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Abstract. The one-bit-matching conjecture for independent component
analysis (ICA) has been widely believed in the ICA community. The-
oretically, it has been proved that under certain regular assumptions,
the global maximum of a simplified objective function derived from the
maximum likelihood or minimum mutual information criterion under the
one-bit-matching condition corresponds to a feasible solution of the ICA
problem, and also that all the local maxima of the objective function cor-
respond to the feasible solutions of the ICA problem in the two-source
square mixing setting. This paper further studies the one-bit-matching
conjecture along this direction, and we prove that under the one-bit-
matching condition there always exist many local maxima of the ob-
jective function that correspond to the stable feasible solutions of the
ICA problem in the general case; moreover, in ceratin cases there also
exist some local minima of the objective function that correspond to
the stable feasible solutions of the ICA problem with mixed super- and
sub-Gaussian sources.

1 Introduction

Independent component analysis (ICA) is a powerful tool for blind signal pro-
cessing and has remained as an intense research subject in the literature. One
of important application of ICA is used for blind source separation where the
source signals are assumed to be independent and non-Gaussian. In particular,
consider a conventional ICA problem which assumes an instantaneous linear
mixing model: x = As, where A € R™*" denotes the mixing matrix; s € R”
and x € R™ correspond to the n-dimensional source vector and m-dimensional
mixture vector, respectively. The goal of ICA is to seek a demixing matrix,
W € R"*™ applied to the mixture vector x:

y = Wx = W(As) = (WA)s (1)

where y € R” corresponds to the unmixed signal vector. When the sources in s
are statistically independent, it is hoped that the recovered y is also componen-
twise independent, that is,
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n
a(y) = [[ e, (2)
i=1
where ¢(+) denotes the probability density function. Generally and unless stated
otherwise, it is assumed in the paper that m = n and the square mixing matrix
A is invertible.

The study on the ICA problem can be traced back to Tong, Inouye & Liu [1]
who showed that y recovers the sources s up to scaling and permutation ambi-
guity when y; (i = 1,...,n) become componentwise independent and at most
one of them is Gaussian. Later on, Comon [2] further formalized the problem
under the name ICA. Since then, the ICA problem has been widely studied from
different perspectives by many researchers (e.g., [3]-[7]). In particular, one of
essential goal to exploit the independence in parallel is to minimize the following
objective function, or the so-called “minimum mutual information (MMI)”:

DOW) = ~H(y) = Y [ vl W) logpi(y) . 3)
i=1
where H(y) = — [ p(y)log p(y)dy represents the entropy of y, p;(y;) denotes the

predetermlned model probability density function (pdf) that is implemented to
approximate the marginal pdf of y, and pw (y;; W) denotes the joint probability
distribution on y = Wx. In the literature, how to choose the model pdf’s is an
important issue for the ICA problem. It is known that, with each model pdf p;(y;)
predefined, this MMI method works only in the cases where the components of
y are either all super-Gaussians [4] or all sub-Gaussians [5].

For the cases where sources contain both super-Gaussian and sub-Gaussian
signals in an unknown manner, it was suggested that each model pdf p;(y;)
should be flexibly adjustable and be learned together with demixing matrix W.
In fact, the learning of p;(y;) can be done by adapting the parameters in a finite
mixture of sigmoid functions that learns the cumulative distribution function
(cdf) of each source [8], or by learning a mixture of parametric pdf’s [9]. On
the other hand, it has also been found that a rough estimate of each source pdf
or cdf may be sufficient for source separation. These observations motivated the
proposal of the so-called one-bit-matching conjecture [10], which can be basically
stated as “all the sources can be separated as long as there is a one-to-one same-
sign-correspondence between the kurtosis signs of all source pdf’s and the kurtosis
signs of all model pdf’s”.

