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Summary

Background: High content screening (HCS) via automated
fluorescence microscopy is a powerful technology for
generating cellular images that are rich in phenotypic
information. RNA interference is a revolutionary approach
for silencing gene expression and has become an important
method for studying genes through RNA interference-induced
cellular phenotype analysis. The convergence of the two
technologies has led to large-scale, image-based studies of
cellular phenotypes under systematic perturbations of RNA
interference. However, existing high content screening image
analysis tools are inadequate to extract content regarding
cell morphology from the complex images, thus they limit
the potential of genome-wide RNA interference high content
screening screening for simple marker readouts. In particular,
over-segmentation is one of the persistent problems of cell
segmentation; this paper describes a new method to alleviate
this problem.
Methods: To solve the issue of over-segmentation, we propose a
novel feedback system with a hybrid model for automated cell
segmentation of images from high content screening. A Hybrid
learning model is developed based on three scoring models to
capture specific characteristics of over-segmented cells. Dead
nuclei are also removed through a statistical model.
Results: Experimental validation showed that the proposed
method had 93.7% sensitivity and 94.23% specificity. When
applied to a set of images of F-actin-stained Drosophila cells,
91.3% of over-segmented cells were detected and only 2.8%
were under-segmented.

Correspondence to: Stephen T.C. Wong. Tel: 617-525-7595; fax: 617-525-6220;

e-mail: stephen wong@hms.harvard.edu

Conclusions: The proposed feedback system significantly
reduces over-segmentation of cell bodies caused by over-
segmented nuclei, dead nuclei, and dividing cells. This system
can be used in the automated analysis system of high content
screening images.

1. Introduction

High content screening (HCS) by automated fluorescence
microscopy is becoming an important and widely used
research tool to assist scientists in understanding complex
cellular processes, such as mitosis and apoptosis, as well as
in disease diagnosis and prognosis, drug target validation
and compound-led selection (Perlman et al., 2004; Zhou &
Wong, 2006a,b). Meanwhile, RNA interference (RNAi) is a
revolutionary approach for silencing gene expression and has
become an important method for analyzing gene function.
The convergence of the two technologies has led to large-
scale, image-based studies of cellular phenotypes by systematic
perturbation using RNAi. Indeed, cellular images generated by
the RNAi-HCS technology are relatively new to image analysis
and pattern recognition communities such that existing HCS
image analysis tools are inadequate to delineate and extract
the rich morphologic content of cellular phenotypes from
the complex images, a problem that significantly restricts
the potential of HCS in systems biology and drug discovery.
However, since it is time-consuming and impractical to
segment cells manually for vast amounts of image data sets
generated in HCS studies, the availability of fully automated
cell image segmentation and quantification system is critical
to the success of HCS.
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Using images acquired by automated microscopy, biologists
visualize phenotypic changes resulting from reverse-
functional analysis by the treatment of Drosophila cells in
culture with gene specific double-stranded RNAs (dsRNAs),
which ‘knocks-out’ target gene function by RNAi technology
(Boutros et al., 2004). Even for a small scale RNAi study by
manual analysis, a wide range of phenotypes with affected
cytoskeletal organization and cell shape was observed (Kiger
et al., 2003). However, in genome-wide RNAi-HCS studies,
there are more than 21 000 gene-specific dsRNAs, resulting
in hundreds of thousands of images in a single experiment (see
Section 2.1). Consequently, it is impossible to characterize and
quantitate the morphological phenotypes manually. A fully
automated, robust cell image analysis system is needed.

A number of automated methods for segmentation of
nuclei and cell bodies are available. These methods can be
generally classified into three categories: deformable model,
Voronoi diagram, and watershed. Segmentation algorithms
using deformable models are popular in which cell contours
evolve under the direction of internal and external forces from
initial contours until they reach cell boundaries. Two such
deformable model methods, snake and level sets, are widely
used to segment three-channel images (Kass et al., 1987;
Malladi et al., 1995; Klemencic et al., 1998; Chan & Vese, 2001;
Xiongetal.,2005). Inthesemethods,however,edgedetectionis
a function of the image gradient, which usually results in edge
leaking, and the correct segmentation result closely depends
on the initialization of the contours, which is also difficult.
Moreover, these methods are known to be computationally
expensive(seeXiongetal.,2005).ThegeneralVoronoidiagram
method only can detect the approximate position and region of
cells (Morelock et al., 2005). A novel variation of the Voronoi
diagram method defines more accurate cell boundaries (Jones
et al., 2005); however, this method degenerates into the general
Voronoi diagram method when image noise increases. The
Voronoi diagram methods also require the initial positions
of the cells. Finally, the watershed method and its variations
(Beucher, 1992; Lin et al., 2003; Vincent & Soille, 1991)
suffer a drawback of over-segmentation. Although rule-based
merging methods (Adiga & Chaudhuri, 2001; Wahlby et al.,

