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Abstract. The Mixture of Gaussian Processes (MGP) is a powerful statistical 
learning framework in machine learning. For the learning of MGP on a given 
dataset, it is necessary to solve the model selection problem, i.e., to determine 
the number ܥ of actual GP components in the mixture. However, the current 
learning algorithms for MGPs cannot solve this problem effectively. In this pa-
per, we propose an effective model selection criterion, called the Synchronously 
Balancing or SB criterion for MGPs. It is demonstrated by the experimental re-
sults that this SB criterion is feasible and even outperforms two classical crite-
rions: AIC and BIC, for model selection on MGPs. Moreover, it is found that 
there exists a feasible interval of the penalty coefficient for correct model  
selection.  

Keywords: Mixture of Gaussian processes, Model selection, EM algorithm,  
Parameter learning, Likelihood. 

1 Introduction 

The Gaussian Process (GP) model is a powerful tool for machine learning. However, 
it has two limitations. Firstly, it can only fit a single modality dataset. Secondly, for 
the GP model, the learning algorithm has a large computational complexity ܱሺܰଷሻ[1], where ܰ is the number of training samples. In order to solve these issues, 
Tresp [2] proposed the mixture of Gaussian processes (MGP) in 2000. From then on, 
various MGP models have been proposed and can be classified into two main forms: 
the conditional models [2-5] and the generative models [1, 6]. Here, we adopt the 
generative model since it can infer missing inputs from outputs [7]. In fact, with dif-
ferent number of GP components, the MGP model may lead to quite different expe-
rimental results for regression and classification. So, it is critical to know the true 
number of GP components in the mixture or dataset and thus to get the reasonable 
result. That is, we must determine the number ܥ of GP components in the mixture for 
the parameter learning, which is referred to as the model selection problem for the 
learning of the mixture. 
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For model selection, there are some classical criterions like AIC [8], BIC [9], etc., 
which have been demonstrated effectively for Gaussian Mixtures. However, for 
MGPs, these criterions do not fit well. In order to solve this model selection problem, 
we try to improve AIC, BIC criterion and propose a new and effective model selec-
tion criterion for model selection on MGPs, called the Synchronously Balancing or 
SB criterion.  

For parameter learning, EM algorithm is an effective way for finite mixtures [10]. 
However, for the MGP model, the approximations in the implementation of E-step or 
M-step must be made since it cannot be computed efficiently yet. Among these ap-
proximation versions of the EM algorithm for MGPs, we adopt the recently proposed 
hard-cut EM algorithm [11]. However, the EM algorithm has the local maxima prob-
lem. To solve this problem, we further implement the SMEM algorithm [12] after the 
convergence of the hard-cut EM algorithm. 

The rest of the paper is organized as follows. Section 2 introduces the GP and 
MGP models. Section 3 presents the SB criterion and gives the model selection 
framework. In Section 4, we test the SB criterion on three synthetic datasets and com-
pare it with AIC, BIC. Moreover, we apply our SB criterion on an artificial toy data-
set to select the number of actual components. Finally, we make a brief conclusion in 
Section 5. 

2 The GP and MGP Models  

2.1 The GP Model 

Given a dataset consisting of ܰ  samples ࡰ ൌ ሼࢄ, ሽࢅ ൌ ሼሺ࢞௜, :௜ሻݕ ݅ ൌ 1,2, ڮ , ܰሽ , 
where ࢞௜ is a ܳ-dimensional input vector, and ݕ௜  is an output, a GP model is ma-
thematically defined as follows: 

,ሻࢄ൫݉ሺܰ~ࢅ  ,ࢄሺܭ  ሻ൯ (1)ࢄ

where 

 ݉ሺࢄሻ ൌ ሾ݉ሺ࢞ଵሻ, ݉ሺ࢞ଶሻ, ڮ , ݉ሺ࢞ேሻሿ் (2) 

,ࢄሺܭ  ሻࢄ ൌ ,௜࢞൫ܭൣ  ௝൯൧ேൈே (3)࢞

denote the mean vector and covariance matrix, respectively. As in most cases, we can 
set ݉ሺࢄሻ ൌ ૙, and adopt the squared exponential (SE) covariance function [13]: 