The one-bit-matching conjecture was widely believed in the ICA community
since there have been many experimental studies supporting this claim (e.g.,
[11]-[14]). Moreover, some new ICA algorithms were already established in light
of this conjecture. However, a complete understanding of the one-bit-matching
conjecture requires a theoretical proof for it. In the literature, a mathematical
proof [15] was given for the case involving only two sub-Gaussian sources, but
the result cannot be extended to a model either with more than two sources, or
with mixed sub- and super-Gaussian sources. Recently, Liu, Chiu and Xu [16]
have proved that under the assumption of zero skewness for the model pdf’s, the
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one-bit-matching condition guarantees a feasible solution of the ICA problem
by globally maximizing the simplified objective function (to be defined later
in Section 2) derived from Eq.(3). However, this result is rather restrictive in
that it is generally difficult to obtain a feasible solution of the ICA problem by
searching the global maximum of the objective function. As a matter of fact, it
is more significant to study the local separation property of the ICA problem
under the one-bit-matching condition that the sources can be separated by locally
maximizing that objective function in the same setting. Along this direction,
Ma, Liu & Xu [17] already proved that all the local maxima of the formulated
objective function correspond to the feasible solutions of the ICA problem in the
two-source mixing setting.

In this paper, we further investigate the formulated objective function in the
general case. Specifically, we prove that there always exist many local maxima of
the objective function that correspond to the stable feasible solutions of the ICA
problem (i.e., the stable solutions of a local searching algorithm on the objective
function) in the general case under the one-bit-matching condition. Moreover,
in ceratin situation under the one-bit-matching condition, there also exist some
local minima of the objective function that correspond to the stable feasible
solutions of the ICA problem with mixed super- and sub-Gaussian sources. That
is, the successful separation can be obtained via locally minimizing the objective
function under the one-bit-matching condition in such a case with mixed super-
and sub-Gaussian sources.

The rest of the paper is structured as follows. We first formulate the objective
function and introduce a leema in section 2. Section 3 presents the main results
of two theorems. We conclude briefly in section 4.

2 The Objective Function and a Lemma

For discussion simplicity, we assume that the source, mixed, and recovered signals
are all whitened and thus W and A are both orthonormal. When the skewness
and kurtosis statistics are considered and when the non-Gaussian sources have
nonzero kurtosis statistics, under the zero skewness assumption for all the model
pdf’s, the objective function derived from Eq.(B]) can be simplified as follows [16]:

n n

J(R) =) > riviki, (4)

i=1j=1

where R = (75 )nxn = WA is an orthonormal matrix to be estimated (the reason
that we optimize R instead of W is for convenience of analysis); v; denotes the
kurtosis of the source s;, and k] is a constant with the same algebraic sign as
the kurtosis ] of the model pdf.

For the purpose of clarity, we define a matrix K by

K= (kij)nxru kij = l/;k;n (5)
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By that we may rewrite () as

JR) =D sk =3 ribki;. (6)

i=1 j=1 i=1 j=1

Under the one-bit-matching condition, with the help of certain permutation we
can always obtain k" > --- > k‘;” >0 > ;’;1 > .- >kMand v > --- 21/; >
0>vwvpyq >+ > vy, which will be considered as the one-bit-matching condition
in this paper.

It has been proved in [16] that the global maximization of Eq.(d) under the
one-bit-matching condition can only be approachable by setting R as an identity
matrix up to certain permutation and sign indeterminacy. That is, the global
maximization of Eq.(0) will recover the original sources up to sign and per-
mutation indeterminacies if the one-bit-matching condition is satisfied. In the
two-source mixing case, i.e., n = 2, it has been further proved in [17] that the
local maxima of J(R) are also only reachable by the permutation matrices up to
sign indeterminacy under the one-bit-matching condition. In the following, we
will prove that there exist many local maxima of J(R) that correspond to the
stable feasible solutions of the ICA problem. Moreover, in certain cases where
both super- and sub-Gaussian sources coexist, some minima of J(R) also cor-
respond to the stable feasible solutions of ICA problem. Before doing so, we
introduce one lemma as follows.

