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Abstract. The mixture of experts (ME) architecture is a powerful neu-
ral network model for supervised learning, which contains a number of
“expert”’networks plus a gating network. The expectation-maximization
(EM) algorithm can be used to learn the parameters of the ME architec-
ture. In fact, there have already existed several methods to implement the
EM algorithm, such as the IRLS algorithm, the ECM algorithm, and an
approximation to the Newton-Raphson algorithm. The differences among
these implementations rely on how to train the gating network, which
results in a double-loop training procedure, i.e., there is an inner loop
training procedure within the general or outer loop training procedure.
In this paper, we propose a least mean square regression method to learn
or compute the parameters for the gating network directly, which leads
to a single loop (i.e., there is no inner loop training) EM algorithm for
the ME architecture. It is demonstrated by the simulation experiments
that our proposed EM algorithm outperforms the existing ones on both
speed and classification accuracy.

Keywords: The mixture of experts (ME) architecture, The EM algo-
rithm, Gating network, Single loop, Least mean square regression.

1 Introduction

For a supervised learning problem, it is common to train a single or multilayer neu-
ral network to model and solve it. But if our aim is to perform different subtasks
on different occasions, the learning algorithm like the error backpropagation pro-
cedure will generate strong interference effects that lead to slow convergence and
poor generalization. In order to overcome this difficulty, Jacobs, Jordan, Nowlan
and Hinton [I] established the mixture of experts (ME) architecture which con-
sists of some different “expert”’networks plus a gating network. Actually, since a
complex problem can be often divided into certain subproblems, the ME architec-
ture can be used to train these subproblems, respectively, and the gating network
determines which expert network should be used for each subtask.

The well-known Expectation-Maximization (EM) algorithm [2] is designed to
solve the maximum likelihood estimation problem for a probability model in
which some random variable can be observed, while the other random variable
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cannot be observed. Actually, the EM algorithm has already been implemented
on finite mixtures in which the random variables of the components are observ-
able but the random variables to reflect the classification of the component data
are unobservable or hidden [3]. Recent theoretical analysis has proved that the
EM algorithm for Gaussian mixtures or the mixtures of densities from a class of
exponential families tends to be asymptotically superlinear and correct when the
overlap of densities in the mixture tends to zero [4],[5],[6]. As a generalization
of the Gaussian mixture model, the ME architecture can be certainly trained by
the EM algorithm. As matter of fact, there have already existed several versions
of the EM algorithm for the ME architecture in literature. The EM algorithm
for the ME architecture implements a double-loop iteration at each step. That
is, one general or outer loop is to learn the parameters of the experts, while an
inner loop is to learn the parameters of the gating network within the outer loop.
In fact, the differences among these EM implementations rely on how to train
the gating network, i.e., the inner loop for the learning of the parameters in the
gating network.

In the early stage, the gating network inner loop in the EM algorithm was
implemented by the iteratively reweighted least squares (IRLS) algorithm [7],
[8]. Although the IRLS algorithm is very popular, it often leads to an unstable
performance. In order to overcome this weakness, Chen et al. [9] applied the
Newton-Raphson algorithm to the inner loop, where a Hessian matrix and its
inverse were needed to be computed. Ng and McLanchlan [I0] further proposed
an ECM algorithm for the inner loop. It was shown by the experiments that
the Newton-Raphson algorithm has a better accuracy than the IRLS algorithm,
but its convergence is much slower. On the other hand, the ECM algorithm is
superior to the IRLS algorithm on some simulated and real data sets. It is also
shown by the experiments that if the learning rate in the inner loop is not very
small, the TIRLS algorithm performs poorly. It is clear that, by each of these
methods, the inner loop needs to implement an iterative learning algorithm for
a number of iterations, which make the EM algorithm be very time-consuming.

In this paper, we apply the least mean square method to learning or computing
the optimal parameters of the gating network directly. In the inner loop, we solve
a regression solution of the parameters for the gating network. The updates of
the other parameters keep the same as those of the other EM algorithms. Thus,
our training procedure of the ME architecture for the gating network parameters
becomes one-step-update, i.e., no inner loop training is needed. For convenience,
we refer to this kind of the EM algorithm as the single loop EM algorithm. It
is demonstrated by the experiments on both synthetic and real data sets that
our single loop EM algorithm is considerably faster than all the others, with a
better accuracy on parameter estimation.