2002), e.g. size or integrated pixel intensity, can be used to
reduce the over-segmentation, it is difficult to define reliable
rules, and these heuristic rules are often prone to error
in processing complicated cell images. Consequently, seeded
watershed is commonly used to reduce the over-segmentation
(Vincent & Soille, 1991; Beucher, 1992; Lin et al., 2003, 2005;
Lindblad et al., 2004). Segmenting nuclei is relatively easy
because of their regular shapes and high intensity relative to
background signals. So the position and contour information
of the nuclei are widely used in aforementioned methods:
the initial contouring in the deformable based methods, the
cell positions in the Voronoi diagram based methods, and
the ‘seeds’ in the watershed methods. Cellomics (Kapur,
2001), Q3DM (Morelock et al., 2005), GE-InCell Analyzer
(Lindblad et al., 2004) and CellProfiler (Jones et al., 2005)
are commercially or publicly available software for cellular
image analysis, and they employ either Voronoi diagram
(propagation) or watershed methods for cell segmentation.

All the segmentation methods discussed above are
dependent on the segmented nuclei for three-channel based
analysis, a strategy with serious drawbacks. The drawbacks
lay on the following facts. To visualize nuclei, cells are stained
with the ultraviolet-fluorescing, DNA-binding molecule 4′,6-
diamidino-2-phenylindole (DAPI). The inherent properties of
cells and the DAPI stain lead to over-segmentation. Especially,
when cells are actively dividing, DNA condenses and separates
into two regions, two nuclei visually, within a single cell.
Consequently, the two nuclei within one cell would result
in over-segmentation (Fig. 1A). Additionally, erroneous over-
segmentation of nuclei also causes over-segmentation of the
cell directly (Fig. 1B). Finally, there are occasionally some
nuclei that have little or no cytoplasm (based on staining
captured in the F-actin channel). These nuclei, which we
refer to as dead nuclei, also cause over-segmentation of the
cell cytoplasm (Fig. 1C). Lin et al. (2003, 2005) proposed
a machine learning method to reduce over-segmentation in
nuclear segmentation, however, it cannot efficiently solve the
problem of over-segmentation of cell cytoplasm as the large
number of irregular shapes and topological structures found
in cell cytoplasm images generated by RNAi screening.

Fig. 1. Multiple factors contribute to over-segmentation of cells. Green is F-actin staining, which visualizes the cytoskeleton; red is DAPI staining, which
visualizes DNA within the nucleus. A: An actively dividing cell, which has two DAPI-stained regions, is over-segmented. B: Over-segmented nucleus results
in the over-segmentation of cell directly. C: Dead nuclei (arrows) result in over-segmentation of cells.
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Fig. 2. An overview of the flowchart of the entire segmentation system for RNAi high content screening image analysis.

The goal of the present work is to build a fully automated
RNAi cell image segmentation system that can be used to
quantify the behaviours of the cells for the gene functions’
research. The specific focus of the present work is to reduce
the over-segmentation of cell cytoplasm in HCS images, which
cannot be solved effectively by the existing methods. To achieve
this task, we first filter out the dead nuclei via a statistical
approach and then reduce the over-segmentation of the nuclei.
In particular, we build a novel feedback system in which
three scoring models are defined carefully to capture the
specific differences between the over- and well-segmented cells.
Using a well known statistical classifier, quadratic discriminant
analysis (QDA), the over-segmented cells are then identified
and merged. Figure 2 illustrates the flowchart of the proposed
system. The system is composed of two major modules: initial
cell segmentation and feedback merging system. The initial cell
segmentation consists of six sub-modules: (1) image noise is
suppressed in the image pre-processing modules; (2) the DAPI
signal (nucleus) is separated from the background of the DNA
image using adaptive thresholding; (3) nuclear regions are
segmented by watershed segmentation; (4) over-segmentation
of nuclei is reduced via roughness merging method; (5) dead
nuclei are filtered out and (6) cell bodies are segmented via a
seeded watershed model using the separated nuclei as seeds.
The feedback system entails three steps. First, three scoring
models are defined to capture specific characteristics of the
over-segmented cells. Secondly, a classifier maps the three
scores into a merging decision. Finally, over-segmented cells
are detected and merged according to merging decisions.

