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Abstract. Independent component analysis (ICA) has many practical
applications in the fields of signal and image processing and several ICA
learning algorithms have been constructed via the selection of model
probability density functions. However, there is still a lack of deep math-
ematical theory to validate these ICA algorithms, especially for the gen-
eral case that super- and sub-Gaussian sources coexist. In this paper,
according to the one-bit-matching principle and by turning the de-mixing
matrix into an orthogonal matrix via certain normalization, we propose
a one-bit-matching ICA learning algorithm on the Stiefel manifold. It is
shown by the simulated and audio experiments that our proposed learn-
ing algorithm works efficiently on the ICA problem with both super-
and sub-Gaussian sources and outperforms the extended Infomax and
Fast-ICA algorithms.

1 Introduction

Independent component analysis (ICA) [1]-[2] aims to blindly separate some
independent sources s from their linear mixture x = As via

y = Wx, x ∈ R
m, y ∈ R

n, W ∈ R
m×n, (1)

where A is a mixing matrix, and W is the de-mixing matrix to be estimated.
For simplicity of analysis, the number of mixed signals is required to be equal to
the number of source signals, i.e., m = n, and A is an n×n nonsingular matrix.
Although the ICA problem has been studied from different perspectives [3]-[5],
it can be typically solved by minimizing the following objective function:

D = −H(y) −
n∑

i=1

∫
pW(yi;W) log pi(yi)dyi, (2)

where H(y) = −
∫

p(y) log p(y)dy denotes the entropy of y, pi(yi) denotes the
pre-determined model probability density function (pdf), and pW(yi;W) de-
notes the probability distribution on y = Wx.
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In the literature, how to choose the model pdf’s pi(yi) remains a key is-
sue for the ICA algorithms using the objective function Eq.(2). In general, any
gradient descent learning algorithm, such as the relative or natural gradient al-
gorithms [3]-[4], can work only in the cases that the components of s are either
all super-Gaussians or all sub-Gaussians. Recently, many new algorithms (e.g.,
the extended Infomax algorithm [6] and the Fast-ICA algorithm [7]) have been
proposed to solve the general ICA problem, but their theoretical foundations are
yet unclear. In order to solve the general ICA problem, Xu et al. [8] proposed the
one-bit-matching conjecture which states that “all the sources can be separated
as long as there is a one-to-one same-sign-correspondence between the kurtosis
signs of all source pdf’s and the kurtosis signs of all model pdf’s”. Recently, Liu
et al. [9] proved this conjecture by globally minimizing the objective function
under certain assumptions on the model pdf’s. Ma et al. [10] further proved the
conjecture by locally minimizing the same objective function on the two-source
ICA problems. It is generally believed that the one-bit-matching condition can
serve as a reasonable principle for the design of the model pdf’s. On the other
hand, if the observed x and the output y are both normalized with zero mean
and unit covariance matrix, the de-mixing matrix becomes orthogonal, which
can be learned on the Stiefel manifold.

In this paper, under the condition that the model pdf’s are designed accord-
ing to the one-bit-matching principle, with the observed x and the output y
being properly normalized, we propose a gradient-type ICA learning algorithm
on the Stiefel manifold, which we call as one-bit-matching learning algorithm. It
is shown by the simulated and audio experiments that the proposed algorithm
works efficiently on the general blind source separation problems and outper-
forms the typical existing ICA algorithms.

2 The One-Bit-Matching Learning Algorithm

We start to introduce the Stiefel manifold. Roughly, the Stiefel manifold Vn,p

consists of n-by-p “tall skinny” orthogonal matrices. That is, the p column vec-
tors of each matrix in Vn,p are pair-wised orthogonal in R

n. Here, we need only
to consider the special Stiefel manifold Vn,n, i.e., the orthogonal group On con-
sisting of n-by-n orthogonal matrices. For a smooth function F (Z) on the Stiefel
manifold On, i.e., Z ∈ On, with the canonical Euclidean metric, its gradient on
the manifold is computed by

∇F = FZ − ZFT
Z Z, (3)

where FZ is the conventional gradient of F (Z) with respect to the matrix Z.
This gradient is consistent with the natural Riemannian gradient on the Stiefel
manifold from information geometry.

