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Abstract. Bayesian Ying-Yang (BYY) harmony learning has provided
a new learning mechanism to implement automated model selection on fi-
nite mixture during parameter learning with a set of sample data. In this
paper, two kinds of BYY harmony learning algorithms, called the batch-
way gradient learning algorithm and the simulated annealing learning
algorithm, respectively, are proposed for the Weibull mixture modeling
based on the maximization of the harmony function on the two differ-
ent architectures of the BYY learning system related to Weibull mixture
such that model selection can be made automatically during the param-
eter learning on Weibull mixture. The two proposed algorithms are both
demonstrated well by the simulation experiments on some typical sample
data sets with certain degree of overlap.

Keywords: Bayesian Ying-Yang (BYY) harmony learning, Weibull mix-
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1 Introduction

Weibull mixture is a leading model in the field of reliability. In fact, there have
been several statistical methods to solve the problem of parameter learning or
estimation on the Weibull mixture model, such as maximum likelihood estima-
tion, graphics estimation and the EM algorithm. However, these methods usually
assume that the number k of components in the mixture is pre-known. If this
number is unknown, it can be selected according to the Akaike’s information
criterion [1] or its extensions [2,3]. However, this conventional approach involves
a large computational cost since the entire process of parameter estimation has
to be repeated for a number of different choices of k. Since k is just a scale
of Weibull mixture model, its selection is essentially a model selection for the
Weibull mixture modelling.

The Bayesian Ying-Yang(BYY) harmony learning system and theory, pro-
posed in 1995 in [4] and developed subsequently in [5,6,7], has provided a new
efficient tool to solve the compound problem of model selection and parameter
learning on the finite mixture model. In fact, by maximizing a harmony function
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on a certain BYY learning system related to finite mixture, model selection can
be made automatically during parameter learning for Gaussian mixture either
on a BI-architecture via some gradient-type and fixed-point learning algorithms
[8,9,10,11] or on a B-architecture via the BYY annealing learning algorithm
[12]. Recently, this BYY harmony learning approach has been also applied to
the Poisson mixture modeling [13].

In this paper, we extend the BYY harmony learning mechanism of parame-
ter learning with automated model selection to Weibull mixture. Actually, we
consider the two-parameter Weibull model which is by far the most widely used
probability distribution for life data analysis. Its probability density function
(pdf) takes the following explicit expression (refer to [14]):

f(x) =
axa−1

ba
exp[−(x/b)a], a, b > 0, (1)

where a is the shape parameter and b is the scale parameter. Actually, if a
population consists of k sub-populations with the pdfs f1(x), . . . , fk(x), being
linearly mixed with the proportions p1(≥ 0), . . . , pk(≥ 0), respectively, under
the constraint that p1 + . . . + pk = 1, then the pdf of the population takes the
following form:

f(x) = p1f1(x) + . . . + pkfk(x), (2)

which is considered as the general form of finite mixture model. f(x) in Eq. 2 is
referred as a Weibull mixture if each fi(x) is a Weibull probability distribution.

In this paper, under a BI-architecture of the BYY learning system for Weibull
mixture, a batch-way gradient learning algorithm is constructed to achieve the
parameter learning or estimation of Weibull mixture with automated model se-
lection. Moreover, under a B-architecture of the BYY learning system for Weibull
mixture, a simulated annealing learning algorithm is also constructed for the
same purpose. It is demonstrated well by the simulation experiments that the
two proposed BYY learning algorithms can make model selection automatically
during the parameter learning on the sample data as long as the actual Weibull
components in the original mixture are separated in a certain degree.

2 BYY Learning System for Weibull Mixture and
Proposed Learning Algorithms

A BYY system describes each observation x ∈ X ⊂ Rn and its corresponding
inner representation y ∈ Y ⊂ Rm via the two types of Bayesian decomposition of
the joint density p(x, y) = p(x)p(y|x) and q(x, y) = q(x|y)q(y) which are named
Yang machine and Ying machine, respectively. Given a data sets Dx = {xt}N

t=1,
the learning task of a BYY system is to ascertain all the components of p(y|x),
p(x), q(x|y), q(y) with a harmony learning mechanism which is implemented by
maximizing the function:

H(p ‖ q) =
∫

p(y|x)p(x) ln[q(x|y)q(y)]dxdy − ln zq, (3)

where zq is a regularization term. Here, we will neglect this term, i.e., let zq = 1.
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2.1 BI-Architecture of BYY Learning System

The BYY system is called to have a BI-architecture if p(y|x) and q(x|y) are
both parametric. That is, p(y|x) and q(x|y) are both from a family of probability
densities with a parameter θ. We use the following BI-architecture of the BYY
system for the Weibull mixture. The inner representation y is discrete, i.e., y ∈
{1, 2, . . . , k} ⊂ R and q(y = j) = αj ≥ 0 with

∑k
j=1 αj = 1. p(x) is specified by

the empirical density p0(x) = 1
N

∑N
t=1 G(x − xt), where x ∈ R, G(·) is a kind of

kernel function, and the Yang path is given by the following form:

p(y = j|x) =
αjq(x|θj)
q(x|Θk)

, q(x|Θk) =
k∑

j=1

αjq(x|θj), (4)

where q(x|θj) = q(x|y = j), and Θk = {αj , θj}k
j=1 denote the set of parameters.

Putting all these component densities into Eq.(3) and letting the kernel function
approach the delta function δ(x), the harmony functional H(p‖q) is transformed
into the following harmony function:

J(Θk) =
1
N

N∑
t=1

k∑
j=1

αjq(xt|θj)∑k
i=1 αiq(xt|θi)

ln[αjq(xt|θj)], (5)

where q(xt|θj) is the two-parameter Weibull pdf, and θj = {aj , bj}.

2.2 B-Architecture of BYY Learning System

If q(x|y) is parametric and p(y|x) is free to be determined by learning, the BYY
system is called to have a B-architecture. For the Weibull mixture, we use the
following B-architecture of BYY system. The inner representation y, q(y = j),
p(x) are defined as the BI-architecture. And the regularization term zp is ignored
too. Moreover, p(y|x) is a probability distribution that is free to be determined
under the general constraints: p(j|x) ≥ 0,

∑k
j=1 p(j|x) = 1. In the same way, we

can get the following harmony function:

J(Θk) =
1
N

N∑
t=1

k∑
j=1

p(j|xt) ln[αjq(xt|aj , bj)], (6)

where Θk = {Θ1, Θ2}, Θ1 = {p(j|xt)}k,N
j=1,t=1 and Θ2 = {αj , aj , bj}k

j=1.

2.3 Batch-Way Gradient BYY Learning Algorithm

To get rid of the constraints on αj , we utilize the transformation for each j:
αj = exp(βj)/

∑k
i=1 exp(βi), where −∞ < β1, . . . , βk < +∞. After such a trans-

formation, the parameters of the harmony function J(Θk) given by Eq.(5) are
essentially {βj , θj}k

j=1, θj = {aj, bj}.
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By computing the derivatives of J(Θk) with respect to βj and aj, bj , we can
obtain the batch-way gradient learning algorithm for the Weibull mixture mod-
eling. Actually, its update rule can be given as follows:

Δaj =
η

N

N∑
t=1

p(j|xt)λj(t)(
1
aj

+ ln
xt

bj
(1 − (

xt

bj
)aj )), (7)

Δbj =
η

N

N∑
t=1

p(j|xt)λj(t)(−
aj

bj
(1 − (

xt

bj
)aj )), (8)

Δβj =
η

N

N∑
t=1

1
q(xt|Θk)

k∑
i=1

λi(t)(δij − αj)Ui(xt). (9)

where η > 0 is the learning rate which can be selected by experience, Uj(x) =
αjq(x|θj), λj(t) = 1 −

∑k
l=1(p(l|xt) − δjl) ln Ul(xt), j = 1, 2, . . . , k and δij is the

Kronecker function.

2.4 Simulated Annealing Learning Algorithm

Because the maximization of Eq.(6) is a discrete optimization, so it is very easy
to be trapped into a local maximum. To solve the local maximum problem, we
employ a simulated annealing BYY harmony learning algorithm and leave the
details to Ref.[12]. We consider

Lλ(Θk) = J(Θk) + λON (p(y|x)), (10)
where

ON (p(y|x)) = − 1
N

N∑
t=1

k∑
j=1

p(j|xt) ln p(j|xt), (11)

and λ ≥ 0.
If we can let λ → 0 from λ0 = 1 appropriately in a simulated annealing

procedure, the maximum of Lλ(Θk) will correspond to the global maximum of
J(Θk) with a high probability.