2. Materials and methods

2.1. RNAi-HCS images

A genome-wide screen examines more than 21,000 dsRNAs,
specific to predicted Drosophila genes. The dsRNAs are
robotically arrayed in 384-well plates. Drosophila cells are
plated and taken up the dsRNA from culture media so that
the desired assay is performed. After the desired incubation
time with the dsRNA, cells are fixed, stained and imaged by
automated microscopy. For each dsRNA treatment, three sites
are imaged, and for each site as many as three channels of
different cellular markers are acquired. Thus, a single replicate
will generate ∼200 000 images with the size of 1280 ×
1024 pixels. In the present study, a cell-based assay for
Rho GTPase activity was developed using the Drosophila
Kc167 embryonic cell line, which is described elsewhere (Kiger
et al., 2003). Three distinct cellular phenotypes are observed:
normal, spiky and ruffling (Fig. 3).

2.2. Image pre-processing

Before segmenting an image, it is necessary to perform pre-
processing because the noises, artefacts, uneven illumination,
and striped patterns would degrade image quality (Wahlby
et al., 2002; Lin et al., 2003; Lindblad et al., 2004). To remove
the noises and other artefacts without blurring the edges,
median filtering is commonly used (Wahlby et al., 2002; Lin
et al., 2003). For uneven illumination and striped patterns,
a data-driven background algorithm (Wahlby et al., 2002;
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Fig. 3. Three distinct cellular phenotypes are observed. A: Normal. B: Spiky. C: Ruffling. All panels are stained with TRITC-phalloidin to visualize F-actin.

Lindblad et al., 2004) is employed to correct the degradation
of the images. The algorithm makes use of the cubic B-splines,
whichhavegoodfeaturesofcontinuousnessandsmoothnessto
estimate the background iteratively, and the foreground pixels
are detected gradually each time by subtracting the estimated
background from the original image. The convergence of this
algorithm is fast, and, after reducing the influences of uneven
illumination and striped patterns, the resulting image has
better quality also.

2.3. Initial cell image segmentation

Nuclear segmentation. First, the nuclei are separated from the
background by using the adaptive threshold method (Otsu,
1978; Sahoo et al., 1988). Next, watershed algorithm is applied
to the distance-transformed image to separate the nuclear
clusters. Instead of using the model-based merging algorithm
described in (Lin et al., 2003, 2005), a simple and efficient
roughness-merging algorithm is adopted to reduce the over-
segmentation of nucleus (Chen et al., 2006). As can be seen in
Figs 4A and B, the number of over-segmented nuclei is reduced
significantly after roughness merging. Figure 4C is the manual
segmentation result. Morphological open operation (Lin et al.,
2003) is then applied to smooth the nuclear boundaries.

Removal of dead nuclei. Certain drosophila cells died during
screening. When cells are dying, their cytoplasm gradually
disappears, and at the same time, the volume of the nuclei
also shrinks. Thus, it causes the stain dye to sustain a
high concentration. As a result, dead nuclei are clearly
distinguished by their brighter intensity and smaller size than

the living nuclei (Fig. 5A). The cell cytoplasm corresponding
to these nuclei, as observed in the F-actin channel, has almost
disappeared (Fig. 5B). The dead cells are not considered in the
RNAi analysis; however, when dead nuclei are covered by the
cytoplasm of living cells, it will cause over-segmentation of
cell cytoplasm (see Fig. 1B). So, all the dead nuclei should be
removed (Fig. 5C).

Detection of dead nuclei is a classification problem. First,
specific features that can be used to describe the differences
between the dead nuclei and the living nuclei are needed.
For complex classification problems, (Zernike, 1934; Haralick,
1979; Cohen et al., 1992; Manjunath and Ma, 1996; Wang
et al., 2006) extracted many features for every nuclei, out of
which an approximately optimal subset of features was found
using automated feature selection algorithms (Siedlecki and
Sklansky, 1989; Pudil et al., 1994; Jain & Zongker, 1997). We
noticed that the differences between dead nuclei and living
nuclei are distinct, for example, the dead nuclei have smaller
size and higher intensity than the living cells. Thus, we directly
extract the size, intensity and the standard intensity deviation
of the nuclei as features to distinguish the dead nuclei from the
living nuclei.

