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Abstract. Gaussianmixture is apowerful statistic tool andhasbeenwidely
used in the fields of information processing and data analysis. However, its
model selection, i.e., the selection of number of Gaussians in the mixture,
is still a difficult problem. Fortunately, the new established Bayesian Ying-
Yang (BYY) harmony function becomes an efficient criterion for model
selection on the Gaussian mixture modeling. In this paper, we propose a
BYY split-and-merge EM algorithm for Gaussian mixture to maximize the
BYY harmony function by splitting or merging the unsuited Gaussians in
the estimated mixture obtained from the EM algorithm in each time dy-
namically. It is demonstrated well by the experiments that this BYY split-
and-merge EM algorithm can make both model selection and parameter
estimation efficiently for the Gaussian mixture modeling.

Keywords: Bayesian Ying-Yang (BYY) harmony learning, Gaussian
mixture, EM algorithm, Model selection, Parameter estimation.

1 Introduction

As a powerful statistical tool, Gaussian mixture has been widely used in the
fields of information processing and data analysis. Generally, the parameters
of Gaussian mixture can be estimated by the expectation-maximization (EM)
algorithm [1] under the maximum-likelihood framework. However, the EM algo-
rithm not only suffers from the problem of local optimum, but also converges
to a wrong result in the situation that the actual number of Gaussians in the
mixture is set incorrectly. Since the number of Gaussians is just the scale of the
Gaussian mixture model, the selection of number of Gausians in the mixture is
also referred to as the model selection.

In a conventional way, we can choose a best number k∗ of Gaussians via
some selection criterion, such as Akaike’s information criterion (AIC) [2] and
the Bayesian inference criterion [3]. However, these criteria have certain limita-
tions and often lead to a wrong result. Moreover, this approach involves a large
computational cost since the entire process of parameter estimation has to be
repeated for a number of different choices of k.

In past several years, with the development of the Bayesian Ying-Yang (BYY)
harmony learning system and theory [4,5], a new kind of BYY harmony learning
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algorithms, such as the adaptive, conjugate, natural gradient, simulated anneal-
ing and fixed-point learning algorithms [6,7,8,9,10], have been established to
make model selection automatically during the parameter learning. Although
these new algorithms are quite efficient for both model selection and parameter
estimation for the Gaussian mixture modeling, they must satisfy a particular
assumption that k is larger than the number of actual Gaussians in the sample
data, but not too much. Actually, if k is too larger than the true one, these
algorithms often converge to a wrong result. Nevertheless, how to overestimate
the true number of Gaussians in the sample data in such a way is also a difficult
problem.

In this paper, we propose a new kind of split-and-merge EM algorithm that
maximizes the harmony function gradually in each time through the split-and
merge operation on the estimated mixture from the EM algorithm and termi-
nates at the maximum of the harmony function. Since the maximization of the
harmony function corresponds to the correct model selection on the Gaussian
mixture modeling [11] and the split-and-merge operation can escape from a lo-
cal maximum of the likelihood function, the BYY split-and-merge EM algorithm
can lead to a better solution for both model selection and parameter estimation.

The rest of the paper is organized as follows. In Section 2, we revisit the
EM algorithm for Gaussian mixtures. We further introduce the BYY learning
system and the harmony function in Section 3. In Section 4, we present the BYY
split-and-merge EM algorithm. Several experiments on the synthetic and real-
world data sets, including a practical application of unsupervised color image
segmentation, are conducted in Section 5 to demonstrate the efficiency of the
proposed algorithm. Finally, we conclude briefly in Section 6.

