by-side comparisons between our proposed algorithm and 21 state-of-the-art
TSP-solving optimization algorithms.

The performance comparison of our proposed algorithm with ASA-GS [21], GSA-ACO-
PSO [22], HGA+2local [24], IVNS [29], HSIHM+2local [31], ABCSS [30], DSMO [35], MMA [2],
and DSCA+LS [34] is illustrated in Table 6. According to Table 6, in comparison with ASA-GS,
GSA-ACO-PSO, HGA+2local, IVNS, DSMO, and DSCA+LS for the symmetric TSP datasets,
our proposed algorithm achieves better results than the average results of all six algorithms
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in almost all the datasets except in one case of ASA-GS, in four cases of GSA-ACO-PSO,
and in one case of IVNS. On the other hand, in comparison with the best results of these
algorithms, the performance of our proposed algorithm is only inferior in two cases out of
forty-five with ASA-GS, in six cases out of twenty-five regarding GSA-ACO-PSO, no worse
out of twenty-one with HGA+2local, in one case out of fifty-seven related to IVNS, no worse
out of forty concerning DSMO, and in one case out of twenty-seven connected to DSCA+LS.
On the remaining test datasets, our proposed algorithm achieves better or equal scores with
the above six algorithms. In addition to these, our proposed algorithm traces the best-known
solution in nineteen cases as compared with five out of forty-five for ASA-GS, in eleven cases
as compared with thirteen out of twenty-five for GSA-ACO-PSO, in sixteen cases as compared
with four out of twenty-one for HGA+2local, in twenty-seven cases as compared with twelve
out of fifty-seven for IVNS, in twenty-one cases as compared with five out of forty for DSMO,
and in eighteen cases as compared with seventeen out of twenty-seven for DSCA+LS. It is
also notable that, for some small-scale datasets, our proposed algorithm yields similar scores
to these comparative algorithms. However, as the scale becomes larger and larger, it finds
better results than these six comparative optimization algorithms.

Table 6. Performance comparison of our proposed algorithm with the other state-of-the-art opti-
mization algorithms (ASA-GS, GSA-ACO-PSO, HGA+2local, IVNS, HSIHM+2local, ABCSS, DSMO,
MMA, and DSCA+LS).

Comparison with ASA-GS(2011) [21] Comparison with IVNS(2018) [29] Comparison with DSMO(2020) [35]

S/N Datasets
ASA-GS

Our Result S/N Datasets
IVNS

Our Result S/N Datasets
DSMO

Our Result
Average Best Average Best Average Best

1 eil51 428.87 428.87 428.87 1 gr17 2085 2085 2085 1 burma14 30.87 30.87 30.87
2 berlin52 7544.37 7544.37 7544.36 2 gr21 2707 2707 2707 2 ulysses16 73.99 73.99 73.99
3 st70 677.11 677.11 677.11 3 gr24 1272 1272 1272 3 ulysses22 75.4 75.31 75.31
4 eil76 544.37 544.37 544.37 4 fri26 937 937 937 4 bayg29 9074.15 9074.15 9074.15
5 pr76 108,159 108,159 108,159 5 bays29 2020 2020 2020 5 eil51 436.96 428.86 428.86
6 rat99 1219.49 1219.24 1219.24 6 dantzig42 699 699 699 6 berlin52 7633.6 7544.37 7544.36
7 rd100 7910.4 7910.4 7910 7 swiss42 1273 1273 1273 7 st70 702.64 677.11 677.11
8 kroA100 21,285.4 21,285.4 21,282 8 gr48 5046 5046 5046 8 eil76 572.7 558.68 544.37
9 kroB100 22,139.1 22,139.1 22,139.08 9 eil51 428.98 428.98 428.87 9 pr76 111299.3 108,159.4 108,159
10 kroC100 20,750.8 20,750.8 20,749 10 berlin52 7544.36 7544.36 7544.36 10 gr96 530.45 518.38 510.89
11 kroD100 21,301.0 21,294.3 21,294 11 brazil58 25,592.72 25,425 25,395 11 rat99 1291.93 1225.56 1219.24
12 kroE100 22,112.3 22,106.3 22,068 12 st70 677.11 677.11 677.11 12 kroA100 22,024.27 21,298.21 21,282
13 eil101 640.51 640.21 641.32 13 eil76 552.57 545.39 544.37 13 kroB100 23,022.37 22,308 22,139.08
14 lin105 14,383 14,383 14,379 14 pr76 108,159 108,159 108,159 14 rd100 8377.76 8041.3 7910
15 pr107 44,301.7 44,301.7 44,301.68 15 rat99 1241.26 1240.38 1219.24 15 eil101 674.4 648.66 641.32
16 pr124 59,030.7 59,030.7 59,030 16 rd100 7918.36 7910.4 7910 16 lin105 15114 14383 14,379
17 bier127 118,349 118,294 118,293.52 17 kroA100 21,695.79 21,618.2 21,282 17 pr107 45,666.99 44,385.86 44,301.68
18 ch130 6121.15 6110.72 6110 18 kroB100 22,140.20 22,139.07 22,139.08 18 pr124 62,443.49 60,285.21 59,030
19 pr136 97,078.9 96,966.3 96,770.92 19 kroB100 20,809.29 20,750.76 20,749 19 pr136 102872 97,538.68 96,770.92
20 pr144 58,545.6 58,535.2 58,535.22 20 kroD100 21,490.62 21,294.29 21,294 20 gr137 736.67 709.48 706.29
21 ch150 6539.8 6530.9 6530.90 21 kroE100 22,193.8 22,174.6 22,068 21 kroA150 28354.09 27591.44 26,524
22 kroA150 26,538.6 26,524.9 26,524 22 eil101 648.27 642.31 641.32 22 kroB150 27,576.16 26,601.94 26,127.36
23 kroB150 26,178.1 26,140.7 26,127.36 23 lin105 14,395.64 14,383 14,379 23 pr152 76,526.77 74,243.91 73,682
24 pr152 73,694.7 73,683.6 73,682 24 pr107 44,314.92 44,301.68 44,301.68 24 u159 42,598.3 42,598.3 42,075.67
25 u159 42,398.9 42,392.9 42,075.67 25 pr124 59,051.82 59,030.74 59,030 25 rat195 2488.55 2372.89 2342.25
26 rat195 2348.05 2345.22 2342.25 26 bier127 119,006.39 118,974.6 118,293.52 26 d198 16,270.47 15,978.13 15,868.04
27 kroA200 29,438.4 29,411.5 29,385.72 27 ch130 6153.72 6140.66 6110 27 kroA200 31,828.64 30,481.35 29,385.72
28 kroB200 29,513.1 29,504.2 29,441.38 28 pr136 97,985.84 97,979.11 96,770.92 28 kroB200 31,781.62 30,716.5 29,441.38
29 ts225 126,646 126,646 126,643 29 pr144 58,563.97 58,535.22 58,535.22 29 gr202 508.81 501.83 486.96
30 pr226 80,687.4 80,542.1 80,374.33 30 ch150 6644.95 6639.52 6530.90 30 tsp225 4162.79 4013.68 3865.004
31 gil262 2398.61 2393.64 2389.05 31 kroA150 26,947.17 26,943.31 26,524 31 pr226 85,935.69 83,587.98 80,374.33
32 pr264 49,138.9 49,135 49,135 32 kroB150 26,537.04 26,527.57 26,127.36 32 gr229 1730.46 1683.45 1660.12
33 pr299 48,326.4 48,269.2 48,200.16 33 pr152 73,855.11 73,847.6 73,682 33 gil262 2627.87 2543.15 2389.05
34 lin318 42,383.7 42,306.7 42,082.42 34 u159 42,467.61 42,436.23 42,075.67 34 pr299 51,747.99 50,579.82 48,200.16
35 rd400 15,429.8 15,350.7 15,307.15 35 rat195 2453.81 2450.14 2342.25 35 lin318 45,460.25 44,118.66 42,082.42
36 fl417 12,043.8 11,940.4 11,914.45 36 d198 16,079.28 16,075.84 15,868.04 36 linhp318 45,730.57 43,831.44 42,529
37 rat575 6904.82 6872.11 6851.73 37 kroA200 30,339.67 30,300.56 29,385.72 37 fl417 12,950.77 12,218.98 11,914.45
38 u724 42,470.4 42,274.7 42,124.40 38 kroB200 30,453.22 30,447.30 29,441.38 38 gr431 2042.77 1993.15 1974.70
39 rat783 8982.19 8954.36 8934.09 39 pr226 80,514.64 80,469.31 80,374.33 39 pr439 116,379.2 112,105.2 107,431.43
40 pr1002 264,274 263,512 259,250 40 gil262 2501.86 2492.85 2389.05 40 d493 37,861.14 36,844.63 35,772