A well tested and widely used statistical QDA classifier
(Duda and Hart, 1973; Lindblad et al., 2004) is employed
for classification. The QDA classifier makes use of two
Gaussian distributions to fit the two clusters: dead and living
nuclei. Then, Bayes’ rule was used to calculate the posterior
probabilities, and the maximum of the posterior probabilities
was used to decide a nucleus’ class. In our study, a training
data set including 108 dead nuclei and 1, 243 living nuclei

Fig. 4. Comparison of results before and after roughness merging. A: Result before the roughness merging step. B: Result after the roughness merging
step. C: Manual segmentation result.
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Fig. 5. Illustration of the procedure of removing the dead nuclei. A: The original nuclei image in the DNA channel with dead nuclei (red arrows). B: The
colour image derived from the original DNA channel (red) and the F-actin channel (red). C: The colour image after removing the dead nuclei.

were collected to estimate the parameters in the QDA classifier.
The QDA classifier is detailed in Section 2.4.4. After this step,
most of dead nuclei were filtered out. Experimental result, see
Section 3.1, shows that the sensitivity and specificity levels
reach 95.83% and 95.47%, respectively.

Initial cell body segmentation. After segmenting nuclei, the
cellcytoplasmcanbeseparatedviaaseededwatershedmethod.
First, fuzzy c-means threshold algorithm (Pham et al., 2004;
Zhou et al., 2005) is applied to the F-actin channel to separate
the cell cytoplasm from the background. Then, we apply the
seeded watershed algorithm to the F-actin images directly to
separate the touching cells since in the F-actin images, the
skeletons (edges) of cells, always have higher intensity than
the interior of the cells, so the watersheds will be built on the
desired edges. The other reason is that the intensity of the
cytoplasm often has a non-uniform variation inside the cells,
so the gradient image cannot describe the boundary well.

2.4. Feedback merging system

To deal with the over-segmentation of cell cytoplasm, we
developed a feedback system based on a hybrid model of scoring
and classification. Three different scoring models are used
to describe the characteristics of the over-segmented cells:
Mahalanobis distance (MD) model, centre region gradient
(CRG) model, and edge intensity (EI) model. We built a classifier
tomodelthescores, S ={SMD, SCRG, SEI},derivedfromthethree

scoring models. The output y determined whether or not the
two cells should be merged into a single cell with two nuclei.
Here y takes 0 (not merging) or 1 (merging). Mathematically,
the model can be given by:

y = f (S) = f (SMD, SCRG, SEI) (1)

In the following sections, we describe the three models used
to generate scores and the classifying model. For notational
convenience, let c1 and c2 denote two touching cells; e is their
common edge. Cell c is the cell after merging cell c1 and c2
whereas n1 and n2 are nuclei corresponding to cells c1 and
c2. On the other hand, o1, o2, and r1, r2 are the centroids and
radii of nuclei of n1 and n2, respectively.

2.4.1. Mahalanobis distance model. We reason that there would
be measurable differences between over-segmented cells and
appropriately segmented cells. Two statistical models, the
probability density function (PDF) model [14,16] and the MD
model (Wahlby et al., 2002), are widely used to measure the
differences between two objects. Here, we use the MD model
because the value range of the PDF model is too small for
accurate analysis.

Feature extraction & automatic feature selection for MD
model. A training data set, including 300 intact normal cells,
200 intact spiky cells, 200 intact ruffling cells, and 100 partial
cells (cells that were identified manually as over-segmented),
is collected from the initial segmentation result first. Next,
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211 features (Wang et al., 2006) are extracted to differentiate
the geometric properties and appearances of three phenotypes
and partial cells. Generally, the features are classified into five
categories: three kinds of general features, including wavelet
features (Cohen et al., 1992; Manjunath & Ma, 1996), Zernike
moments features (Zernike, 1934), and Haralick features
(Haralick, 1979), and two kinds of specific shape descriptor
features (Wang et al., 2006). Then, the sequential floating
forward selection algorithm (SFFS) (Pudil et al., 1994) is
adopted to select a subset of features to reduce the influence
of over-training and to improve the ability of generalization
of the classifier on new data sets. Linearly dependent or near-
linearly dependent features were removed based on Pearson’s
linear correlation coefficients to avoid a singular matrix in
the MD model. Finally, we select three subsets of features that
distinguish partial cells from the intact normal, spiky and
ruffling cells.