2 The EM Algorithm for Gaussian Mixtures

The probability density of the Gaussian mixture of k components in �d can be
described as follows:

Φ(x) =
k∑

i=1

πiφ(x|θi), ∀x ∈ �d, (1)

where φ(x|θi) is a Gaussian probability density with the parameters θi = (mi, Σi)
(mi is the mean vector and Σj is the covariance matrix which is assumed positive
definite) given by

φ(x|θi) = φ(x|mi, Σi) =
1

(2π)
n
2 |Σi|

1
2
e−

1
2 (x−mi)�Σ−1

i (x−mi), (2)

and πi ∈ [0, 1](i = 1, 2, · · · , k) are the mixing proportions under the con-
straint

∑k
i=1 πi = 1. If we encapsulate all the parameters into one vector:

Θk = (π1, π2, . . . , πk, θ1, θ2, . . . , θk), then, according to Eq.(1), the density of
Gaussian mixture can be rewritten as:

Φ(x|Θk) =
k∑

i=1

πiφ(x|θi) =
k∑

i=1

πiφ(x|mi, Σi). (3)
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For the Gaussian mixture modeling, there are many learning algorithms. But
the EM algorithm may be the most well-known one. By alternatively imple-
menting the E-step to estimate the probability distribution of the unobserv-
able random variable and the M-step to increase the log-likelihood function, the
EM algorithm can finally lead to a local maximum of the log-likelihood func-
tion of the model. For the Gaussian mixture model, given a sample data set
S = {x1, x2, · · · , xN} as a special incomplete data set, the log-likelihood func-
tion can be expressed as follows:

log p(S | Θk) = log
∏N

t=1 φ(xt | Θk) =
∑N

t=1 log
∑k

i=1 πiφ(xt | θi), (4)

which can be optimized iteratively via the EM algorithm as follows:

P (j|xt) =
πjφ(xt | θj)∑k
i=1 πiφ(xt | θi)

, (5)

π+
j =

1
N

N∑

t=1

P (j|xt), (6)

μ+
j =

1
∑N

t=1 P (j|xt)

N∑

t=1

P (j|xt)xt, (7)

Σ+
j =

1
∑N

t=1 P (j|xt)

N∑

t=1

P (j|xt)(xt − μ+
j )(xt − μ+

j )T . (8)

Although the EM algorithm can have some good convergence properties in cer-
tain situations ([12,13,14]), it certainly has no ability to determine the proper
number of the components for a sample data set because it is based on the max-
imization of the likelihood. In order to overcome this weakness, we will utilize
the BYY harmony function as the criterion for the Gaussian mixture modeling.

3 BYY Learning System and Harmony Function

In a BYY learning system, each observation x ∈ X ⊂ Rd and its corresponding
inner representation y ∈ Y ⊂ Rm are described with two types of Bayesian
decomposition p(x, y) = p(x)p(y|x) and q(x, y) = q(y)q(x|y), which are called
them Yang and Ying machine respectively. For the Gaussian mixture modeling,
y is limited to be an integer in Y = {1, 2, . . . , k}. With a sample data set Dx

= {xt}N
t=1, the aim of the BYY learning system is to specify all the aspects of

p(y|x),p(x),q(x|y),q(y) by maximizing the following harmony functional:

H(p ‖ q) =
∫

p(y | x)p(x) ln[q(x | y)q(y)]dxdy − ln zq, (9)

where zq is a regularization term and will often be neglected.
If both p(y | x) and q(x | y) are parametric, i.e, from a family of probability

densities with a parameter θ ∈ Rd, the BYY learning system is called to have a
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Bi-directional Architecture (BI-Architecture). For the Gaussian mixture model-
ing, we use the following specific BI-Architecture of the BYY learning system.
q(j) = αj( αj ≥ 0 and

∑k
j=1 αj = 1) and p(x) = 1

N

∑N
t=1 δ(x−xt). Furthermore,

the BI-architecture is constructed with the following parametric forms:

p(y = j | x) =
αjq(x | θj)
q(x | Θk)

, q(x | Θk) =
k∑

j=1

αjq(x | θj) (10)

where q(x | θj) = q(x | y = j) with θj consisting of all its parameters and
Θk = {αj , θj}k

j=1. Substituting all these component densities into Eq.(9), we
have the following harmony function:

H(p ‖ q) = J(Θk) =
1
N

N∑

t=1

k∑

j=1

αjq(xt | θj)∑k
i=1 αiq(xt | θj)

ln[αjq(xt | θj)]. (11)

When each q(x | θj) is a Gaussian probability density given by Eq.(2), J(Θk)
becomes a harmony function on Gaussian mixtures. Furthermore, it has been
demonstrated by the experiments [6,7,8,9,10] and theoretical analysis [11] that as
this harmony function arrives at the global maximization, a number of Gaussians
will match the actual Gaussians in the sample data, respectively, with the mixing
proportions of the extra Gaussians attenuating to zero. Thus, we can use the
harmony function as the reasonable criterion for model selection on Gaussian
mixture.