41 pcb1173 57,820.5 57,760.6 57,528.29 41 pr264 51,197.14 51,155.38 49,135 Average 26,930.42 26,064.29 25,490.64
42 d1291 52,252.3 51,751.2 51,618.54 42 pr299 50,373.12 50,271.69 48,200.16 BKS found/No. of datasets 3/40 5/40 21/40

43 rl1323 273,444 271,964 272,083.96 43 lin318 43,964.93 43,924.08 42,082.42 Comparison with MMA(2019) [2]

44 fl1400 20,782.2 20,647.4 20,315.84 44 rd400 16,250.21 16,155.91 15,307.15 S/N Datasets BKS MMA Our Result

45 d1655 64,155.9 63,635.9 63,268.61 45 fl417 12,183.14 12,180.78 11,914.45 1 wi29 27,603 28,387.0 27,601.0

Average 45,273.63 45,173.58 45,026.82 46 pr439 111,771.2 111,750.3 107,431.43 2 dj38 6656 6656.00 6659.40
BKS found/No. of datasets 3/45 5/45 19/45 47 pcb442 50,800.24 50,783.55 51,362 3 eil51 426 430.000 428.870

Comparison with GSA-ACO-PSO(2011) [22] 48 u574 39,629.11 39,573.88 37,049.29 4 berlin52 7542 7574.00 7544.40

S/N Datasets GSA-ACO-PSO Our Result 49 rat575 7362.51 7349.81 6851.730 5 st70 675 691.000 677.109

Average Best 50 u724 45,729.71 45,725.39 42,124.40 6 eil76 538 540.000 544.370

1 eil51 427.27 427 428.87 51 rat783 9707.364 9707.166 8934.090 7 rat99 1211 1239.00 1219.240
2 berlin52 7542 7542 7544.36 52 pr1002 280,563.9 280,368.2 259,250.0 8 kroA100 21,282 21,367.0 21,282.00
3 ncit64 6400 6400 6400 53 pcb1173 63,435.95 63,354.82 57,528.29 9 kroB100 22,141 23,251.0 22,139.08
4 eil76 540.20 538 544.37 54 d1291 56,095.33 56,088.31 51,618.54 10 kroC100 20,749 21,461.0 20,749.00
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Table 6. Cont.

Comparison with ASA-GS(2011) [21] Comparison with IVNS(2018) [29] Comparison with DSMO(2020) [35]

S/N Datasets
ASA-GS

Our Result S/N Datasets
IVNS

Our Result S/N Datasets
DSMO

Our Result
Average Best Average Best Average Best

5 rd100 7987.57 7910 7910 55 rl1323 295,611.2 295,607.3 272,083.96 11 kroD100 21,294 22,066.0 21,294.00
6 kroA100 21,370.47 21,282 21,282 56 fl1400 21,085.98 21,040.65 20,315.84 12 kroE100 22,068 22,590.0 22,068.00
7 kroB100 22,282.87 22,141 22,139.08 57 d1655 70,337.23 69,992.49 63,268.61 13 eil101 629 641.000 641.0000

8 kroC100 20,878.97 20,749 20,749 Average 39324.49 39291.12 37766.82 14 lin105 14,379 15,127.0 14,379.00
9 kroD100 21,620.47 21,309 21,294 BKS found/No. of datasets 10/57 12/57 27/57 15 pr124 59,030 59,824.0 59,030.00

10 kroE100 22,183.47 22,068 22,068 Comparison with HSIHM+2local(2019) [31] 16 bier127 118,282 121,942.0 118,293.52

11 eil101 635.23 630 641.32 S/N Datasets HSIHM+2local Our Result 17 ch130 6110 6281.000 6110.000