MD model and MD score. We derive a score, denoted as Sc
MD,

from the MD models. For each cell, there were three MD models
defined as:

d 2
N = (⇀

x − ⇀

xN )′�−1
N (⇀

x − ⇀

xN ) (2)

where ⇀

x is the feature vector of input cell, ⇀

xN is the mean value
of normal sample set and �−1

N are normal sample covariance
matrix in the given features space. Similarly, the MD models
for spiky and ruffling phenotypes are constructed in the same
way, by replacing the sample mean value vector ⇀

xN and sample
covariance matrix�−1

N with ⇀

xS, ⇀

xR and�−1
S ,�−1

R , respectively.
Thus, for one cell c, three MD distances are calculated, {dc

N ,
dc

S, dc
R}, describing the difference between the input cell c

and the mean value of normal, spiky, and ruffling samples,
⇀

xN ,
⇀

xS,
⇀

xR}.
Specifically, three MD distances are obtained for cells c1 and

c2: {dci
N , dci

S , dci
R}, i = 1, 2 and cell c:{dc

N , dc
S, dc

R} (see Fig. 6). We
define the MD scores of cells c1 and c2 as follows:

Sc
MD = (D c1 + D c2)

2 × D c
, (3)

where

D ci = min
(
d ci

N , d ci
S , d ci

R

)
, i = 1, 2, andD c = min

(
d c

N , d c
S, d c

R

)
.

The minimum value of the three MDs reflects the difference
between the input cell and its nearest phenotype (represented
by the sample mean value vector) in the given features space.
Thus, if the merging cell c is more similar to one phenotype than

Fig. 6. Cells model in computing the MD score. c1 and c2 are two touching
cells and cis the cell after merging cell c1 and c2.

cells c1 and c2, D cshould be less than D c1 and D c2. It follows
that a higher value of Sc

MD results in a greater probability of
merging the two close-lying cells.

2.4.2. Centre region gradient model We also take advantage of
differences in the intensity patterns between cells to determine
if a cell is over-segmented. We observed that the intensity of a
region inside a cell is relatively flat (Fig. 7, left two columns),
whereas an increase in the form of a ridge appears between
two cells (Fig. 7, right two columns). These observations can
be easily expressed by intensity gradients. We reason that
if a cell is over-segmented, we will not find a significant
intensity ridge between the two touching cells. We construct
the CRG model using intensity gradient information between
two neighbouring cells.

Cropping centre region. To capture the gradient information
between two neighbouring cells accurately, a centre region R is
cropped first (red region in Fig. 8). The long axis a is the distance
between the two nuclear centroids, a = d (o 1, o 2), and the short
axis b is the average of the two nuclear diameters, b = (r 1 +
r 2). The centre region R has three important features. First,
since nuclei always reside within cells, R is located by default
within the two cells, thereby eliminating the noise of the true
boundaries of the two cells. Second, since the common edge
between the two cells must cross the region between two nuclei,
edge information is captured within this rectangle region, R.
Third, as the orientation of the ridge is roughly parallel to
the short axis b, the length of the ridge, denoted as Ne, is
proportional to the length of short axis b. This relationship
offers a good criterion for the following definition of the score
of the CRG.

CRG model and CRG score. After cropping the centre region
R, the CRG model is defined as follows:

Sc
CRG = C × b( ∑

(x,y)∈R

q (G (x, y) − T )
) + 1

, (4)

where Sc
CRG is the CRG score, b is the length of the short axis

of R, and c is a constant whose value is used as a parameter to
control the value range of Sc

CRG; this does not influence the final
merging decision significantly. In our studies, we set C = 15
to make most of the partial cells’ CRG score, Sc

CRG, more than
one, and that of intact touching cells less than one. G (x, y) is
the gradient value of pixel (x, y), and T is an edge threshold that
determines whether pixel (x, y) is a ridge pixel or not, and T is set
automatically by applying the Otsu’ threshold method on the
gradient image. q(x) is an indictor function which takes a value
of 1 when x ≥ 0, and 0 otherwise. Therefore, the CRG score
Sc

CRG indicates the nature of the edge between two touching
cells: a higher value of Sc

CRG indicates that there is a weak edge
and the two cells are likely to be part of an over-segmented
cell, whereas a lower value of Sc

CRG means that there is a true,
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Fig. 7. Illustration of the ridge (gradient) information inside and between cells. The top row are the colour images derived from the original DNA channel
and the actin channel, with the red objects are nuclei and the green material cytoplasm. The middle row shows the actin channel images. The bottom
row displays the gradient images.