In view of maxΘk
Lλ(Θk) = maxΘ1,Θ2 Lλ(Θ1, Θ2), maxΘk

Lλ(Θk) can be
carried out by an alternative maximization iterative procedure:

Step1: Fix Θ2 = Θold
2 , get Θnew

1 = arg maxΘ1 Lλ(Θ1, Θ2).
Step2: Fix Θ1 = Θold

1 , get Θnew
2 = arg maxΘ2 Lλ(Θ1, Θ2).

When λ is fixed, this iterative procedure does not stop until Lλ(Θk) converges
to a local maximum. Furthermore, we can solve Θnew

1 and Θnew
2 as follows.

On the one hand, we fix Θ2 and solve the maximum of Θ1. Then, we gain a
unique solution for Θ1:

p(j|xt) =
[αjq(xt|aj , bj)]1/λ

∑k
i=1[αiq(xt|ai, bi)]1/λ

, t = 1, . . . , N ; j = 1, . . . , k. (12)
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On the other hand, we fix Θ1 and solve the maximum of Θ2. Also, by the
method of Lagrange multipliers, we obtain a series of equations and a unique
solution for αj as follows, for j = 1, . . . , k:

1
N

N∑
t=1

p(j|xt)[
1
aj

+ ln
xt

bj
− (

xt

bj
)aj ln(

xt

bj
)] = 0, (13)

1
N

N∑
t=1

p(j|xt)(−
aj

bj
+

ajx
aj

t

b
aj+1
j

) = 0, (14)

α̂j =
1
N

N∑
t=1

p(j|xt). (15)

From Eq.(13) and (14), we can obtain an approximative solution of âj , b̂j with
the help of some mathematical tools.

From the above derivation, we have already constructed an alternative opti-
mization algorithm for maximizing Lλ(Θk). Furthermore, if λ attenuates appro-
priately a long time, this alternative maximization algorithm anneals to search
for the global maximum of J(Θk) and thus the automated model selection with
parameter estimation is able to be implemented.

3 Experimental Results

In this section, several simulated experiments are conducted to demonstrate the
performance of the batch-way gradient learning algorithm and the simulated
annealing learning algorithm for both model selection and parameter estimation
on some sample data sets from typical Weibull mixtures. Moreover, we compare
the learning efficiency of these two proposed algorithms. For feasibility of the
implementation, we only consider the situation of a > 1 in our experiments.

3.1 Sample Data Sets and Initialization of the Parameters

We begin with a description of the four sets of sample data used in our exper-
iments. Actually, we conducted 4 Monte Carlo experiments in which samples
are drawn from a mixture of four or three variate Weibull distributions, being
respectively showed in Fig.(1-4).

In order to clearly observe the samples from different Weibull components in
the figures, we represent the samples of each Weibull component with different
symbols defined on the upper-right hand corner. That is, the samples of different
components are displayed with different symbols on the plane. The x-coordinate
of a point is the numerical value of a sample, but the y-coordinates of the points
of each component keep the same value, which is given artificially, but changes
with the component just for the observation.

The true (or actual) values of the parameters in the Weibull mixture to gen-
erate the four sample data sets are given in Table 1, where aj , bj , αj and Nj
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Fig. 1. The First Sample Data Set S1
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Fig. 2. The Second Sample Data Set S2
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Fig. 3. The Third Sample Data Set S3
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Fig. 4. The Fourth Sample Data Set S4

denote the shape parameter, scale parameter, mixing proportion and the num-
ber of samples of the jth Weibull density, respectively. For analysis, we define
the degree of overlap between two components (i.e., Weibull distributions) in a
sample data set by

Op =
1
n

n∑
t=1

h1(xt)h2(xt), hj(xt) =
αjp(j|xt)

α1p(1|xt) + α2p(2|xt)
, j = 1, 2. (16)

Actually, Table 2 lists all the degrees of overlap between any two components in
each of the four sample data sets.