4 The BYY Split-and-Merge EM Algorithm

With the above preparations, we begin to present our BYY split-and-merge EM
algorithm. Given a sample data set S from an original mixture with k∗(> 1)
actual Gaussians, we use the EM algorithm to get k estimated Gaussians with
the initial parameters. If k �= k∗, some estimated Gaussians cannot match the
actual Gaussans properly and it is usually efficient to utilize a split-and-merge
EM algorithm to split or merge those unsuited Gaussians dynamically. Actually,
the main mechanisms of the split-and-merge EM algorithm are the split and
merge criteria. Based on the BYY harmony function and the analysis of the
overlap between two Gaussians in a sample data set, we can construct the split
and merge criteria as well as the split-and-merge EM algorithm in the following
three subsections.

4.1 The Harmony Split Criterion

After each usual EM procedure, we get the estimated parameters Θk in the
Gaussian mixture. According to Eq.(11), the harmony function J(Θk) can be
further expressed in the sum form: J(Θk) =

∑k
j=1 Hj(pj ‖ qj), where

H(pj ‖ qj) =
1
N

N∑

t=1

αjq(xt | θj)∑k
i=1 αiq(xt | θj)

ln[αjq(xt | θj)]. (12)
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Clearly, H(pj ‖ qj) denotes the harmony or matching level of the j − th
estimated Gaussian with respect to the corresponding actual Gaussian in the
sample data set. In order to improve the total harmony function, we can split
the Gaussian with the least component harmony value H(pj ‖ qj). That is, if
H(pr ‖ qr) is the least one, the harmony split criterion will implement the split
operation on the r − th estimated Gaussian. Specifically, we divide it into two
components i′, j′ with their parameters being designed as follows (refer to [15]).

Generally, the covariance matrix Σr can be decomposed as Σr = USV T ,
where S = diag[s1, s2, · · · , sd] is a diagonal matrix with nonnegative diagonal
elements in a descent order, U and V are two (standard) orthogonal matrices.
Then, we further set A = U

√
S = Udiag[

√
s1,

√
s2, · · · ,

√
sd] and get the first

column A1 of A. Finally, we have the parameters for the two split Gaussians as
follows, where γ, μ, β are all set to be 0.5.

αi′ = γαr, αj′ = (1 − γ)αr; (13)

mi′ = mr − (αj′/αi′)1/2μA1; (14)

mj′ = mr + (αi′/αj′)1/2μA1; (15)
Σi′ = (αj′/αi′)Σr + ((β − βμ2 − 1)(αr/αi′) + 1)A1A

T
1 ; (16)

Σj′ = (αi′/αj′)Σr + ((βμ2 − β − μ2)(αr/αj′) + 1)A1A
T
1 . (17)

4.2 The Overlap Merge Criterion

For the r − th component with the sample xt, we introduce a special function:
U(xt, r) = p(y = r | xt)(1 − p(y = r | xt)), where p(y = r | xt) is just the
posterior probability of the sample xt over the r − th component. Clearly, in
the estimated Gassians mixture, U(xt, r) is a special measure of the degree of
the sample xt belonging to the r − th component. With this special measure,
we can define the degree of the overlap between two components under a given
sample data set S as follows:

Fi,j =

∑
Ωε

j
U(xt, i) ∗

∑
Ωε

i
U(xt, j)

#Ωε
i ∗ #Ωε

j ∗ dist(i, j)
(18)

where Ωε
r = {xt|p(y = r | xt) > 0.5&U(xt, r) ≥ ε} and dist(i, j) is the Maha-

lanobis distance between i − th and j − th components.
Since Fi,j is a measure of overlap between components i and j, it is clear that

the two components should be merged together if Fi,j is large enough. Thus, the
overlap merge criterion is that if Fi,j is the highest one, the i − th and j − th
components will be merged into one component by the following rules ([15]):