Fig. 8. Illustration of the cropping of centre region in the CRG model.

strong edge, indicating the two touching cells are segmented
appropriately.

2.4.3. Edge intensity model. As mentioned above, the interior
intensity of the cell is lower than its boundaries in the F-
actin images, and the seeded watershed algorithm is applied
to the intensity image directly. Therefore, if a cell is over-
segmented, the common edges between the partial cells have
lower intensity than the true edges, as can be seen in Fig. 9A,
and the common edge between two intact cells shown in
Fig. 9B.

EI model and EI score. Based on the above observation, the
EI model is built as following:

Sc
EI = min{ave(Ib1), ave(Ib2)}

ave(Ie )
, (5)

where SEI is the EI score and ave(I b1), ave(I b2) and ave(Ie) are
the average intensities of boundaries b1, b2 and e , respectively.

Fig. 9. Illustration of the common edges. A: Common edge between two
partial cells. B: Common edge between two intact cells.

The reason we choose the minimum of the average intensities
of the boundaries, b1 and b2, is to eliminate noisy pixels in
the boundary that may disturb the average intensity of the
boundary. If the common edge is weak, the EI score, Sc

EI, will
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be high. It follows that if the common edge is true and strong,
Sc

EI will be low.
We use three models defined above to describe specific

characteristics of over-segmented cells. The MD model detects
the over-segmented cells using cellular phenotypes; the CRG
model uses interior gradient information, and the EI model
uses boundary intensity information. Each model has distinct
and important contributions to the final merging decision. In
what follows, we will present a model to combine the three
scores to resolve the problem of over-segmentation.

2.4.4. Merging model using Quadratic discriminant analysis.
After the MD, CRG, and EI scores are calculated, one may
simply apply a linear weighted combination rules to combine
the three scores to determine whether or not the two cells
need to be merged. However a simple linear combination does
not work well because of the following two reasons. First, the
values of the three scores are in different ranges, making the
weights of each parameter difficult to determine. Second, the
final threshold for separating the over-segmented cells is often
obtained empirically, so it is not proper for the fully automated
system because fixed threshold does not always work in all
images. Thus, we resort to machine learning and built a non-
linear classifier that uses the three scores to sort the touching
cells into the ‘merging’ or ‘not-merging’ class.

The well-known statistical QDA classifier (Duda & Hart,
1973; Lindblad et al., 2004), which is shown to fit our training
data set well, is adopted. The training data contains 500 pairs
of cells in total, in which there are 200 pairs of partial cells
and 300 intact cells. The QDA classifier assumes that the data
consists of several Gaussian distributions. Mathematically,
given an observation set {x1, x2, . . . , xn | xi ∈Rm}, we assume
that there are K classes, denoted as C i, i = 1, 2, . . . , k. Let
π c j denotes the prior probabilities of the class C j, and p(xi |C j)
denotes the probability of the observation xi for class C j. So the
posterior probability of class C j after observing sample xi has
the following form:

p(C j | xi ) = p(C j , xi )
p(xi )

=∝ πc j p(xi | C j ). (6)

According to the Bayes rule, choosing the class C lof the
observation of xivia maximizing the posterior probability will
have the smallest expected number of errors. The QDA uses the

following discriminate functions:

g j (xi ) = log
(
πC j

) − 1
2

(
xi − μC j

) −1∑
C j

(
xi − μC j

)
−m

2
log

(∣∣∣∣∣∑
C j

∣∣∣∣∣
)

, j = 1, 2, . . . , k,
(7)

where μC j , �Cj and π Cj are estimated from the training data
set.

In this study, we have two classes: merging class and not-
merging class, k = 2. The input variable xi takes values from
the set xi = (Si

MD, Si
CRG, Si

EI)
′
; i.g. m = 3. The decision of the

quadratic classifier is given by:

y =
{

0, i f g1(xi ) ≥ g2(xi );

1, i f g1(xi ) < g2(xi ).
(8)

For one input of a pair of cells, if y = 0, this pair is classified
into the not-merging class, if y = 1, this pair is classified into
the merging class.