The rest of the paper is organized as follows. Section 2 briefly describes the
EM algorithm for the ME architecture. In Section 3, we propose the single loop
EM algorithm. Furthermore, the experimental results on several data sets are
presented in Section 4. Finally, we conclude briefly in Section 5.



A Single Loop EM Algorithm for the Mixture of Experts Architecture 961

2 The EM Algorithm for ME Architecture

We consider the following ME architecture model:

Plylz) = me Zg]xeo 20,5, (1)
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K is the number of the mixture components or experts, x € R™ denotes a sample
vector, and y € R™ is the output vector. The parameter vector @ consists of 6y,
0;, and the covariance matrices X;, which are assumed positive definite.

For simplicity, the functions f; are assumed to be linear in the parameters [§]
as follows:

9(x,60) = 2)

where

The i-th output of the gating network, g;(z,6), is given as the multinomial
softmax function with s; being linear in the parameters by

si(z,00) = 27 0.
For convenience of expression, we modify the above equation as follows:
si(az,ﬂo) = [$T1]90i,

which is more popular in regression theory.

The multinomial softmax function contains K parameter vectors which are
not independent. In fact, there are only K — 1 independent parameter vectors
due to the constraint Zfil g; = 1. Specifically, the multinomial softmax function
can be expressed as follows:

es
i £ K
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where 6y = [9(1;1, s 79(1;(1(71)}71'
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Given K and independently and identically distributed (i.i.d.) samples
{z®)] y(t)}f[7 we can estimate © by maximizing the log-likelihood:

N K
V)= iy g;(z",00) Py, 65, 5)). (5)
t=1 j=1

In order to do so, we can implement the EM algorithm for the ME architecture
and obtain the so-called @ function:

N K
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Under the EM framework for each iteration, we need to compute the E (Ex-
pectation) step and the M (Maximization) step alternatively. Specifically, we
need to get the @ function with the estimated parameters Oy in the E-step, and
solve the parameter maximum of the @ function in the M-step. Although the
maximum solution can be easily solved on the second term of the @ function,
it is quite difficult to solve the maximum solution on the first term of the @Q
function. Therefore, we need to apply some learning algorithm to help solve the
maximizing problem in the M-step.

In fact, we can update X; and 6; by the following equations:

k+1 ’f
zh = i 1h<k Zh W = 5,0l = £, 6)7, (8)
(k+1) _ p(k)y—1 (k)
0, = (RV) e, 9)
where
N
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As for 6y, Jordan and Xu [8] proposed the IRLS algorithm, and also proved
that the complete EM algorithm can be viewed as a modified gradient scent
algorithm for maximizing the log-likelihood function . On the other hand, Chen
et al. [9] proposed an approximation to the Newton-Raphson algorithm based
on a so-called generalized Bernoulli density. Moreover, Ng and McLachlan [I0]
proposed an ECM algorithm to maximize the first term of the @ function.
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These three algorithms for 8y are all iteratively learning procedures, and the
purpose of the inner loop is to find a numerical solution which maximize the first
term of the @@ function. In the inner loop, a Hessian matrix or an approximate
Hessian matrix and its inverse are needed to be computed. Thus, the procedure
will be time consumptive.

In order to overcome the weaknesses of these algorithms, especially on time-
consuming, we utilize the least mean square method to maximize the first term
of the @ function to directly get the update of 6y. That is, we use a direct
update of the parameters of the gating network instead of the inner learning
procedure. The new EM algorithm will be derived and demonstrated in the
following sections.

3 The Single Loop EM Algorithm

We consider the first term of the @ function:

g—ZZhE‘“ (t)logg; (z(t)), (12)

t=1 j=1

and get its derivatives with respective to the components of 6y as follows:

=SS0 - 0sa®, 6 2% (13)
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In order to get the maximum solution of [;, we try to get the zero point
of Eq.(13). In general, this kind problem can be solved by the gradient ascent
or Newton’s method. However, we can apply the least mean square method on
solving this problem.