,௜࢞൫ܭ  ൯ࣂ|௝࢞ ൌ ݂ଶ݁݌ݔ ቀെ ௟మଶ ฮ࢞௜ െ ௝ฮଶቁ࢞ ൅ ሺ݅ܫଶߪ ൌ ݆ሻ (4) 

where ࣂ ൌ ሼ݂, ݈, -ሽ denotes the parameters of the GP model. Therefore, the logߪ
likelihood function of the outputs can be derived as follows: 

 log ,ࢄ|ࢅሺ݌ ሻࣂ ൌ log ሾܰ൫ࢅ|૙, ,ࢄሺܭ  ሻ൯ሿ (5)ࣂ|ࢄ
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and we can obtain the estimation of these parameters via maximum likelihood estima-
tion (MLE), that is 

෡ࣂ  ൌ ,૙|ࢅሾܰ൫݃݋݈ࣂݔܽ݉݃ݎܽ ,ࢄሺܭ  ሻ൯ሿ (6)ࣂ|ࢄ

2.2 The MGP Model 

An MGP model is comprised of multiple Gaussian Process components, and in each 
component, the corresponding outputs are subject to a certain Gaussian Process. 
These Gaussian Processes have different parameters and are independent. 

For our generative MGP model, the samples are partitioned into the GP compo-
nents with the following probability 

௜ݖሺ݌  ൌ ܿሻ ൌ ;௖ߨ   ܿ ൌ 1,2, ڮ , .݅ ܥ ݅. ݅ ݎ݋݂ ݀ ൌ 1,2, ڮ , ܰ (7) 

where ݖ௜ ൌ ܿ means that the ݅-th sample belongs to the ܿ-th GP component. 
Given the partition of the samples, each input ࢞௜ is subject to a Gaussian distribu-

tion, that is 

௜ݖ |࢏࢞ሺ݌  ൌ ܿሻ~ࡺሺࣆ௖, ;௖ሻࡿ   ܿ ൌ 1,2, ڮ , .݅ ܥ ݅. ݅ ݎ݋݂ ݀ ൌ 1,2, ڮ , ܰ (8) 

Denote ࡵ௖ ൌ ሼ݅|ݖ௜ ൌ ܿሽ, ࢄ௖ ൌ ሼ࢞௜|ݖ௜ ൌ ܿሽ and ࢅ௖ ൌ ሼݕ௜|ݖ௜ ൌ ܿሽ as the indexes, 
inputs and outputs of the samples in the ܿ-th GP component, respectively. Given ࢄ௖, 
the corresponding outputs ࢅ௖ is subject to the GP given by Eq.(2) with the parame-
ters ࣂ௖ ൌ ሼ ௖݂, ݈௖,  .௖ሽ, and these GP components are independentߪ

In summary, Eqs. (1), (7), (8) completely define the generative MGP model. Based 
on the definition, the log-likelihood function is derived as follows: log ,ࢄ|ࢅሺ݌ ,ࢨ ሻࢸ ൌ ∑ ൛∑ ሾ݈ߨ݃݋௜ ൅ ,௖ࣆ|௜࢞ሺܰ݃݋݈ ೎ࡵא௖ሻሿ௜ࡿ ൅ ,௖|0࢟ሺܰ݃݋݈ ௖ሻൟ஼௖ୀଵࡷ  (9) 

where ࢨ ൌ ሼࣂ௖ሽ௖ୀଵ஼  and ࢸ  ൌ ሼࣆ௖, ௖ሽ௖ୀଵ஼ࡿ  denote the whole set of parameters for 
outputs and inputs, respectively. 

3 The SB Criterion and Model Selection Framework 

3.1 The SB Criterion 

The objective functions of the AIC and BIC criterion can both be expressed as fol-
lows: 

ܨ  ൌ log ݀݋݋݄݈݈݅݁݇݅ െߜ כ  (10) ݕݐ݈ܽ݊݁݌

where ߜ ൐ 0 denotes the penalty coefficient, log  denote ݕݐ݈ܽ݊݁݌ and ݀݋݋݄݈݈݅݁݇݅
the log-likelihood function and penalty term, respectively. For AIC criterion, ߜ ൌ 1 
and  ݕݐ݈ܽ݊݁݌ ൌ -denotes the number of parameters in each compo ܭ where ,ܥܭ
nent, and ܥ  denotes the number of components. For BIC criterion, ߜ ൌ 0.5 and ݕݐ݈ܽ݊݁݌ ൌ logܥܭ ܰ, where ܰ denotes the number of samples. These two criterions 
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work effectively for Gaussian Mixture Model. However, for the MGP model, the 
change of ݕݐ݈ܽ݊݁݌ with ܥ is too small in comparison with that of log  ,݀݋݋݄݈݈݅݁݇݅
so that the selected value of ܥ tends to be large. In order to solve this problem, we 
try to improve these two criterions to make the changes of the log-likelihood and the 
penalty term synchronously balanced and construct the following effective criterion: 