12 lin105 14,406.37 14,379 14,379 Average Best 18 xqf131 564 592.0000 566.4200

13 bier127 119,421.83 118,282 118,293.52 1 br17 39 39 39 19 ch150 6528 6661.000 6530.900
14 ch130 6205.63 6141 6110 2 ftv33 1320.57 1286 1286 20 kroA150 26,524 27,244.00 26,524.00
15 ch150 6563.70 6528 6530.90 3 ftv35 1490.6 1473 1473 21 kroB150 26,130 27,155.00 26,127.36
16 kroA150 26,899.20 26,524 26,524 4 ftv38 1547.13 1530 1530 22 u159 42,080 44,027.00 42,075.67
17 kroB150 26,448.33 26,130 26,127.36 5 p43 5620.27 5620 5620 23 qa194 9352 9437.000 9353.660
18 kroA200 29,738.73 29,383 29,385.72 6 ftv44 1645.4 1613 1613 24 kroA200 29,368 30,450.00 29,385.72

19 kroB200 30,035.23 29,541 29,441.38 7 ftv47 1800.43 1776 1776 Average 21,068.04 20,467.65
20 lin318 43,002.90 42,487 42,082.42 8 ry48p 14,513.9 14,495 14,422 BKS found/No. of datasets 1/24 12/24

21 rat575 6933.87 6891 6851.73 9 ft53 7148.3 6983 6905 Comparison with DSCA+LS(2019) [34]

22 rat783 9079.23 8988 8934.09 10 ftv55 1625.17 1608 1608 S/N Datasets DSCA+LS Our Result

23 rl1323 280,181.47 277,642 272,083.96 11 ftv64 1876.2 1846 1850 Average Best

24 fl1400 21,349.63 20,593 20,315.84 12 ftv70 2027.83 1977 1950 1 pr76 108,159 108,159 108,159
25 d1655 65,621.13 64,151 63,268.61 13 ft70 39,722.03 39,212 38,869 2 kroA100 21,282 21,282 21,282

Average 32,710.23 32,346.24 32,053.18 14 kro124p 38,348.2 37,213 36,230 3 kroB100 22,141 22,141 22,139.08
BKS found/No. of datasets 2/25 13/25 11/25 15 ftv170 3393.07 2999 2928 4 kroC100 20,749 20,749 20,749.00

Comparison with HGA+2local(2014) [24] 16 rbg323 1555.4 1502 1331 5 kroD100 21,300 21,294 21,294

S/N Datasets HGA+2local Our Result 17 rbg358 1424.63 1342 1164 6 kroE100 22,068 22,068 22,068.00

Average Best 18 rbg403 2637.8 2597 2465 7 lin105 14,379 14,379 14,379

1 pr76 108,255.94 108,159.42 108,159 19 rbg443 2914.33 2853 2720 8 pr107 44,303 44,303 44,301.68

2 kroA100 21,312.45 21,285.44 21,282 Average 6876.33 6734.95 6619.95 9 pr124 59,030 59,030 59,030
3 kroC100 20,812.22 20,750.76 20,749.00 BKS found/No. of datasets 1/19 8/19 14/19 10 ch130 6124 6111 6110

4 kroD100 21,344.67 21,294.29 21,294 Comparison with ABCSS(2019) [30] 11 pr136 97,164.6 96,928 96,770.92

5 lin105 14,422.89 14,382.99 14,379 S/N Datasets ABCSS Our Result 12 pr144 58,537 58,537 58,535.22

6 pr107 44,341.67 44,301.68 44,301.68 Average Best 13 kroA150 26,525.4 26,524 26,524

7 pr124 59,094.13 59,030.73 59,030 1 gr17 2085 2085 2085 14 kroB150 26,134.8 26,130 26,127.36
8 ch130 6130.277 6110.72 6110 2 bays29 2020 2020 2020 15 pr152 73,682 73,682 73,682
9 pr136 97,019.291 96,785.852 96,770.92 3 swiss42 1273 1273 1273 16 kroB200 29,467.4 29,447 29,441.38
10 pr144 58,535.22 58,535.22 58,535.22 4 eil51 427.01 427 428.87 17 ts225 126,709.8 126,643 126,643
11 kroA150 26,597.78 26,524.86 26,524 5 berlin52 7542 7542 7544.36 18 tsp225 3917 3916 3865.004
12 kroB150 26,335.85 26,127.35 26,127.36 6 kroA100 21,287.19 21,282 21,282 19 pr226 80,380.4 80,369 80,374.33
13 pr152 73,765.70 73,683.63 73,682 7 lin105 14,379.10 14,379 14,379 20 pr264 49,135 49135 49,135
14 kroB200 29,583.38 29,450.50 29,441.38 8 pr124 59,054.64 59,030 59,030 21 pr299 48,306.8 48,250 48,200.16
15 ts225 128,295.65 128,141.92 126,643 9 pr152 73,691.64 73,682 73,682 22 lin318 42,221.4 42167 42,082.42
16 tsp225 3892.88 3878.66 3865.004 10 kroA200 29,469.00 29,450 29,385.72 23 rd400 15,422.6 15,408 15,307.15
17 pr226 80,534.39 80,436.04 80,374.33 11 br17 39 39 39 24 fl417 11,933.4 11,920 11,914.45
18 pr264 49,163.26 49,151.22 49,135 12 ftv33 1286 1286 1286 25 rat575 6898.6 6881 6851.730
19 pr299 49,757.66 49,462.43 48,200.16 13 ry48p 14,452.79 14,422 14,422 26 rat783 9402.4 9343 8934.090
20 lin318 42,877.24 42,624.34 42,082.42 14 ftv55 1642.19 1629 1608 27 pr1002 272,739.6 272,323 259,250
21 rd400 16,143.96 16,049.59 15,307.15

Average 46581.74 46484.17 46285.36 Average 16332.04 16324.71 16318.93 Average 48819.01 48782.19 48264.81
BKS found/No. of datasets 2/21 4/21 16/21 BKS found/No. of datasets 6/14 11/14 11/14 BKS found/No. of datasets 11/27 17/27 18/27

Table 7. Performance comparison of our proposed algorithm with the other state-of-the-art optimiza-
tion algorithms (IBA, DWCA, DSOS, MCF-ABC, GA-PSO-ACO, DIWO, PRGA, MPSO, SCGA, and
VDWOA).