We further pre-whiten the observed x and the output y so that the de-mixing
matrix W can only be orthogonal, i.e, on the Stiefel manifold On. Clearly, we
can easily pre-whiten the observed x such that

E(x) = 0, ExxT = In, (4)
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where In is the n × n identity matrix. With each matrix W, we can also pre-
whiten the output y = Wx such that

E(y) = 0, EyyT = In. (5)

In this way, we have

In = E(yyT ) = WE(xxT )WT = WWT . (6)

Thus, WWT = In. That is, W must be an orthogonal matrix. Therefore, if
we can pre-whiten or normalize the observed x and the output y during each
phase of the learning process, the resulted W should be an orthogonal matrix.
Therefore, we can solve it on the Stiefel manifold.

We now revisit the objective function defined in Eq.(2). Suppose that the ob-
served x and the output y are both pre-whitened. Then, the required de-mixing
W should be orthogonal. So, we can search the feasible solution W of the ICA
problem via minimizing the objective function of W on the Stiefel manifold On.
For the design of model pdf’s, we use the one-bit-matching condition. Suppose
that p is the number of super-Gaussian sources in the ICA problem. The model
pdfs of sub- and super-Gaussians are selected as

psuper(u) =
1
π

sech(u), psub(u) =
1
2
[pN(1,1)(u) + pN(−1,1)(u)],

respectively, where pN(µ,σ2)(u) is the Gaussian probability density with mean
µ and variance σ2, and sech(·) is the hyperbolic secant function. That is, the
first p model pdf’s are selected as psuper(u), while the rest n − p model pdf’s
are selected as psub(u). In this way, the conventional gradient of the objective
function can be computed as follows.

We let V = (v1, v2, · · · , vn)T be an n-dim vector. For each observed x and the
corresponding output y via the relation y = Wx, we define

vi = −tanh(yi), for i = 1, · · · , p;
vi = tanh(yi) − yi, for i = p + 1, · · · , n.

Then, the adaptive gradient JW of the objective function Eq. (2) with respect
to W is simplified as

JW = −W − VxT . (7)

Given Eq.(7), we can construct the one-bit-matching learning algorithm as a
local gradient-descent learning algorithm of W on the Stiefel manifold On as
follows.

�W = −η(JW − WJT
WW) = η(VxT − WxVT W), (8)

where η > 0 is the learning rate parameter which is generally selected as a small
positive constant.



176 J. Ma et al.

Since JW is just the adaptive gradient of the objective function, this algorithm
is adaptive. As W keeps an orthogonal matrix during the learning process, the
output y will be always normalized or whitened. Therefore, we need only to
pre-whiten the observed x at the beginning of the algorithm. Certainly, we can
establish the batch gradient learning algorithm on the Stiefel manifold with the
batch gradient of the objective function.

3 Experimental Results

In order to test our one-bit-matching learning algorithm, we conducted several
simulated and audio experiments on three source separation problems: (i). mixed
super-Gaussian and sub-Gaussian ones; (ii). uniform noises which are all sub-
Gaussian; (iii). audio samples which are all super-Gaussian. We also compared
it with the extended Informax and Fast-ICA algorithms.

3.1 On Separating Mixed Super-Gaussian and Sub-Gaussian
Sources

We began to consider the ICA problem of seven independent sources in which
there are four super-Gaussian sources generated from one Exponential distribu-
tion E(0.5), one Chi-square distribution χ2(6), one Gamma distribution γ(1, 4)
and one F -distribution F (10, 50), respectively, and three sub-Gaussian sources
generated from two β distributions β(2, 2), β(0.5, 0.5), and one Uniform dis-
tribution U([0, 1]), respectively. From each source or distribution, 100000 i.i.d.
samples were generated to form a source. Accordingly, these samples were further
pre-whitened.

The first set of linearly mixed signals was generated from these seven source
signals via a random orthogonal mixing matrix A1. We implemented the one-
bit-matching learning algorithm (p = 4, n = 7) on the first set of linearly mixed
signals with the learning rate being selected as η = 0.001 and the initial W being
set as a randomly generated orthogonal matrix. The one-bit-matching learning
algorithm operated adaptively and was stopped after 100000 iterations to ensure
the fulfilment of separation.

The result of the one-bit-matching learning algorithm on the first linearly
mixed signal set is given by Eq. (9). As a feasible solution of the ICA problem,
the obtained W will make WA = ΛP be satisfied or approximately satisfied to
a certain extent, where ΛP = diag[λ1, λ2, · · · , λn] with each λi �= 0, and P is a
permutation matrix. Since A was selected as an orthogonal matrix, WA should
be just a permutation matrix up to sign indeterminacy.