αr = αi + αj ; (19)
mr = αimi + αjmj ; (20)
Σr = (αiΣi + αjΣj + αimim

ᵀ
i + αjmjm

ᵀ
j − αrmrm

ᵀ
r )/αr. (21)
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4.3 Procedure of the BYY Split-and-Merge EM Algorithm

With the harmony split criterion and the overlap merge criterion, we can present
the procedure of the BYY split-and-merge EM algorithm as follows:

1. According to the initial values of k and the parameters Θk, implement the
usual EM algorithm and then compute J(Θk).

2. Implement the following split and merge operations independently.

Split Operation: With the current k and the obtained parameters Θk,
split the Gaussian q(x|θr) of the least component harmony value into
two new Gaussians q(x|θ′j) and q(x|θ′′j ) according to Eqs.(13)-(17). Then,
implement the usual EM algorithm from the parameters of the previous
and split Gaussians to obtain the updated parameters Θsplit for the
current mixture of k + 1 Gaussians; compute J(Θsplit) on the sample
data set and denote it by Jsplit.

Merge Operation: With the current k and the parameters Θk, merge
the two Gaussians with the highest degree of overlap into one Gaussian
according to Eqs.(19)-(21) and implement the usual EM algorithm from
the parameters of the previous and merge Gaussians to obtain the up-
dated parameters Θmerge for the current mixture of k − 1 Gaussians;
compute J(Θmerge) on the sample data set and denote it by Jmerge.

3. Compare the three value Jold = J(Θk), Jsplit and Jmerge and continue the
iteration until stop.
(i). If Jsplit = max(Jold, Jsplit, Jmerge), we accept the result of the split
operation and set k = k + 1, Θk+1 = Θsplit, go to step 2;
(ii). If Jmerge = max(Jold, Jsplit, Jmerge), we accept the result of the merge
operation and set k = k − 1, Θk−1 = Θmerge, go to step 2;
(iii). If Jold = max(Jold, Jsplit, Jmerge), we stop the algorithm with the cur-
rent Θk as the final result of the algorithm.

It can be easily found from the above procedure that both the split and
merge operations try to increase the total harmony function and the stopping
criterion tries to prevent from splitting and merging too many Gaussians. Thus,
the harmony function criterion will make a correct model selection, while the
usual EM algorithm still maintains a maximum likelihood (ML) solution of the
parameters Θk. Therefore, this split-and-merge EM procedure will lead to a
better solution on the Gaussian mixture modeling for both model selection and
parameter estimation.

5 Experimental Results

In this section, we demonstrate the BYY split-and-merge EM algorithm through
a simulation experiment and two applications for the classification of two real-
world datasets and unsupervised color image segmentation. Moreover, we com-
pare it with the greedy EM algorithm given in [16] on unsupervised color image
segmentation.
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(a) Original Data Set (b) Initial Classification (c) Split Operation

(d) Merge Operation (e) Merge Operation (f) Final Result

Fig. 1. (a): The Synthetic Data Set with Six Gaussians Used in the Simulation Exper-
iment. (b)-(e): The Experimental Results at the Four Typical Iterations of the BYY
Split-and-Merge EM Algorithm. (f). The Final Experimental Result of the BYY Split-
and-Merge EM Algorithm.

5.1 Simulation Result

In the simulation experiment, a synthetic data set containing six bivariate
Gaussian distributions (i.e. d = 2) with certain degree of overlap, which is shown
in Fig. 1(a), was used to demonstrate the performance of the BYY split-and-
merge EM algorithm. The initial mean vectors were obtained by the k-means
algorithm at k = 8, which is shown in Fig.1(b). The BYY split-and-merge EM
algorithm was implemented on the synthetic data set until J(Θk) arrived at a
maximum. The typical results during the procedure of the BYY split-and-merge
EM algorithm are shown in Fig.1(c)-(f), respectively. It can be observed from
these figures that the BYY split-and-merge EM algorithm not only detected a
correct number of Gaussians for the synthetic data set, but but also led to a
good estimation of the parameters in the original Gaussian mixture.