It is clear that if gj(a:(t),ﬂ(()k)) - h§k) (t) = 0 holds for t = 1,---,N and
j=1,--- K, Eq.(13) becomes zero and Eq.(12) probably reaches a maximum.
Hence, we can try to solve a solution of the following equations:

(14)

In order to do so, we divide the first K — 1 equations by the last equation on
both sides, and obtain:

N O]

€ R IOK
(15)
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964 Y. Yang and J. Ma
Thus, we further obtain the following equations:

" BRIONS
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Finally, we obtain the least mean square solution of Eq.(16) as follows:
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By taking in Eq.(17) as the update of 6y and combining with Eqs (8) & (9), we
construct a new EM algorithm for the ME architecture. In the Expectation (E)
step, Eq.(7) is implemented to compute the corresponding posterior probability.
In the Maximization (M) step, Eq.(8), (9) & (17) are implemented to compute
the parameters that maximize the @ function. Since we compute the update of
0y directly, we call it the single loop EM algorithm.

In the next section, the single loop EM algorithm will be tested and compared
with the existing EM algorithms.

4 Experimental Results

In this section, we conduct several experiments on synthetic and real-world data
sets to test our single loop EM algorithm for the ME architecture. Firstly, in
order to compare with the EM algorithm using the IRLS algorithm, we conduct
the experiment on the same data set given and used in [8]. Secondly, we conduct
the experiment on the Iris data set and compare the result with the EM algorithm
using the Newton-Raphson algorithm. Finally, we conduct the experiments on
the Thyroid data set and the Leptograpsus Crab data set. The experimental
results are compared with those of the ECM algorithm [10].

When the ME architecture is used for multi-task classification in the above
cases, we assume that the output vector y is a discrete binary vector. For ex-
ample, if there are four distinct categories, y may be one of the vectors: [0, 0],
[0,1], [1,1] and [1,0]. It is reasonable that the elements of y is independent, so
that the covariance matrices X;,j =1,--- , K in Eq.(3) are diagonal matrices.
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X

Fig. 1. The synthetic data set used in [§]

4.1 On a Synthetic Data Set

For convenience of comparison, we here use the synthetic data set used in [§],
which is sketched in Fig.1. The data points were generated from the piecewise
linear function y = a1x+as+ny, € [z, zy] and y = ajz+ab+mn, © € [z, 2],
where n; is a Gaussian random variable with zero mean and variance o = 0.3.
The data points sketched in Fig. 1 are generated using the following parameter
values a; = 0.8, az = 04,2, = —1.0, zy = 1.0, a} = —1.0, ay = 3.6, 2}, = 2.0,
x7; = 4.0. The training data set contains 1000 data points.

We implement our single-loop EM algorithm for the two-expert ME archi-
tecture on the synthetic data set. Fig. 2 shows the evolution of the average log
likelihood, the parameters of the expert networks and the variances. It can be ob-
served that the obtained values of the parameters are very close to the real ones.
The average log likelihood converges faster than that exhibited in [§]. The most
important thing is that, no learning rate is needed in the single loop algorithm.

4.2 On the Iris Data Set

We further apply our single loop EM algorithm to classification of the Iris data
set which is a typical real-world data sets [I2]. The Iris data set contains 150
sample points, each category 50 points. We randomly chose 90 sample points as
training data set, each category 30 points. The remaining data are left for test.
We implement the single loop EM algorithm for the three-expert ME architecture
on the training set of the Iris data for 10 times and list the average results in
Table 1. It can be observed that 2.0 test data points are misclassified. The average
accuracy rate reaches at 96.67%. The average training procedure only needs 3
epochs.



966 Y. Yang and J. Ma

"~ 2nd parameter

2 (b)

05
) 1st parameter

6 8 10 0 2 4 6 8 10
Epochs Epochs

Average Log-Likelihood
|
o

L L

> » L
Parameters ( Expert 1)

5

o o

o
!

0 2 4

1st parameter

(C) 15

Expert 1

Variances

~ 2nd parameter

Parameters ( Expert2)

6
Epochs

6
Epochs

Fig. 2. The performance of the single-loop EM algorithm: (a). The evolution of the
average log likelihood; (b). The evolution of the parameters for expert 1; (c¢). The
evolution of the parameters for expert 2; (d). The evolution of the variances.