WA1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.0033 0.0027 −0.0043 −0.0020 −0.0044 −0.0043
0.0026 0.0058 −0.9998 −0.0156 0.0031 −0.0007 −0.0032
0.0044 0.0032 −0.0156 0.9998 −0.0003 0.0079 0.0054
0.0032 −0.9999 −0.0058 0.0032 0.0006 −0.0128 0.0008

−0.0020 −0.0006 −0.0031 −0.0004 −1.0000 0.0027 −0.0015
−0.0044 0.0128 0.0006 0.0079 −0.0027 −0.9999 −0.0007
−0.0043 −0.0008 0.0031 0.0055 0.0015 0.0007 −1.0000

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)
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For comparison, we also ran the extended Infomax algorithm [5] (a kind of
natural or relative gradient learning with a switch criterion) on this set of linearly
mixed signals and obtained the separation result given by Eq. (10).

WA1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0148 −0.7588 0.0085 −0.0005 −0.0241 −0.0189 0.0088
0.0222 0.0167 −0.0109 0.0135 −1.4220 −0.0111 0.0093
0.0088 −0.0042 −0.7532 −0.0197 −0.0133 0.0336 0.0103

−0.0144 −0.0141 0.0037 −0.0333 −0.0280 −0.0141 1.4943
−0.8065 0.0161 −0.0018 −0.0146 −0.0581 −0.0465 0.0777

0.0176 −0.0197 −0.0057 0.0288 −0.0210 −1.4393 0.0343
0.0001 −0.0353 0.0284 0.7675 0.0004 −0.0537 −0.0017

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

From the above two tables, it can be found that the one-bit-matching learning
algorithm is much better than that of the extended Infomax algorithm. Precisely,
we calculated the performance index (introduced in [3]) defined by

PI =
n∑

i=1

(
n∑

j=1

|rij |
maxk |rik| − 1) +

n∑

j=1

(
n∑

i=1

|rij |
maxk |rkj |

− 1),

where R = (rij)n×n = WA. For a perfect separation, this index should be zero.
Actually, the performance indexes of the one-bit-matching learning and extended
Infomax algorithms are 0.3411 and 1.6399, respectively, which quantitatively
shows that the one-bit-matching learning algorithm is much better than the
extended Infomax. Moreover, we implemented the Fast-ICA algorithm on this
linearly mixed signal set and obtained the separation result with the performance
index being 0.3028, which is slightly better than that of the one-bit-matching
learning algorithm.

3.2 On Separating Uniform Noises

Next, we considered the ICA problem of separating eight independent uniform
noises. That is, each source was sampled from a uniform distribution and con-
tains 100000 samples. These sources are all sub-Gaussian, being recognized as
the uniform noises. Our second set of linearly mixed signals was generated from
these eight uniform noises via another random orthogonal mixing matrix A2.
The signals were further pre-whitened. On this set of linearly mixed signals, we
implemented the one-bit-matching learning and extended Infomax algorithms
and their results are given by Eq. (11) and Eq. (12), respectively. It was found
that their performance indices are 0.1713 and 2.2776, respectively, which also
shows that the one-bit-matching learning algorithm also outperforms the ex-
tended Infomax. Moreover, it was also found that the the performance index of
the separation results via the Fast-ICA algorithm on this set is 0.2342, which is
considerably larger than 0.1713. That is, the one-bit-matching learning algorithm
also outperforms the Fast-ICA algorithm in this case.
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WA2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.003 0.000 0.001 −0.001 1.000 0.000 −0.002 −0.003
−0.002 0.000 −0.002 0.001 −0.002 0.000 −1.000 −0.001

0.000 0.002 0.000 −1.000 −0.001 −0.004 −0.001 −0.002
0.001 −0.003 −1.000 0.000 0.001 0.000 0.002 0.002

−0.003 −1.000 0.003 −0.002 0.000 0.001 0.000 0.001
−0.002 −0.001 −0.002 0.002 −0.003 0.002 0.001 −1.000
−0.001 0.001 0.000 −0.004 0.000 1.000 0.000 0.002

1.000 −0.003 0.001 0.000 0.003 0.001 −0.002 −0.003

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

WA2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.021 −0.002 −1.449 0.029 −0.014 0.038 −0.017 −0.053
0.009 −0.057 −0.039 −0.033 0.053 1.430 −0.008 −0.022
1.450 −0.040 −0.014 −0.010 0.033 0.052 0.009 −0.076
0.050 −0.035 −0.047 0.045 −0.014 0.025 −0.008 −1.499