Lemma 1. Suppose that F(x) (x € R™) is a twice differentiable scalar function
under the following constraints:

C?,(X):O? Z:1a2aak (7)

Construct a Lagrange function with a Lagrange multiplier set X = {A1, Ag, -,
Ak} dee, L(x,A) = F(x)—l—Zf:l XiCi(x), and assume that (x*,X™) is a solution
of the system of the equalities that all the derivatives of L(x, X) with respect to
the variables of x and the Lagrange multipliers \; are equal to zeros. It is also
assumed that these VC;(x*) are linearly independent. If for any nonzero vector
q # 0 under the constraints q7 V,C;(x*) =0 for i =1,2,--- , k, we have

q'VZL(x*,X*)q < 0 (or > 0), (8)
then x* is a local mazimum (or local minimum) of F(x) under the constraints.

Lemma 1 is a well-known mathematical result in optimization theory; its proof
can be found in [18].

3 The Main Results

With the above background, we are ready to investigate the local maximization
of objective function J(R) defined in (@), where R is a permutation matrix up
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to sign indeterminacy (namely, as a special orthonormal matrix). We consider
the general optimization problem of maximizing J(R) with a fixed matrix K
and RR” =1

In order to solve this constrained optimization problem, we introduce a set
of Lagrange multipliers A = {);; : ¢ < j} and construct the Lagrange objective
function:

= Z Z T@jkz] + Z Z Aij ( Zrlirlj — 6@'), (9)
=1 j=1 i=1 j=i

where 0;; denotes the Kronecker function. By derivation, we have

aL R’ A ]71 n
% = 4kij7"?j + Z iy + 2Xj57i5 + Z rai; (10)
? =t I=j+1
OL(R, ) n
ANy Z”ma = ij- (11)

Given A, we define a new matrix U = (4;;)nxn 88
)\ij7 if i < j;
U5 = )\jz‘, if 4 > 73 (12)
2\ if j = i.
In light of (10) and (12), we have
OL(R, \) 3
P =t + 3 0
Note that U is symmetric in that U7 = U. Setting the derivatives of (10) and
(11) to zeros yields
A(kijry )nxn = RU. (14)
For clarity, we further define a new matrix B by
B= (kijT?j)an~
By virtue of the symmetry of U, we have
R™B=B'R, or B=RB'R, (15)

which is essentially the condition for matrix R to be a critical point of the ob-
jective function (6) under the orthonormality constraint; in fact, it is equivalent
to the condition that the gradient of J(R) on the Stiefel manifold is zero [19].

Moreover, it can be easily shown that all the permutation matrices up to sign
indeterminacy satisfy Eq.(I3]). That is, these permutation matrices will be the
local maxima, minima, and saddle points of the objective function J(R). In the
following, we will study the circumstances when a permutation matrix (up to
sign indeterminacy) corresponds to a local maximum, local minimum, or saddle
point of J(R). The main results are summarized into two theorems.
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Theorem 1. If R* is a permutation matriz up to sign indeterminacy and ki; >
0 at all the positions where |r};| = 1, it corresponds to a local mazimum of the
objective function J(R).

Proof: For convenience, we vectorize the n x n matrix R into an n? x 1 vector
R — T RHQ
vec[R] = [r11,721, * , 01,712,722, ,Tn2, " s T1ns T2ns 5 T’ € .

Correspondingly, we may also construct a nonzero n? x 1 vector q

— T n?
qd=[q11,q21," " ,qn1, 12, G22, "+ s qn2s" " »Qins Q2ns " * »Gnn]” € R™ .
Taking the derivative of Eq.(13) yields

O’L(R, ) )
OrjOr jr = 8i.g), (0,51 (12735 + ujg), (16)
where 6(; jy (irj/) denotes the Kronecker function such that it equals to 1 if
(#,7") = (4,5) (namely, ¢ = ¢ and j = j') and zero otherwise. It follows from
Eq.(14) that

U=-4R'B. (17)