Comparison with IBA(2016) [26] Comparison with DSOS(2017) [27] Comparison with GA-PSO-ACO(2012) [23]

S/N Datasets
IBA

Our Result S/N Datasets
DSOS

Our Result S/N Datasets
GA-PSO-ACO

Our Result
Average Best Average Best Average Best

1 eil51 428.1 426 428.87 1 eil51 427.90 426 428.87 1 eil51 431.84 426 428.87
2 berlin52 7542.0 7542 7544.36 2 berlin52 7542 7542 7544.36 2 berlin52 7544.37 7544.37 7544.36
3 kroA100 21,445.3 21,282 21,282 3 st70 679.20 675 677.11 3 st70 694.60 679.60 677.11
4 kroB100 22,506.4 22,140 22,139.08 4 eil76 547.40 542 544.37 4 eil76 550.16 545.39 544.37
5 kroC100 21,050.0 20,749 20,749 5 pr76 108,548.37 108,159 108,159 5 pr76 110,023 109,206 108,159
6 kroD100 21,593.4 21,294 21,294 6 rat99 1228.37 1224 1219.24 6 rat99 1275 1218 1219.24
7 kroE100 22,349.6 22,068 22,068 7 kroA100 21,409.50 21,282 21,282 7 rd100 8039 7936 7910
8 pr107 44,793.8 44,303 44,301.68 8 kroB100 22,339.20 22,140 22,139.08 8 kroD100 21,484 21,394 21,294
9 pr124 59,412.1 59,030 59,030 9 kroC100 20,881.60 20,749 20,749 9 eil101 637.93 633.07 641.32
10 pr136 99,351.2 97,547 96,770.92 10 kroD100 21,493.10 21,294 21,294 10 lin105 14,521 14,397 14,379
11 pr144 58,876.2 58,537 58,535.22 11 kroE100 22,231.10 22,068 22,068 11 pr107 44,589 44,316 44,301.68
12 pr152 74,676.9 73,921 73,682 12 eil101 650.60 640 641.32 12 pr124 60,157 59,051 59,030
13 pr264 50,908.3 49,756 49,135 13 lin105 14,431.73 14,381 14,379 13 bier127 120,301 118,476 118,293.52
14 pr299 49,674.1 48,310 48,200.16 14 pr107 44,445.10 44,314 44,301.68 14 ch130 6203.47 6121.15 6110
15 br17 39 39 39 15 pr124 59,429.10 59,030 59,030 15 pr144 58,662 58,595 58,535.22
16 ftv33 1318.1 1286 1286 16 pr136 97,673.20 97,437 96,770.92 16 kroA150 26,803 26,676 26,524
17 ftv35 1493.7 1473 1473 17 pr144 58,817.10 58,565 58,535.22 17 pr152 73,989 73,861 73,682
18 ftv38 1562.0 1530 1530 18 ch150 6552.58 6542 6530.90 18 u159 42,506 42,395 42,075.67
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Table 7. Cont.

Comparison with IBA(2016) [26] Comparison with DSOS(2017) [27] Comparison with GA-PSO-ACO(2012) [23]

S/N Datasets
IBA

Our Result S/N Datasets
DSOS

Our Result S/N Datasets
GA-PSO-ACO

Our Result
Average Best Average Best Average Best

19 p43 5620 5620 5620 19 pr152 74,785.70 74,013 73,682 19 rat195 2362 2341 2342.25
20 ftv44 1683.7 1613 1613 20 kroA200 29,651.23 29,477 29,385.72 20 kroA200 31,015 29,731 29,385.72
21 ftv47 1863.6 1796 1776 21 tsp225 - 3877 3865.004 21 gil262 2439 2399 2389.05
22 ry48p 14,544.8 14,422 14,422 22 pr226 - 80,407 80,374.33 22 pr299 48,763 48,662 48,200.16
23 ft53 7294.1 7001 6905 23 pr264 52,798.90 50,454 49,135 23 lin318 42,771 42,633 42,082.42
24 ftv55 1737.5 1608 1608 24 pr299 50,335.20 49,162 48,200.16 24 rd400 15,503 15,464 15,307.15
25 ftv64 1999.2 1879 1850 25 lin318 42,972.42 42,201 42,082.42 25 rat575 6952 6912 6851.73
26 ftv70 2233.2 2111 1950 26 rat575 7117.32 7073 6851.73 26 u724 42,713 42,657 42,124.40
27 ft70 40,309.7 39,901 38,869 27 rat783 9102.67 9045 8934.09 27 rat783 9126 9030 8934.09
28 kro124p 39,213.7 37,538 36,230 28 pr1002 278,381.51 272,381 259,250 28 pr1002 266,774 265,987 259,250

29 rbg323 1640.9 1615 1331 Average 40,556.62 40,182.14 39,573.38 29 d1291 52,443 52,378 51,618.54

Average 23,350.37 22,977.14 22,815.94 BKS found/No. of datasets 1/28 11/28 14/28 30 d1655 65,241 64,401 63,268.61

BKS found/No. of datasets 3/29 18/29 23/29 Comparison with MCF-ABC((2019)) [32] Average 39,483.78 39,202.19 38,770.12

Comparison with DWCA(2018) [28] S/N Datasets BKS MCF-ABC Our Result BKS found/No. of datasets 0/30 1/30 11/30

S/N Datasets DWCA Our Result 1 swiss42 1273 1273 1273 Comparison with DIWO(2015) [25]

Average Best 2 att48 10,628 10,628 10,628 S/N Datasets DIWO Our Error(%)

1 eil51 428.4 426 428.87 3 pr76 108,159 108,159 108,159 PDavg.(%) PDbest(%)