We further discuss the initialization of the parameters in the algorithms. In
order to make model selection automatically, we should select k to be larger
than the true number k∗ of the components in the sample data set. However,
a larger k may increase the implementation time and the risk of selecting a
wrong model. Actually, we will give an appropriate range of the initialization of
k. The initial value of βj can be freely chosen from some interval for the BYY
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Table 1. The Parameters of the Original Weibull Mixtures to Generate the Four
Sample Data sets

The sample set Weibulls aj bj αj Nj

S1 Weibull1 2 2 0.25 300
(N = 1200) Weibull2 4 20 0.35 420

Weibull3 10 40 0.40 480
S2 Weibull1 2 2 0.175 35

(N = 200) Weibull2 4 15 0.35 70
Weibull3 12 35 0.225 45
Weibull4 15 65 0.25 50

S3 Weibull1 2 2 0.25 300
(N = 1200) Weibull2 6 20 0.25 300

Weibull3 10 50 0.25 300
Weibull4 20 80 0.25 300

S4 Weibull1 2 2 0.25 300
(N = 1200) Weibull2 4 10 0.25 300

Weibull3 6 20 0.25 300
Weibull4 8 35 0.25 300

Table 2. The Degrees of Overlap between any Two Components in Each of the Four
Sample Data Sets

The sample set Overlapping degree of adjacent clusters
S1(k∗ = 3) 0.0021 0.0214
S2(k∗ = 4) 0.0038 0.0088 0.0008
S3(k∗ = 4) 0.0001 0.0014 0.0034
S4(k∗ = 4) 0.0168 0.0420 0.0484

annealing algorithm, and the batch-way gradient learning algorithm converges
more efficiently when the initial values of these βj are equal or close. In our
simulation experiments, aj and bj are initialized in virtue of the Weibull trans-
formation which is deduced in [14]. For the BYY annealing learning algorithm,
{p(y = j|xt), j = 1, . . . , k, t = 1, . . . , N} can be initialized randomly.

3.2 Simulation Results for Model Selection and Parameter
Estimation

Firstly, we implemented the batch-way gradient algorithm on each of the four
sample data sets S1-S4. The stoping criterion of the algorithm is |Jnew −Jold| <
10−7, and all the experiment results are given in Table 3, which are all successful
on both model selection and parameter estimation. However, the automated
model selection on the sample set S4 fell into a failure. As the stoping criterion
was satisfied, there were five active components in the resulted Weibull mixture,
which does not agree with the original Weibull mixture. The reason of this failure
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Table 3. The Experimental Results of the Batch-way Gradient Learning Algorithm

The sample set Weibulls âj b̂j α̂j

S1 Weibull1 1.9482 2.0529 0.2526
(N = 1200) Weibull2 4.7094 20.1738 0.3533

Weibull3 10.9082 40.2776 0.3941
S2 Weibull1 2.9695 2.1548 0.1774

(N = 200) Weibull2 4.1712 16.2098 0.3637
Weibull3 12.3271 34.8763 0.2094
Weibull4 16.8998 65.1038 0.2495

S3 Weibull1 1.9780 2.0325 0.2501
(N = 1200) Weibull2 6.5847 20.0977 0.2510

Weibull3 10.2482 50.1388 0.2494
Weibull4 20.6729 80.1908 0.2496

Table 4. The Experimental Results of the Simulated Annealing Learning Algorithm

The sample set Weibulls âj b̂j α̂j

S1 Weibull1 1.9637 2.0358 0.2508
(N = 1200) Weibull2 4.4712 20.0428 0.3478

Weibull3 10.2418 40.0965 0.4014
S2 Weibull1 2.9678 2.1428 0.1750

(N = 200) Weibull2 3.9992 16.1519 0.3650
Weibull3 12.0365 34.8157 0.2100
Weibull4 16.6213 65.0674 0.2500

S3 Weibull1 1.9790 2.0312 0.2500
(N = 1200) Weibull2 6.5456 20.0758 0.2500

Weibull3 10.0101 50.0399 0.2492
Weibull4 20.3964 80.1490 0.2508

S4 Weibull1 1.8056 1.9616 0.2633
(N = 1200) Weibull2 5.1810 9.8643 0.2442

Weibull3 7.3671 20.1510 0.2464
Weibull4 8.6626 35.5023 0.2461

might be that the degrees of overlap between some adjacent components in S4
are quite high.