Table 1. The performance of the single loop EM algorithm on the Iris data set. The
experimental results of the EM algorithms with the Newton-Raphson, Approximation,
BFGS, and IRLS algorithms are simply copied from [9].

Algorithm Error no. Accuracy Rate Epochs
Newton-Rapshon 4.0 93.33% 8.0
Approximation 4.2 93.00% 19.2
BFGS 4.2 93.00% 23.4
IRLS 6.8 88.67% 25.0
Single-Loop 2.0 96.67% 3.0

In comparison with the experimental results of the EM algorithms using the
IRLS and Newton-Raphson algorithms on the same training data set, the error
number of our EM algorithm is less than that of the EM algorithm using the
IRLS algorithm, 6.8 in average, and that of the EM algorithm using the Newton-
Raphson algorithm, 4.0 in average. Furthermore, our algorithm is much faster
than both of them, because no inner loop procedure needs to be taken. Besides,
we only have 3 epochs of the entire iteration procedure. In fact, the EM algorithm
using the Newton-Raphson algorithm takes 8.0 epochs, while the EM algorithm
using the IRLS algorithm even takes 25.0 epochs.
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4.3 On the Thyroid Data Set

The task of the Thyroid problem is to decide whether a patient’s thyroid has
over-function, normal-function or under-function. The data set consists of 3772
patterns for training and 3428 patterns for testing. There are 21 features of each
pattern, 15 of which are binary and 6 of which are continuous ones.

In our experiment, the ME architecture consists of 8 experts. The input vector
x is a 21—dimensional vector. The output vector y is a 2—dimensional vector
which is supposed to be [0,0], [0,1], or [1,1]. All the parameters are initiated
with random values drawn from a uniform distribution on the unit interval.

We repeat the algorithm for 10 times with randomly chosen initial parameters.
Each time we run the algorithm for 5 epochs. The average results are given
in Table 2, being compared with the results of the ECM algorithm and the
IRLS algorithm. From Table 2, it can be observed that the single-loop algorithm
outperforms the ECM algorithm and the TRLS algorithm on both speed and
classification accuracy.

Table 2. The performance of the single loop EM algorithm on the Thyroid data set.
The experimental results of the ECM and IRLS algorithms are simply copied from [10].

Training Set Test Set
Algorithm Error no. Accuracy Rate  Error no.  Accuracy Rate Epochs
IRLS 70.0 98.14% 101.0 97.05% 60
ECM 42.0 98.89% 81.0 97.64% 60
Single-Loop 3.1 99.92% 5.6 99.84% 5

4.4 On the Leptograpsus Crab Data Set

The Leptograpsus Crab data set contains 5 morphological measurements of 200
crabs. They have two color forms and two sexes. So there are four categories of
the crabs and each category contains 50 crabs.

In our experiment, a ME architecture with 2 experts is adopted. The input
vector x is a b—dimensional vector and the output vector y is a 2—dimensional
vector. y is supposed to be one of the four vectors: [0,0], [0,1], [1,1] and [1,0].
All the parameters are initiated with random values drawn from a uniform dis-
tribution on the unit interval.

We randomly choose 20 examples of each category to the train the ME archi-
tecture and the remaining examples are left for test. The algorithm is repeated
10 times and only 4 epochs are taken in each trial. It is found by the experiments
on the Leptograpsus Crab data set that the average accuracy rate of the single
loop algorithm is 96.38%, which is considerably higher than 91.67% of the IRLS
algorithm and 94.17% of the ECM algorithm for the same Leptograpsus Crab
data set reported in [10].
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5 Conclusions

We have proposed a single loop EM algorithm for the mixture of experts archi-
tecture with the help of the least mean square regression method. The single
loop EM algorithm makes the M-step of the EM algorithm simple and easy
and therefore speed up the convergence considerably. The experiments on both
synthetic and real-world data sets shows that the proposed single loop EM al-
gorithm considerably faster than the existing ones, also with a better accuracy
on parameter estimation.
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