2 berlin52 7542.0 7542 7544.36 4 rd100 7910 7910 7910 1 att48 0.0021 0.0021 0.0000
3 kroA100 21,348.1 21,282 21,282 5 kroA100 21,282 21,282 21,282 2 eil51 0.6999 0.6741 0.6737
4 kroB100 22,450.7 22,178 22,139.08 6 kroB100 22,141 22,141 22,139.08 3 berlin52 0.0313 0.0313 0.0318
5 kroC100 20,934.7 20,769 20,749 7 kroC100 20,749 20,749 20,749 4 st70 0.3125 0.3125 0.3124
6 kroD100 21,529.6 21,361 21,294 8 kroD100 21,294 21,294 21,294 5 kroA100 0.0375 0.0161 0.0000
7 kroE100 22,246.2 22,130 22,068 9 kroE100 22,068 22,068 22,068 6 kroB100 0.8816 0.6471 −0.0087
8 pr107 44,647.1 44,442 44,301.68 10 lin105 14,379 14,379 14,379 7 pr107 0.4837 0.3096 −0.0029
9 pr124 59,338.9 59,030 59,030 11 pr107 44,303 44,303 44,301.68 8 pr136 0.9400 0.2356 −0.00001
10 pr136 98,761.4 97,488 96,770.92 12 gr120 6942 6942 6942 9 chn144 0.8935 0.1016 0.40853
11 pr144 58,734.6 58,537 58,535.22 13 pr124 59,030 59,030 59,030 10 kroA150 0.7780 0.7401 0.00000
12 pr152 74,202.6 73,682 73,682 14 ch130 6110 6110 6110 11 kroB150 0.3229 0.2789 −0.0101
13 pr264 49,528.6 49,310 49,135 15 pr136 96,772 96,772 96,770.92 12 d198 0.6691 0.4304 0.55792
14 br17 39 39 39 16 gr137 69,853 69,853 69,853 13 tsp225 2.3949 0.4470 −1.30225
15 ftv33 1308.7 1286 1286 17 pr144 58,537 58,537 58,535.22 14 pr226 0.2238 0.0117 0.00663
16 ftv35 1485.8 1473 1473 18 kroA150 26,524 26,524 26,524 15 a280 0.7679 0.4297 0.34121
17 ftv38 1549.0 1530 1530 19 kroB150 26,130 26,130 26,127.36 16 rd400 2.4229 1.7153 0.17112
18 p43 5620 5620 5620 20 pr152 73,682 73,682 73,682 17 pcb442 2.1731 1.6137 1.15010
19 ftv44 1665.0 1613 1613 21 u159 42,080 42,080 42,075.67 18 att532 1.8737 1.2981 0.36119
20 ftv47 1827.8 1776 1776 22 si175 21,407 21,407 21,407 19 pr1002 3.1873 2.6970 0.07914

21 ry48p 14,517.8 14,429 14,422 23 brg180 1950 1950 1950 Average 1.0050 0.6312 0.14578
22 ft53 7199.4 6971 6905 24 tsp225 3916 3916 3865.004 BKS found/No. of datasets 0/19 0/19 8/19

23 ftv55 1691.4 1608 1608 25 ts225 126,643 126,643 126,643 Comparison with PRGA((2019)) [33]

24 ftv64 1961 1900 1850 26 pr264 49,135 49,135 49,135 S/N Datasets BKS PRGA Our Result

25 ftv70 2126.2 2014 1950 27 si535 48,450 48,498.3 48,450 1 rat99 1211 1218 1219.24
26 ft70 40,111.1 39,669 38,869 28 si1032 92,650 92,650 92,650 2 kroB100 22,141 22,407 22,139.08

27 kro124p 39,252.8 37,412 36,230 Average 39430.19 39426.18 3 kroA100 21,282 21,292 21,282

Average 23,038.81 22,796.93 22,671.52 BKS found/No. of datasets 27/28 28/28 4 rd100 7910 8020 7910

BKS found/No. of datasets 3/27 14/27 23/27 5 lin105 14,379 14,434 14,379

Comparison with MPSO(2021) [3] 6 ch130 6110 6283 6110

S/N Datasets MPSO Our Result S/N Datasets MPSO Our Result 7 ch150 6528 6580 6530.90

Average Best Average Best 8 d198 15,780 15,884 15,868.04

1 burma14 3323 3323 3323 19 pr144 58,612 58,537 58,535.22 9 kroA200 29,368 29,368 29,385.72

2 gr17 2085 2085 2085 20 ch150 6579 6528 6530.90 Average 13942.89 13869.33
3 gr21 2707 2707 2707 21 kroA150 26,711 26,524 26,524 BKS found/No. of datasets 1/9 5/9

4 gr24 1272 1272 1272 22 pr152 73,915 73,682 73,682 Comparison with SCGA(2021) [37]

5 fri26 937 937 937 23 d198 16,024 15,780 15,868.04 S/N Datasets SCGA Our Result

6 bayg29 1610 1610 1610 24 kroA200 29,818 29,533 29,385.72 Average Best

7 bays29 2020 2020 2020 25 ts225 128,385 126,643 126,643 1 att48 33,526.87 33,523.71 33,522
8 att48 10,628 10,628 10,628 26 pr226 80,990 80,545 80,374.33 2 berlin52 7544.37 7544.37 7544.36
9 pr76 108,159 108,159 108,159 27 pr264 50,178 49,325 49,135 3 bier127 118,469.71 118,293.52 118,293.52
10 kroA100 21,292 21,282 21,282 28 a280 2632 2598 2587.80 4 ch130 6199.59 6183.03 6110
11 kroB100 22,141 22,141 22,139.08 29 pr299 48,589 48,332 48,200.16 5 eil51 431.77 428.87 428.87
12 rd100 8054 7910 7910 30 lin318 45,391 43,710 42,082.42 6 eil76 549.47 547.17 544.37
13 lin105 14,379 14,379 14,379 31 rd400 16,503 15,892 15,307.15 7 kroA100 21,379.27 21,285.44 21,282
14 pr107 44,303 44,303 44,301.68 32 pr439 115,994 111,875 107,431.43 8 kroA200 29,671.55 29,533.06 29,385.72
15 pr124 59,113 59,030 59,030 33 si535 52,326 50,388 48,450 9 oliver30 423.74 423.74 423.74
16 bier127 118,282 118,282 118,293.52 34 u574 39,757 36,905 37,049.29 10 pr107 44,301.68 44,301.68 44,301.68
17 ch130 6176 6110 6110 35 rat575 7355 7014 6851.730 11 pr136 97,042.31 96,795.40 96,770.92
18 pr136 97,543 96,772 96,770.92 12 pr152 73,683.64 73,683.64 73,682

Average 37,822.37 37,336.03 37,074.15 Average 36,101.99 36,045.30 36,024.09
BKS found/No. of datasets 13/35 25/35 23/35 BKS found/No. of datasets 1/12 1/12 6/12

Comparison with VDWOA(2021) [36]

S/N Datasets BKS VDWOA Our Result S/N Datasets BKS VDWOA Our Result S/N Datasets BKS VDWOA Our Result

1 oliver30 420 420 423.74 5 eil76 538 554 544.37 9 ch150 6528 6863 6530.90
2 eil51 426 429 428.87 6 pr76 108,159 108,353 108,159 10 d198 15,780 16,313 15,868.04
3 berlin52 7542 7542 7544.36 7 kroA100 21,282 21,721 21,282 11 tsp225 3916 4136 3865.004
4 st70 675 676 677.11 8 pr107 44,303 45,030 44,301.68 12 fl417 11,861 12,462 11,914.45

Average 18,708.25 18,461.63
BKS found/No. of datasets 2/12 4/12
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Table 8. Performance comparison of our proposed algorithm with the other state-of-the-art optimiza-
tion algorithms (DSSA and DA-GVNS).