5.2 On Classification of the Real-World Data

We further applied the BYY split-and-merge EM algorithm to the classification
of the Iris data ( 3-class, 4-dimensional, 150 samples) and the Wine data (3-class,
13-dimensional, 178 samples ). In the both experiments, we masked the class
indexes of these samples and used them to check the classification accuracy of
the BYY split-and-merge EM algorithm. For quick convergence of the algorithm,
a low threshold T is set such that as long as some mixing proportion was less than
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Table 1. The Classification Results of the BYY Split-and-Merge EM Algorithm on
Real-world Data Sets

The data set ε T k The classification accuracy
Iris data set 0.2 0.10 2 98.0% ±0.006

Wine data set 0.2 0.10 4 96.4% ±0.022

(a) (b) (c)

Fig. 2. The Experimental Results on Unsupervised Color Image Segmentation. (a). The
Original Color Images. (b). The Segmentation Results of the BYY Split-and-Merge EM
Algorithm. (c). The Segmentation Results of the Greedy EM Algorithm.

T , the corresponding Gaussian in the mixture would be discarded immediately.
In the experiments, for each data set with k = 2, 4, we implemented the algorithm
from the different initial parameters for 100 times. The classification results of
the algorithm on the Iris and wine data sets are summarized in Table 1. It can
be seen from Table 1 that their classification accuracies were rather high and
stable (with a very small deviation from the average classification accuracy).

5.3 On Unsupervised Color Image Segmentation

Segmenting a digital color image into homogenous regions corresponding to the
objects (including the background) is a fundamental problem in image
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processing. When the number of objects in an image is not known in advance, the
image segmentation problem is in an unsupervised mode and becomes rather dif-
ficult in practice. If we consider each object as a Gaussian distribution, the whole
color image can be regarded as a Gaussian mixture in the data or color space.
Then, the BYY split-and-merge EM algorithm provides a new tool for solving
this unsupervised color image segmentation problem. Actually, we applied it to
the unsupervised color image segmentation on three typical color images that
are expressed in the three-dimensional color space by the RGB system and also
compared it with the greedy EM algorithm.

The three color images for the experiments are given in Fig. 2(a). The seg-
mentation results of these color images by the BYY split-and-merge EM algo-
rithm are given in Fig.2(b). For comparison, the segmentation results of these
color images by the Greedy EM algorithm are also given in Fig. 2(c). From
the segmented images of the two algorithms given in Fig. 2, it can be found
that the BYY split-and-merge EM algorithm could divide the objects from the
background efficiently. Moreover, our proposed algorithm could obtain a more
accurate segmentation on the contours of the objects in each image.

6 Conclusions

Under the framework of the Bayesian Ying-Yang (BYY) harmony learning sys-
tem and theory, we have established a BYY split-and-merge EM algorithm with
the help of the conventional EM algorithm. By splitting or merging the unsuited
estimated Gaussians obtained from the EM algorithm, the BYY split-and-merge
EM algorithm can increase the total harmony function at each time until the
estimated Gaussians in the mixture match the actual Gaussians in the sample
data set, respectively. It is demonstrated well by the simulation and practical
experiments that the BYY split-and-merge EM algorithm can achieve a bet-
ter solution for the Gaussian mixture modeling on both model selection and
parameter estimation.

Acknowledgments. This work was supported by the Natural Science Founda-
tion of China for grant 60771061.
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16. Verbeek, J.J., Vlassis, N., Kröse, B.: Efficient Greedy Learning of Gaussian Mixture
Models. Neural Computation 15(2), 469–485 (2003)


	A BYY Split-and-Merge EM Algorithm for Gaussian Mixture Learning
	Introduction
	The EM Algorithm for Gaussian Mixtures
	BYY Learning System and Harmony Function
	The BYY Split-and-Merge EM Algorithm
	The Harmony Split Criterion
	The Overlap Merge Criterion
	Procedure of the BYY Split-and-Merge EM Algorithm

	Experimental Results
	Simulation Result
	On Classification of the Real-World Data
	On Unsupervised Color Image Segmentation

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