Merging procedure – feedback System. Based on QDA
classification results, the over-segmented cells are detected
and merged. For some cells, when we check its neighbours,
we notice that there are several neighbours that satisfy the
merging conditions simultaneously. In such cases, cell pairs
with the largest merging probability are chosen to be merged.
If none of the cell pairs belong to the merging class, the
cell is tagged with a value that indicates the cell has been
checked to avoid repeated check. Also, when a cell is merged
with its neighbour, the new cell has two nuclei; therefore, an
artificial nucleus, based on the original two nuclei, is generated
(illustrated in Fig. 10). The artificial nucleus ensures that
each cell had only one nucleus for the next computation of
Sc

CRG. The feedback procedure is repeated until no cell can be
merged further. The procedure of the entire feedback system is
described as follows:
1 Step 1. Select a cell c 0 that has not been checked before.

Put all its touching neighbours {c 1, c 2, . . . , ck} into one
merging candidate list.

2 Step 2. Compute three scores for every pair of cells {c 0, cj},
j ∈ {1, 2, . . . , k}.

3 Step 3. Input three scores into the QDA classifier. Obtain the
classes of every pair of cells {c 0, cj}, j ∈ {1, 2, . . . , k}.

Fig. 10. Illustration of creating new nucleus, where a = |o 1 − o 2 | and r = (r1+r2)
2 .

C© 2007 The Authors
Journal compilation C© 2007 The Royal Microscopical Society, Journal of Microscopy, 226, 121–132



AU T O M AT E D F E E D B AC K S YS T E M W I T H T H E H Y B R I D M O D E L 1 2 9

Table 1. Confusion matrix of the QDA classifier on the
extracted nuclei data set.

Predicted

Dead nuclei Live nuclei

Actual Dead nuclei 95.83% 4.17%
Live nuclei 4.84% 95.16%

4 Step 4. If there is no element in the merging class, tag the
cell c 0. Otherwise, choose the cell pair (c 0, cl), l ∈ (1, 2, . . .

, k) with the largest merging probability and merge them.
Generate an artificial nucleus for the new cell.

5 Step 5. Repeat steps (1) to (4) until all the cells have been
tagged.

3. Results

3.1. Evaluation of the dead nuclei removal model

The first experiment is to test the model of removing the dead
cell nuclei. We randomly selected six DNA channel images
and applied the nuclear segmentation algorithm generating
a total of 1351 nuclei with 108 dead cells nuclei. To evaluate
the dead nuclei removal model, the three-fold cross-validation
scheme was employed. Table 1 provides the experiment results
in detail. The sensitivity level is 95.83%, and the specificity
level is 95.16%.

3.2. Evaluation of the feedback system

3.2.1. Experiment on 500 pairs of selected touching cells set.
To evaluate the accuracy of our feedback system, 500 pairs
of cells were selected, including 200 pairs of dividing cells
and 300 pairs of intact touching cells, from 200 F-actin
channel images. Three-fold cross-validation method was used.
For computational efficiency, five features were automatically
selected for each phenotype in the MD models. Table 2 gives
the number of selected features from five categories of features,
and the classification accuracies on three training sets. Table 3
shows the results of our feedback system. Table 4 displays the
classification results using the three individual MD score, CRT
score, EI score and combination of three scores. By comparing
Tables 3 and 4, it is clear that the feedback system detected

Table 2. Three selected subsets of features and classification accuracy on the three training sets.

Features/
MD models Wavelet Geometry Moment Texture Shape Accuracy

Normal-MD model 1 1 1 2 0 94.75%
Spiky-MD model 1 1 0 2 1 90.33%
Ruffling-MD model 1 1 1 1 1 91.33%

Table 3. Confusion matrix of the QDA classifier with three
scores on the extracted cells data set.

Predicted

Partial cells Intact cells

Actual Partial cells 93.70% 6.30%
Intact cells 5.77% 94.23%

Table 4. Classification results of the three individual scores and their
combinations.

Sensitivity Specificity Error rate

MD score 91.35% 60.57% 27.12%
CRI score 96.68% 90.3% 6.66%
EI score 64.2% 96.30% 16.52%
Combination of three scores 93.70% 94.23% 6.00%

dividing cells more accurately and robustly than the three
scores separately.