Comparison with DSSA(2022) [8] Comparison with DA-GVNS(2022) [38]

S/N Datasets
DSSA

Our Results
S/N Datasets BKS DA-GVNS Our Results S/N Datasets BKS DA-GVNS Our Results

Average Best

1 att48 33,522 33,522 33,522 1 br17 39 39 39 35 kroA100 21,282 21,282 21,282
2 eil51 426.6 426 428 2 ft53 6905 7011 6905 36 kroB100 22,141 22,165 22,139.08
3 berlin52 7542 7542 7544.36 3 ft70 38,673 39,585 38,869 37 kroC100 20,749 20,749 20,749
4 st70 675.15 675 677.11 4 ftv33 1286 1286 1286 38 kroD100 21,294 21,294 21,294
5 pr76 108,159 108,159 108,159 5 ftv35 1473 1473 1473 39 kroE100 22,068 22,121 22,068
6 kroA100 21,290.2 21,282 21,282 6 ftv38 1530 1535 1530 40 kroA150 26,524 26,817 26,524
7 kroB100 22,173.1 22,141 22,139.08 7 ftv44 1613 1631 1613 41 kroB150 26,130 26,256 26,127.36
8 kroC100 20,770.5 20,749 20,749 8 ftv47 1778 1788 1776 42 kroA200 29,368 29,807 29,385.72
9 kroD100 21,319.05 21,294 21,294 9 ftv55 1608 1636 1608 43 kroB200 29,437 30,015 29,441.38
10 kroE100 22,091.9 22,068 22,068 10 ftv64 1839 1895 1850 44 lin105 14,379 14,390 14,379
11 lin105 14,379 14,379 14,379 11 ftv70 1950 2078 1950 45 lin318 42,029 43,201 42,082.42
12 pr107 44,322 44,303 44,301.68 12 kro124p 36,230 36,403 36,230 46 pcb442 50,778 53,009 51,362
13 pr124 59,030 59,030 59,030 13 p43 5620 5620 5620 47 pcb1173 56,892 61,725 57,528.29
14 ch130 6153.65 6110 6110 14 rbg323 1326 1451 1331 48 pr76 108,159 108,159 108,159
15 pr136 97,302.35 96,920 96,770.92 15 rbg358 1163 1276 1164 49 pr107 44,303 44,303 44,301.68
16 pr144 58,537 58,537 58,535.22 16 rbg403 2465 2481 2465 50 pr124 59,030 59,050 59,030
17 ch150 6590.15 6528 6530.9 17 rbg443 2720 2761 2720 51 pr136 96,772 97,062 96,770.92
18 kroA150 26,699.85 26,525 26,524 18 ry48p 14,422 14,465 14,422 52 pr144 58,537 58,537 58,535.22
19 kroB150 26,220.4 26,130 26,127.36 19 bays29 2020 2020 2020 53 pr152 73,682 73,839 73,682
20 pr152 73,731.35 73,682 73,682 20 bier127 118,282 119,122 118,293.52 54 pr226 80,369 80,880 80,374.33
21 u159 42,262.75 42,080 42,075.67 21 brazil58 25,395 25,395 25,395 55 pr264 49,135 49,880 49,135
22 kroA200 29,682.15 29,459 29,385.72 22 ch130 6110 6154 6110 56 pr299 48,191 49,719 48,200.16
23 kroB200 29,850.55 29,564 29,441.38 23 ch150 6528 6595 6530.9 57 pr439 107,217 112,600 107,431.43
24 tsp225 3926.05 3916 3865.004 24 d1291 50,801 54,778 51,618.54 58 pr1002 259,045 277,867 259,250
25 pr226 80,369.2 80,369 80,374.33 25 d1655 62,128 67,292 63,268.61 59 rat195 2323 2364 2342.25
26 pr264 49,271.85 49,135 49,135 26 dantzig42 699 699 699 60 rat575 6773 7179 6851.73
27 lin318 42,742.7 42,495 42,082.42 27 fl417 11,861 12,019 11,914.45 61 rat783 8806 9445 8934.09
28 pr439 107,844.9 107,494 107,431.4 28 fl1400 20,127 21,858 20,315.84 62 rd100 7910 7910 7910
29 pr1002 266,352.4 264,212 259,250 29 fri26 937 937 937 63 rd400 15,281 15,915 15,307.15
30 pr299 48,605.05 48,409 48,200.16 30 gil262 2378 2451 2389.05 64 rl1323 270,199 292,819 272,083.96
31 rat575 6961.7 6938 6851.73 31 gr17 2085 2085 2085 65 swiss42 1273 1273 1273
32 rat783 9163 9097 8934.09 32 gr21 2707 2707 2707 66 u159 42,080 42,168 42,075.67

33 gr24 1272 1272 1272 67 u574 36,905 39,583 37,049.29
34 gr48 5046 5046 5046 68 u724 41,910 44,814 42,124.4

Average 43,373.98 43,224.06 43,027.52 34,162.38 33,068.18
BKS found/No. of datasets 6/32 22/32 19/32 20/68 41/68

As demonstrated in Table 6, it is clear that, in most of the considered datasets, ex-
cept three small-scale datasets, namely ftv64, eil51, and berlin 52, our proposed algorithm
is better than HSIHM+2local and ABCSS for symmetric and asymmetric TSPs. On the
test dataset ftv64, its solution is not better than the best solution of HSIHM+2local, but it
is better than the average one. It is noticed that our proposed algorithm determines the
best-known solution in 14 and 11 datasets, whereas HSIHM+2local and ABCSS provide
such a solution in eight and eleven datasets, respectively. It is also observed that, for some
small-scale datasets, all three algorithms determine the best-known solutions. As the scale
becomes increasingly large, our proposed algorithm achieves greater global exploration
capability than both the HSIHM+2local and ABCSS algorithms. As shown in Table 6, it
is observed that our proposed algorithm outperforms the deterministic algorithm MMA
for symmetric TSP datasets on nearly all the considered datasets. Indeed, MMA performs
better regarding dj38 and eil76 and achieves the best-known solution in one case, while
our proposed algorithm is better in 22 datasets and captures the best-known solutions
in 12 cases. In addition, MMA is suitable only for small-size TSP datasets, whereas our
proposed algorithm can be applied to solve small- and relatively large-scale datasets. There-
fore, it can be concluded that the performance of our proposed algorithm is better in 87.5%
(21 out of 24) cases compared to MMA.