ܨ  ൌ log ݀݋݋݄݈݈݅݁݇݅ െ ܰߜ log  (11)  ܥ

Compared with AIC and BIC, such a penalty has a much larger variation with ܥ so 
that the log-likelihood and penalty are more balanced.   

3.2 Model Selection with SB Criterion 

Our proposed model selection framework combines the advantages of the SB crite-
rion, the hard-cut EM algorithm [11], and the SMEM algorithm [12]. More specifical-
ly, for some values of ܥ, we train the MGP model with hard-cut EM algorithm, up-
date the estimated parameters via SMEM algorithm to avoid local maxima, and then 
select the best value of ܥ according to the SB criterion. 

Before establishing our framework for model selection, we first introduce the hard-
cut EM algorithm as well as the SMEM algorithm used in this framework. 

The Hard-Cut EM Algorithm and the SMEM Algorithm. The main idea of the 
hard-cut EM algorithm is to partition the samples into the corresponding GP compo-
nents according to the maximum a posterior (MAP) criterion in E-step, that is 

௜ݖ  ൌ ,௖ࣆ|௜࢞௖ܰሺߨଵஸ௖ஸ஼ݔܽ݉݃ݎܽ ,௜|0ݕ௖ሻܰሺࡿ ݈௖ଶ ൅  ௖ଶሻ (12)ߪ

With the known partition, the parameters of each GP component are estimated via 
MLE respectively in M-step, i.e. 

௖ߨ  ൌ ଵே ∑ ௜ݖሺܫ ൌ ܿሻ,ே௜ୀଵ ௖ࣆ ൌ ∑ ூሺ௭೔ୀ௖ሻ࢞೟೔ಿసభ∑ ூሺ௭೔ୀ௖ሻ೔ಿసభ , ௖ࡿ ൌ ∑ ூሺ௭೔ୀ௖ሻሺ࢞೔ିࣆ೎ሻሺ࢞೔ିࣆ೎ሻ೅೔ಿసభ ∑ ூሺ௭೔ୀ௖ሻ೔ಿసభ  (13) 

and ࣂ௖ is learnt by Eq. (6). 
     In the SMEM algorithm, merge and split operations are implemented after the 
convergence of EM iterations in order to avoid local maxima.  

For convenience, we denote  

௖௜ݐݏ݋݌  ൌ ௜ݖሺ݌ ൌ ,௜࢞|ܿ ௜ሻݕ ൌ గ೎ேሺ࢞೔|ࣆ೎,ࡿ೎ሻே൫௬೔|଴,௟೎మାఙ೎మ൯∑ గ೎ேሺ࢞೔|ࣆ೎,ࡿ೎ሻே൫௬݅|଴,௟೎మାఙ೎మ൯಴೎సభ  (14) 

as the posterior probability of the ݐ-th sample belonging to the ܿ-th GP component 
obtained from EM iterations, and denote ݐݏ݋݌௖ ൌ ሺݐݏ݋݌௖ଵ, ,௖ଶݐݏ݋݌ ڮ , ௩ݐݏ݋݌ ௨ andݐݏ݋݌ ௖ேሻ. Whenݐݏ݋݌  are almost equal, we can merge the ݑ-th and the ݒ-th GP compo-
nents into one component. So, we define the merge criterion as the similarity between ݐݏ݋݌௨ and ݐݏ݋݌௩: 

 ܱ௠௘௥௚௘ሺݑ, ሻݒ ൌ ௣௢௦௧ೠ௣௢௦௧ೡ೅ԡ௣௢௦௧ೠԡԡ௣௢௦௧ೡԡ , ݑ ്  (15) ݒ
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where ԡ·ԡ denotes the Euclidean vector norm, and we can merge the two GP com-
ponents with the largest ܱ௠௘௥௚௘ሺݑ,   .ሻݒ

  After the merge operation, we attempt to split each GP component into two GP 
components, called the ݇ଵ-th and the ݇ଶ-th components, and estimate ݐݏ݋݌௞భand ݐݏ݋݌௞మ  by minimizing ܱ௠௘௥௚௘ሺ݇ଵ, ݇ଶሻ. Then, we only accept the split of the ݇כ-th 
GP component which leads to the smallest minimum ܱ௠௘௥௚௘ሺ݇ଵ, ݇ଶሻ. 