When R = R* is a permutation matrix up to sign indeterminacy, U* (associated
with A*) will be a diagonal matrix. By the condition that k;; > 0 at every
Iri;l = 1, it follows that u};, = —4k;; < 0 for each j. Moreover, it can be
readily verified that all VgC};(R*) are linearly independent, where we define
CZ](R) = Z?:l Ty — 5ij for ¢ S j

In light of Eq.(16), we infer that V& L(R*,A*) is a diagonal matrix. Fur-
thermore, its diagonal elements are negative except those ones corresponding to
|r#;] = 1. However, the g;; associated with |r;| = 1 will be constrained to zeros
under the condition qTVRCj ;(R*) = 0 for any nonzero vector q. Thus, with all
the constraints q7 VrC;;(R*) = 0, we always have q” Vi L(R*,A*)q < 0 for
any nonzero vector q. It then follows from Lemma 1 that R* is a local maximum
of J(R). Thus far the proof is completed. O

Remark 1. According to the one-bit-matching condition, the matrix K =
(kij)nxn can be divided into the following four blocks:

Ky Ky
K= ,
(K21 Koo
where K71 and Koo are, respectively, the upper left p X p submatrix and the
lower right (n — p) x (n — p) submatrix of R, with all their elements being posi-
tive; while R12 and Ray are, respectively, the upper right p x (n — p) submatrix

and the lower left (n — p) x p submatrix of R, with all their elements being
negative. Thus for a permutation matrix, if its nonzero elements are all in the
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submatrices Ki; and Koo, their corresponding k;; are all positive. Therefore,
these permutation matrices (up to sign indeterminacy) are all local maxima of
J(R). Clearly, there are p!(n — p)! such permutation matrices. For 0 < p <
n, the number of these permutation matrices is fairly large. Therefore, there
always exists many local maxima of J(R) that correspond to the stable feasible
solutions of the ICA problem. In other words, the ICA problem has many stable
feasible solutions under the one-bit-matching condition via locally maximizing
the objective function J(R).
In the similar context, we can prove the following theorem.

Theorem 2. IfR* is a permutation matriz up to sign indeterminacy and k;; < 0
at all the positions where \r;kj | = 1, it corresponds to a local minimum of the objective
function J(R).

Remark 2. According to Theorem 2 and under the one-bit-matching con-
dition, if the nonzero elements of a permutation matrix are all in the sub-
matrices Kio and Kap, it is a local minimum of J(R). That is, it is possi-
ble that the local minimum of the objective function can be a feasible solu-
tion of the ICA problem, which actually explains why a local gradient-descent
search of the objective function can also lead to a feasible solution of the ICA
problem in certain scenarios. However, this kind of permutation matrix can
only exist in the special case where n = 2p (i.e., half super-Gaussian and half
sub-Gaussian).

Moreover, since the condition (8) is also necessary for a local optimum solution
(maximum or minimum) of the constrained function we can conclude that if
the numbers of positive and negative k;; at the positions where |rfj = 1 are
both greater than 1, R* will be a saddle point of the objective function J(R).
Clearly, such a permutation matrix generally exists and also corresponds to
a feasible solution of the ICA problem with mixed super- and sub-Gaussian
sources; however, this solution is always unstable.

To sum up the above results, we have established that under the one-bit-
matching condition, there always exist many stable feasible solutions of the ICA
problem via locally maximizing the objective function (6); in the meanwhile,
there may exist some unstable feasible solutions of the ICA problem; in addition,
there may exist local minima of J(R) that correspond to the stable feasible
solutions in the cases of mixed super- and sub-Gaussian sources.

4 Conclusion

In this paper, we have analyzed the feasible solutions of the ICA problem un-
der the one-bit-matching condition. By mathematical analysis, we have proved
that there always exist many stable feasible solutions of the ICA problem under
the one-bit-matching condition. In the meanwhile, under the one-bit-matching
condition, there may exist some unstable feasible solutions of the ICA prob-
lem; moreover, there may exist local minima of J(R) corresponding to the sta-
ble feasible solutions of the ICA problem with mixed super- and sub-Gaussian
sources.
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