Tables 7 and 8 demonstrate the comparison of our proposed algorithm with IBA [26],
DWCA [28], DSOS [27], MCF-ABC [32], GA-PSO-ACO [23], DIWO [25], PRGA [33],
MPSO [3], SCGA [37], VDWOA [36], DSSA [8], and DA-GVNS [38]. According to Tables 7
and 8, in comparison with DSOS, GA-PSO-ACO, DIWO, MPSO, SCGA, and DSSA for
the symmetric TSP datasets, our proposed algorithm provides better results than the av-
erage results of all six algorithms regarding almost all the datasets except in two cases
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of DSOS, in one case of GA-PSO-ACO, in one case of DIWO, and in four cases of DSSA.
On the other hand, compared with the best results of these algorithms, the performance
of our algorithm is inferior in five cases out of twenty-eight with DSOS, in four cases
out of thirty regarding GA-PSO-ACO, in three cases out of nineteen related to DIWO,
in three cases out of thirty-five with MPSO, no worse out of twelve concerning SCGA,
and in five cases out of thirty-two connected to DSSA. On the remaining test datasets, our
proposed algorithm achieves better or equal results with these six algorithms. In addition,
our proposed algorithm obtains the best-known solution in fourteen cases as compared
with eleven out of twenty-eight by DSOS, in eleven cases as compared with one out of
thirty by GA-PSO-ACO, in eight cases as compared with zero out of nineteen by DIWO, in
twenty-three cases as compared with twenty-five out of thirty-five by MPSO, in six cases
as compared with one out of twelve by SCGA, and in nineteen cases as compared with
twenty-two out of thirty-two by DSSA. In a word, the solutions obtained by our algorithm
have better accuracy than those obtained by the above six comparative algorithms.

According to the results in Tables 7 and 8, in comparison with IBA, DWCA, and DA-
GVNS for symmetric and asymmetric test problems, our proposed algorithm produces
better or equal solutions compared to the average as well as the best solutions of these three
algorithms in each considered dataset by excluding two smaller datasets, namely eil51 and
berlin52. Moreover, our proposed algorithm obtains the best-known solution in 23 cases as
compared with 18 out of 29 by IBA, in 23 cases as compared with 14 out of 27 by DWCA,
and in 41 cases as compared with 20 out of 68 by DA-GVNS. It is also observed that our
proposed algorithm significantly outperforms these three algorithms regarding almost all
the datasets. Specifically, regarding the large-scale datasets, it obtains more accurate results
than these three comparative algorithms. As demonstrated in Table 7, in comparison with the
best results of MCF-ABC, VDWOA, and PRGA for symmetric test problems, it is apparent
that our proposed algorithm achieves worse solutions than those computed by VDWOA
and PRGA on the datasets of oliver30, berlin52, st70, rat99, and kroA200. On the rest of the
test datasets, it obtains similar or better results than the best of these algorithms. Actually,
our proposed algorithm obtains the best-known solution in twenty-eight cases as compared
with twenty-seven out of twenty-eight by MCF-ABC, in four cases as compared with two
out of twelve by VDWOA, and in five cases as compared with one out of nine by PRGA. It
is also evident that MCF-ABC has a strong capability regarding escaping the local optimum;
nevertheless, this algorithm is not capable of producing a better solution, which is obtained
by our algorithm in seven cases.

From the above discussion and analysis, it can be determined that our proposed
algorithm achieves better results on both the average and best solutions compared to all
21 algorithms regarding almost all the TSP test datasets. Overall, regarding the test datasets,
the average route length of our proposed algorithm is actually smaller than that of each com-
parative algorithm. Furthermore, our proposed algorithm traces the best-known solutions
in many more datasets than each of the comparative algorithms. Therefore, our proposed
algorithm is superior to these benchmark optimization algorithms in terms of solution
quality. In the literature, it is generally believed that meta-heuristics and hybridization
optimization algorithms can provide good-quality solutions for the TSPs. However, our
proposed algorithm has better performance than such optimization algorithms, including
recently improved ones. Apart from this, most benchmark algorithms (except IBA, DWCA,
ABCSS, and DA-GVNS) are designed with many fine-tuned parameters to solve either the
symmetric TSP or asymmetric TSP, while our proposed algorithm is capable of handling
both of these cases by tuning only one parameter. Furthermore, our proposed algorithm
is designed without any randomness, so running it multiple times on a dataset always
produces the same result. Thus, it is deterministic, while most of the existing standard
optimization algorithms are probabilistic and their solutions may change in every single
run. In this way, it is quite convenient for practical applications.
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7.4. Statistical Analysis

To determine the difference between the performance of our proposed and compar-
ative optimization algorithms, we finally undertake a rigorous statistical analysis in this
subsection. Actually, the popular Wilcoxon signed rank test [32,39] at the 95% confidence
level is implemented to statistically examine the superior performance of the proposed
algorithm against the other standard optimization algorithms. In this non-parametric test,
we evaluate our proposed algorithm with one of the comparative optimization algorithms.
The test statistic is calculated by the following formula:

Wcal, N = min(W−1, W+), (21)

where N is the number of datasets tested by the two algorithms. If the two algorithms per-
form equally on a dataset, we ignore this dataset and adjust the value of N accordingly. W−1

denotes the sum of ranks of the datasets on which our proposed algorithm performs better
than the comparative algorithm, while W+ denotes the sum of ranks of the datasets on
which the comparative algorithm dominates our proposed algorithm. Moreover, the rank
of the dataset is defined by the ascending order of the absolute error difference of the two
algorithms (i.e., the rank 1 to the dataset with the smallest absolute difference, rank 2 to the
next, etc.). min(W−1, W+) returns to the minimum value of {W−, W+}.