3.2.2. Comparison of our feedback system with CellProfiler and
manual annotation. We tested our feedback system on four
Drosophila actin channel images that contained many dividing
cells. Figure11 illustrates the results of the selected cytoplasm
images in which we can clearly see that several red nuclei share
one common green cytoplasm in the first column. Results
prior to the feedback merging step and after the feedback
merging step are arranged in the middle and the right columns,
respectively. It is shown that most of the over-segmented cells
are detected and merged. Table 5 gives the detailed statistical
result of the four cytoplasm images. We can see that 91.30%
of the over-segmented cells are detected and merged via the
feedback system and only 2.80% of total cells are under-
segmentation.

To evaluate our feedback system, we also compared
the segmentation results with that of CellProfiler,
which is free software for fluorescence image analysis
(http://jura.wi.mit.edu/cellprofiler/). CellProfiler resulted
in considerable over-segmentation of cell cytoplasm caused
by the over-segmented nuclei and the dividing cells; see
Fig. 12. The method used in ‘CellProfiler’ is the typical seeded
watershed method in which the nuclei are used as the ‘seeds’
to segment the cell cytoplasm. So the over-segmentation
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Fig. 11. Comparison of the results of segmentation before and after feedback merging. (A): the colour image with red nuclei and green cytoplasm; (B): the
segmentation result before feedback merging; (C) the segmentation result after feedback merging. (D–F): the magnified images corresponding to the red
box in Fig. A–C. Cells labelled a–e are over-segmented before merging (E). After feedback merging, cells a, b, c and e are appropriately merged, whereas d
remains over-segmented.

problem cannot be solved because of the existence of cell
division. Using the segmented nuclei directly as seeds for
cell cytoplasm segmentation, as in CellProfiler, resulted in
nearly 20% over-segmentation of the cells. The proposed
feedback system alleviates the over-segmentation problem
dramatically.

4. Conclusion and discussion

For RNAi high content screening, fully automated image
analysis systems are needed urgently. Cell segmentation is the
essentialpartof theimageanalysis inwhichover-segmentation
problem is one of most challenged problem. To the best of our
knowledge, there are no efficient algorithms that solve the over-
segmentation problems caused by dead nuclei and dividing
cells. Definiens (http://www.definiens.com/documents/) is a
rather expensive commercial image processing package which
use a cognitive network based algorithm to fuse the over-
segmented cells. We performed evaluation using the Definiens
trial version, and we found that the results generated by
Definiens are rather poor. The major reasons of the poor
performance may be that (1) it is difficult to choose a set of
effective features in Definiens in order to describe the objects
to guide the fusing process, especially in the complex RNAi

cell images and (2) Definiens is not designed for RNAi cellular
image segmentation.

In the present work, we have demonstrated a novel and
fully automated feedback system developed for fluorescence
image cellular segmentation in the context of high-throughput
RNAi morphological screens of Drosophila cultured cells.
We specifically focused on reducing the over-segmentation
problem to obtain more accurate segmentation result. To
reduce the over-segmentation problem, three scoring models
were defined carefully. The advantage of the proposed method
is that three novel scoring models work together can identify
the over-segmented cells accurately and robustly. On the
other hand, the proposed method also expands the nucleus
information based cell cytoplasm segmentation methods
discussed in the introduction section. The experimental results
and validation of RNAi HCS images showed that the proposed
feedback system reduces over-segmentation to a significant
degree.

To improve the performance of the proposed method, it
will be important to select a good set of training images to
enhance the classifier; in this way on-line training strategy
can be adopted to enhance the performance of the feedback
merging system. The computational speed is also important
in the RNAi high content screening project, we compared the

Table 5. Statistical result of our feedback algorithm on four actin images.

Image I Image II Image III Image IV Total

# of over-segmented cells 27 36 40 35 138
# of correctly merged 23 34 38 31 126 (91.30%)
# of incorrectly merge 4 5 4 6 19 (2.80%)
# of total intact cells 148 178 185 168 679
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Fig. 12. The over-segmentation result of CellProfiler.

proposed method with level sets (Xiong et al., 2005). Both of
the methods implemented with Matlab codes, the program run
on a windows XP computer (Pentium 4 2.8G). We use 10
sets of RNAi screening images (1280 × 1024 pixels) in the
evaluation. The results show that the level sets method takes
more than 3 days whereas our proposed method takes about
11 min, which is much faster than the level sets method. In
conclusion, the proposed feedback merging system resolves the
problem of over-segmentation of cell bodies in RNAi screening
high-content images efficiently.
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