The Model Selection Framework. Denote the set of candidate values of ܥ as 

 ܵ ൌ ሼܥ|݈ ൑ ܥ ൑  ሽ (16)ܮ

For each element ܥ from the set ܵ, we learn the MGP model with ܥ components 
via the hard-cut EM algorithm and SMEM algorithm in turn to get the maximum 
likelihood: 

Step 1  Initialization: Set ݏ  ൌ 1 , ஼ܮݐݏ݁ܤ ൌ െ݂݊ܫ  and initialize the parameters ሼࢨ଴,  .଴ሽ in the MGP modelࢸ
Step 2  Parameter Learning: 

At phase ݏ, we perform the hard-cut EM algorithm with the initial parameters ሼࢨ௦ିଵ, ෩ࢨ௦ିଵሽ. After convergence, we obtain the estimated parameters ൛ࢸ ௦, ෩ࢸ ௦ൟ, and 
the corresponding log-likelihood function ܮ஼ . If ܮ஼ ൐ ஼ܮݐݏ݁ܤ , then set ܮݐݏ݁ܤ஼ ൌܮ஼ . 

Then, implement the SMEM algorithm [12] with the initial parameters ൛ࢨ෩ ௦, ෩ࢸ ௦ൟ, 
and we can obtain the updated parameters ሼࢨ௦, -௦ሽ, and the corresponding logࢸ
likelihood ܮ஼ . If ܮ஼ ൐ ஼ܮݐݏ݁ܤ , then set ܮݐݏ݁ܤ஼ ൌ  .஼ܮ
Step 3  Set ݏ ൌ ݏ ൅ 1, if ݏ ൌ  ,஼; otherwiseܮݐݏ݁ܤ terminate and output ,݁݉݅ܶݔܽܯ
return to Step2. 

After the learning process above, we have obtained the maximum log-likelihood ܮݐݏ݁ܤ஼ , for each ܥ from the candidate set ܵ. Then according to the SB criterion, we 
obtain the appropriate number of GP components as follows: 

כܥ  ൌ ஼ܮݐݏ݁ܤௌሼא஼ݔܽ݉݃ݎܽ െ ܰߜ log  ሽ (17)ܥ

4 Simulation Experiments 

In order to test the effectiveness and accuracy of our proposed SB criterion for model 
selection, we generate three typical synthetic datasets from the MGP model, and then 
apply the SB criterion to these datasets with various values of penalty coefficient ߜ 
and compare the SB criterion with two classical model selection criterions, AIC and 
BIC, on the large synthetic dataset. Moreover, we carry out the same experiment on 
an artificial toy dataset. Finally, by summarizing these experimental results, we obtain 
an appropriate empirical interval for ߜ that leads to reliable model selection. 
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4.1 On Three Typical Synthetic Datasets of MGP 

Three synthetic datasets are generated from the MGP models with different sizes. For 
the small synthetic dataset, there are 939 samples and 5 GP components, as shown in 
Fig.1. The medium synthetic dataset has 2400 samples and 8 GP components, as plot-
ted in Fig.2. The large synthetic dataset has 10000 samples and 10 GP components, as 
plotted in Fig.3. 

 

Fig. 1. The small synthetic dataset  Fig. 2. The medium synthetic dataset 

 

Fig. 3. The large synthetic dataset 

Then, we apply the model selection framework above to these synthetic datasets with 
some δ א ሺ0,3ሻ. The candidate sets for the small, medium and large datasets are ܵ ൌ ሼ2,3, ڮ ,10ሽ, ܵ ൌ ሼ3,4, ڮ ,13ሽ and ܵ ൌ ሼ5,6, ڮ ,15ሽ, respectively. We repeat the 
experiment 18 times on the small dataset and 15 times on the medium and large data-
sets. For each value of δ, the number of experiments where the estimated value of ܥ 
does not equal to the true value is shown in Figs.4-6 for the three datasets, respectively. 