We further implemented the simulated annealing learning algorithm on the
four sample data sets. The stoping criterion is |Lλ(Θnew

k ) − Lλ(Θold
k )| < 10−7.

And λ is given by the expression: λ(t) = 1/(a(1 − exp(−b(t − 1))) + c), where t
denotes the iteration time. In this case, a = 500, b = ln 10/10000, c = 0.5. The
experiment results of the simulated annealing algorithm on the four sample data
sets are given in Table 4, which are all successful on both model selection and
parameter estimation.

Finally, we compare the performance of the batch-way gradient and simulated
annealing learning algorithms through the following specific analysis. We begin
to compare the performance of the two algorithms on parameter estimation.
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Table 5. Δx of the Two Algorithms

The sample data set learning algorithm Δα Δa Δb

S1 BWG 0.00041 0.0404 0.00082
(N = 1200) SA 0.00006 0.0148 0.00033

S2 BWG 0.0065 0.2536 0.0125
(N = 200) SA 0.0063 0.2459 0.0110

S3 BWG 0.00002 0.0114 0.0003
(N = 1200) SA 0.00002 0.0088 0.00026

Table 6. The Runtime Complexities of the Two Algorithms

The sample set BWG SA
S1 98.9210 40.1560
S2 56.9680 5.6720
S3 149.5940 13.5160

According to the experimental results on a sample data set, for each parame-
ter x we can compute x̄, the radio of the estimated parameters to the actual
parameters and then define Δx = ‖x̄ − 1‖2 to equivalently describe the mean-
square error between the estimated parameter and the actual parameter. Thus,
Δx can be used as a criterion for evaluating the performance of a learning algo-
rithm on the parameter estimation. The results of Δx of the batch-way gradient
and simulated annealing algorithms on the first three sample data sets are given
in Table 5, where x represents a single parameter in the Weibull mixture, BWG
represents the batch-way gradient learning algorithm, and SA represents the
simulated annealing learning algorithm.

It can be observed from Table 5 that these two algorithms both perform well
on parameter estimation as the number of samples is relatively large. But if the
number of samples is small, the mean-square error becomes high for the both
algorithms. Moreover, the degree of overlap between the components in a sample
data set also plays an important role in the parameter learning. It can be found
from Table 5 that the mean-square error is much lower if the degree of overlap is
small enough. As showed in Table 5, on the same sample sets, the mean-square
errors estimated by the simulated annealing learning algorithm is lower than the
ones estimated by the batch-way gradient learning algorithm, which can be also
demonstrated by the further experiments.

Secondly, we consider the range of the degree of overlap among the compo-
nents in a sample data set such that these two proposed learning algorithms
can be successful with the sample data set. It was found from the simulation
experiments that the simulated annealing learning algorithm generally owns a
larger range than the batch-way gradient algorithm does.

Thirdly, we compare the ranges from which the initial k can be selected for
these two algorithms. From the simulated experiments, it was found that the
selected range of k for the simulated annealing learning algorithm is [k∗, 2k∗+1],
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which is wider than the range [k∗, 2k∗ − 1] for the batch-way gradient learning
algorithm.

Fourthly, we compare the runtime costs of the two algorithms. Actually, the
runtime complexities which are costed by these two algorithms on the sample
data sets S1-S3 have been listed in Table 6.

It can be observed from Table 6 that the runtime of the batch-way gradient
learning algorithm is always longer than that of the simulated annealing learning
algorithm on these sample data sets.

As a result from the above comparisons on the four aspects, the simulated an-
nealing learning algorithm is much better than the batch-way gradient learning
algorithm not only on the automated model selection but also on the param-
eter estimation and the runtime. Therefore, the simulated annealing learning
algorithm is more efficient for the Weibull mixture modeling.

4 Conclusions

After introducing the BYY learning system, BI and B-architectures, and the har-
mony function, we have established two BYY learning algorithms: a batch-way
gradient learning algorithm on the BI-architecture and a simulated annealing
learning algorithm on the B-architecture, for Weibull mixture with automated
model selection. The two algorithms are demonstrated well on the sample sets
from Weibull mixtures with certain degrees of overlap. Moreover, we have com-
pared the two algorithms from four aspects and found out that the simulated
annealing learning algorithm is more efficient for the Weibull mixture modeling
than the batch-way gradient learning algorithm.
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