−0.037 −1.452 0.031 −0.040 −0.048 0.037 −0.038 −0.023
−0.031 −0.046 −0.031 0.007 −1.444 −0.047 −0.005 −0.023
−0.014 0.015 0.037 0.022 0.037 −0.016 1.443 0.032
−0.013 0.056 −0.006 1.404 0.014 −0.018 0.057 −0.013

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

3.3 On Separating Audio Sources

Finally, we considered the ICA problem of separating 8 independent real-life
audio recordings (downloaded from Barak Pearlmutter’s homepage: http://
www- bcl.cs.may.ie/~bap/demos.html). Each audio source consists of 100000
data sampled at 22050 Hz. We pre-whitened these audio sources and then linearly
mixed them via an 8×8 random orthogonal mixing matrix A3 to form the third
set of linearly mixed signals. On such a data set, we implemented the one-bit-
matching algorithm, obtaining a successful separation result shown in Fig. 1.

For comparison, we also implemented the extended Infomax and Fast-ICA al-
gorithms on the data set. It was found by the experiments that the performance
indices of the one-bit-matching learning, extended Infomax and Fast-ICA al-
gorithms are 1.2979, 2.2746, and 1.3288, respectively, which again shows that
the one-bit-matching learning algorithm outperforms the extended Infomax and
Fast-ICA algorithms in this case.

For further comparison, we calculated the signal-to-noise ratios (SNRs) of
the output signals of the one-bit-matching, extended Infomax, and Fast-ICA
learning algorithms on the data set. Their results are listed in Table 1, which
again shows our proposed one-bit-matching learning algorithm outperforms the
other two popular ICA learning algorithms.

In addition, extensive experiments on the different ICA problems with mixed
super- and sub-Gaussian sources also showed that the one-bit-matching learning
algorithm always reaches an accurate feasible solution. It was even found that
as the number of sources increases, the one-bit-matching learning algorithm can
still maintain a similarly good performance on the source separation problems.
By comparison, we have found that the one-bit-matching learning algorithm
considerably outperforms the extended Infomax algorithm in the general case. As
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Fig. 1. The waveforms of sources signals (left column), linearly mixed signals (middle
column), and output signals (right column) of the one-bit-matching learning algorithm

Table 1. The SNRs of the recovered sources of the three algorithms

Signal-to-Noise Ratio (dB)
Audio Source 1 2 3 4 5 6 7 8 Med. Avg.
One-bit-matching 23.06 37.25 21.84 25.69 28.71 31.19 36.64 30.15 29.43 29.32
Extended Infomax 18.82 23.96 22.56 26.97 22.39 26.97 25.71 23.67 23.81 23.88
Fast-ICA 22.21 34.37 22.25 25.74 29.96 31.97 36.33 28.07 29.02 28.86

compared with the Fast-ICA algorithm, the one-bi-matching learning algorithm
leads to a similar result in the case of mixed sub- and Super-Gaussian sources,
but a better result in the case of all the sub- or super-Gaussian sources.

In practice, the number of super-Gaussian sources, p, may not be available
in ceratin cases. In this situation, the one-bit-matching learning algorithm can-
not work directly. However, we can implement the one-bit-matching learning
algorithm on the pre-whitened observed x with p varying from zero to n, then
there must be a feasible solution W with which the components of the output
y = Wx are independent, which can be checked by certain statistical indepen-
dence test method. That is, for each p, we can check whether the n components
of the output y by the resulted W are mutually independent. If they are, this
W is just a feasible solution for the ICA problem. Otherwise, it is not a feasible
solution for the ICA problem. Since the independence between the components
of the output y is sufficient for the feasible solution of the ICA problem, we
can find out the feasible solution of the ICA problem by this test and checking
procedure with the one-bit-matching learning algorithm. In fact, with a certain
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independence test criterion, we can use the one-bit-matching learning algorithm
to obtain the feasible solution for all the above three cases without knowing the
number of super-Gaussian sources.

4 Conclusions

In this paper, we have investigated the ICA problem from the point of view
of the one-bit-matching principle, and established an efficient one-bit-matching
ICA learning algorithm based on the Stiefel manifold gradient under the con-
dition that the number of super-Gaussian sources is known and the observed
signals are pre-whitened. It is demonstrated by the simulated and audio ex-
periments that the proposed one-bit-matching learning algorithm can solve the
source separation problem of mixed super- and sub-Gaussian sources efficiently
and even outperforms the existing extended Infomax and Fast-ICA learning algo-
rithms. Moreover, with certain independence test criterion, the one-bit-matching
learning algorithm can be used to solve the source separation problem without
knowing the number of super-Gaussians sources.
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