The critical values corresponding to N effective datasets (Wcri, N) at different confi-
dence levels can be found in [39]. If Wcal, N > Wcri, N , it failed to reject the null hypothesis
(H0: there is no significant difference regarding the performance of the two algorithms).
On the other hand, the null hypothesis is rejected under the condition Wcal, N ≤ Wcri, N ,
and the statistical test concludes that there is a significant difference regarding the perfor-
mance of the two algorithms. Since most of the comparative algorithms (except MMA) are
probabilistic, we perform the statistical test separately with the percentage deviation of
average results (PDavg.(%)) and percentage deviation of best results ((PDbest.(%))). The test
results are summarized in Table 9, where ‘*’ indicates that the test result is undetermined
(for a critical value at 95% confidence level, value of N must be ≥6) and ‘-’ means the
original reference did not provide any results.

According to the test results of Table 9, on the test with PDavg.(%), in all the cases
(except ABCSS), the statistical test yields Wcal, N ≤ Wcri, N with W− > W+. That is,
the test suggests that our proposed algorithm is significantly better in comparison with
all the comparative algorithms except ABCSS. Moreover, our proposed algorithm is still
comparable with ABCSS due to having W− > W+. Therefore, our proposed algorithm
outperforms all the state-of-the-art comparative algorithms. Specifically, it significantly
dominates eight recent optimization algorithms because W+ = 0. On the other hand,
on the test with PDbest(%), the test results indicate that the performance of our proposed
algorithm is significantly better than all the comparative algorithms (except SEHDPSO
and GSA-ACO-PSO) owing to Wcal, N ≤ Wcri, N and W− > W+. Its performance against
SEHDPSO and GSA-ACO-PSO is not statistically sound; however, our proposed algorithm
is still comparable with them due to having W− > W+.

Table 9. Statistical test results based on the performance of our proposed algorithm against each
state-of-the-art optimization algorithm.

Comparisons Test with PDavg. (%) Test with PDbest (%)

N W− W+ Wcal, N Wcri, N Sign. N W− W+ Wcal, N Wcri, N Sign.
Proposed Algorithm Vs. Diff. Diff.

SEHDPSO(2007) [15] 20 196 14 14 52 yes 17 118 35 35 34 no
ASA-GS(2011) [21] 41 844 17 17 279 yes 38 702 39 39 235 yes
GSA-ACO-PSO(2011) [22] 24 276 24 24 81 yes 18 115 56 56 40 no
GA-PSO-ACO(2012) [23] 30 461 4 4 137 yes 30 441 54 54 137 yes
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Table 9. Cont.

Comparisons Test with PDavg. (%) Test with PDbest (%)

N W− W+ Wcal, N Wcri, N Sign. N W− W+ Wcal, N Wcri, N Sign.
Proposed Algorithm Vs. Diff. Diff.

HGA+2local(2014) [24] 20 210 0 0 52 yes 19 189 1 1 46 yes
DIWO(2015) [25] 19 188 2 2 46 yes 19 168 22 22 46 yes
IBA(2016) [26] 27 375 3 3 107 yes 16 125 11 11 29 yes
DSOS(2017) [27] 26 348 3 3 98 yes 22 199 54 54 65 yes
DWCA(2018) [28] 25 322 3 3 89 yes 16 124 12 12 29 yes
IVNS(2018) [29] 46 1063 18 18 361 yes 44 972 18 18 327 yes
ABCSS(2019) [30] 9 33 12 12 5 no 4 6 4 4 * *
ECSDSOS(2019) [16] 24 300 0 0 81 yes 18 168 3 3 40 yes
HSIHM+2local(2019) [31] 18 171 0 0 40 yes 11 65 1 1 10 yes
MCF-ABC(2019) [32] 8 36 0 0 3 yes - - - - - -
PRGA((2019)) [33] - - - - - - 9 41 4 4 5 yes
DSCA+LS(2019) [34] 19 190 0 0 46 yes 16 133 3 3 29 yes
MMA(2019) [2] 23 270 6 6 73 yes 23 270 6 6 73 yes
DSMO(2020) [35] 37 703 0 0 221 yes 34 595 0 0 182 yes
VDWOA(2021) [36] - - - - - - 12 68 10 10 13 yes
SCGA(2021) [37] 10 55 0 0 8 yes 8 36 0 0 3 yes
MPSO(2021) [3] 25 300 3 3 89 yes 18 137 34 34 40 yes
DSSA(2022) [8] 28 376 30 30 116 yes 21 181 50 50 58 yes
DA-GVNS(2022) [38] 50 1275 0 0 434 yes - - - - - -

8. Conclusions

We have established a reliable two-stage optimization algorithm to deterministically
solve both symmetric and asymmetric TSPs, which utilizes the probe concept to design
the local augmentation operators for dynamically generating and developing TSP routes
step by step. It also utilizes a proportion value to filter out the worst routes automatically
during each step. Furthermore, a self-escape mechanism is imposed on each stagnant
complete route for its further possible variation and improvement. It is demonstrated by the
experiments on various real-world TSP datasets that our proposed algorithm outperforms
the state-of-the-art optimization algorithms with respect to solution accuracy. In addition,
it can ascertain the best-known solution regarding a significant number of datasets and
even determine a new solution in certain cases (as shown in Table 3). In fact, our proposed
algorithm is designed without randomness so that it is a deterministic algorithm, which can
be a benefit over the existing algorithms in certain ways. Moreover, our proposed algorithm
can deal with both symmetric and asymmetric TSPs by fitting only one parameter, while
most of the existing standard optimization algorithms are designed with many fine-tuned
parameters for either symmetric or asymmetric problems.

The main drawback of our proposed optimization algorithm is the computational
time required to solve large-scale datasets. In fact, as the number of cities becomes larger,
a general computer system will eventually run out of memory and cease functioning. It
would be beneficial to extend the current work by investigating ways to improve the com-
putational time required to solve large-scale datasets. In the future, we plan to improve the
computational complexity by integrating our algorithm with the Delaunay Triangulation
(DT) geometric concept because DT can provide potential edges rather than all the edges
that are more likely to appear in an optimal solution of the TSP even though it does not
contain a route of the TSP [40,41]. We also plan to apply this framework to solve other NP-
complete problems, such as the vehicle routing problem, the job-shop scheduling problem,
the flow-shop scheduling problem, etc.
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