It can be seen from Figs. 4-6 that our proposed model selection framework selects 
the correct value of ܥ with very high probability when the penalty coefficient δ lies 
in a suitable interval, whereas the error increases when δ gets away from this inter-
val, since appropriate value of δ ensures the balance between the log-likelihood and 
the penalty. The suitable intervals are ሺ1.0,1.8ሻ, ሺ1.3,2.2ሻ and ሺ1.10,1.75ሻ for the 
small, medium and large datasets, respectively. Particularly, with the best value of δ, 
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our proposed model selection framework based on the SB criterion gives correct re-
sult for all the 15 times on both the medium and the large synthetic dataset, whereas 
the large dataset has heavy overlaps among the GP components that makes model 
selection even more difficult, which firmly demonstrates the strong ability of our 
proposed model selection framework.  

 

Fig. 4. Model selection result on the small 
synthetic dataset 

Fig. 5. Model selection result on the me-
dium synthetic dataset 

 

Fig. 6. Model selection result on the large synthetic dataset 

4.2 Experimental Results with AIC and BIC Criterion 

To compare our proposed SB criterion with two classical criterions, AIC and BIC, we 
also apply AIC and BIC criterions to the three synthetic datasets above. Figs.7 & 8 
show the objective functions of AIC and BIC criterions against the value of ܥ on the 
large synthetic dataset, respectively. From Figs.7 & 8, it can be seen that these two 
criterions prefer to select the maximum value of ܥ from the candidate set, since the 
log-likelihood is dramatically increasing with ܥ for MGP models whereas the penal-
ty is relatively stable, so that the objective functions also increase with ܥ. In contrast, 
due to the synchronous balance between the log-likelihood and the penalty, our pro-
posed SB criterion significantly outperforms the AIC and BIC criterion on the syn-
thetic dataset. 
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Fig. 7. The model selection result with AIC criterion on the large synthetic dataset 

 

Fig. 8. The model selection result with BIC criterion on the large synthetic dataset 
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4.3 On an Artificial Toy Dataset 

The artificial toy dataset is used to test some MGP models since it is highly multi-
modal [6, 7, 11, 14]. The dataset consists of four groups, and each group is generated 
from a continuous function with different levels of Gaussian noise. In our experiment, 
we generate 200 samples for each group, as shown in Fig.9. Then, we apply the SB 
criterion and repeat the experiment 25 times with the candidate set ܵ ൌ ሼ2,3, ڮ ,10ሽ. 
For some values of δ, the number of experiments where the estimated value of ܥ ് 4(the true number of components) is shown in Fig.10. It can be observed from 
Fig. 10. that the SB criterion makes mistakes only twice among the 25 times, which 
means it can select the true number of components with very high probability, when δ comes from ሺ1.25,2.15ሻ, whereas the performance becomes poorer when δ gets 
too large or too small, as also shown in the experiments on the synthetic datasets 
above. Since the Toy dataset does not come from MGP models and is more similar to 
a real dataset, our proposed model selection framework also demonstrates potential 
applicability. 

 

         Fig. 9. The toy dataset        Fig. 10. Model selection result on toy dataset 

4.4 Experimental Conclusion and Penalty Coefficient Choice 

It can be summarized from the experimental results above that the performance of our 
proposed model selection framework heavily relies on the penalty coefficient δ. With 
a suitable value of δ, our model selection framework works well on both the synthet-
ic datasets and the toy dataset. Besides, the appropriate intervals for δ in these expe-
riments are close to each other and the intersection of these intervals is ሺ1.3,1.7ሻ, 
which leads to the correct value of ܥ  with very high probability. Therefore, ሺ1.3,1.7ሻ can be an empirical interval of δ for model selection on a new dataset. 

5 Conclusion 

We have established an effective criterion for model selection of the MGP model, 
where the log-likelihood and the penalty are much more synchronously balanced in 
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comparison with classical criterions like AIC and BIC. From the experimental results, 
it can be demonstrated that when the penalty coefficient is within a certain feasible 
interval, like ሺ1.3,1.7ሻ, our proposed SB criterion can obtain the true number of GP 
components with very high probability, and significantly outperforms AIC and BIC. 

Acknowledgement. This work was supported by the National Science Foundation of 
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