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Abstract. The majority of existing Independent Component Analysis
(ICA) algorithms are based on maximizing or minimizing a certain ob-
jective function with the help of gradient learning methods. However, it
is rather difficult to prove whether there is no spurious solution in ICA
under any objective function as well as the gradient learning algorithm
to optimize it. In this paper, we present an analysis on the kurtosis-
sum objective function, i.e., the sum of the absolute kurtosis values of
all the estimated components, with a kurtosis switching algorithm to
maximize it. In two-source case, it is proved that any local maximum of
this kurtosis-sum objective function corresponds to a feasible solution of
the ICA problem in the asymptotic sense. The simulation results further
show that the kurtosis switching algorithm always leads to a feasible
solution of the ICA problem for various types of sources.

Keywords: Independent component analysis, Blind signal separation,
Spurious solution, Kurtosis, Switching algorithm.

1 Introduction

Independent Component Analysis (ICA) provides a powerful statistical tool for
signal processing and data analysis. It aims at decomposing a random vector
which is an instantaneous linear combination of several independent random
variables. Thus, the decomposed components should be mutually as independent
as possible. One major application of ICA is Blind Signal Separation (BSS),
where simultaneous observations x(t) = [x1(t), . . . , xm(t)]T are linear mixtures
of independent signal sources s(t) = [s1(t), . . . , sn(t)]T via a mixing matrix A ∈
IRm×n such that x(t) = As(t). Typically, we can consider the case m = n and
the purpose of ICA is to solve or learn an n × n matrix W such that WA has
one and only one non-zero entry in each row and in each column. In fact, a
such W, being called a separating matrix or demixing matrix, corresponds to
a feasible solution of the ICA problem. Clearly, the independence assumption
on these estimated components is the key to solve the ICA problem. That is, if
y(t) = Wx(t) owns the independence of its components, they can be considered
as the recovered sources.
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Actually, the independence measure among the estimated components can
serve as a good objective or contrast function for ICA. Supposing that pi(yi) is
the marginal probability density function (pdf) of the i-th component of y =
Wx = WAs, and p(y) is the joint pdf of y, we can use the Kullback divergence
to set up the following Minimum Mutual Information (MMI) criterion [1]:

I(y) =
∫

p(y) log
p(y)∏n

i=1 pi(yi)
dy . (1)

Clearly, I(y) is nonnegative and vanishes to zero only when all yi are mutu-
ally independent. Moreover, this MMI criterion is equivalent to the Maximum
Likelihood (ML) criterion [2] if pi(·) coincides with the pdf of each source.

Since the pdfs of the sources are unknown in advance, we generally utilize some
predefined or model pdfs to substitute the real pdfs in the mutual information.
In such a way, however, the MMI approach works only in the cases where the
components of y are either all super-Gaussians [3] or all sub-Gaussians [4]. For
the cases where sources contain both super-Gaussian and sub-Gaussian signals
in an unknown manner, it was conjectured that these model pdfs pi(yi) should
keep the same kurtosis signs of the source pdfs. This conjecture motivated the
proposal of the so-called one-bit matching condition [5], which can be basically
stated as “all the sources can be separated as long as there is a one-to-one
same-sign-correspondence between the kurtosis signs of all source pdf’s and the
kurtosis signs of all model pdf’s”. Along the one-bit matching condition, Liu,
Chiu, and Xu simplified the mutual information into a cost function and proved
that the global maximum of the cost function correspond to a feasible solution
of the ICA problem [6]. Ma, Liu, and Xu further proved that all the maxima
of the cost function corresponds to the feasible solutions in two-source mixing
setting [7]. Recently, this cost function was further analyzed in [8] and an efficient
learning algorithm was constructed with it in [9]. However, the one-bit matching
condition is not sufficient for the MMI criterion because Vrins and Verleysen
[10] have already proved that spurious maxima exist for it when the sources are
strongly multimodal.

On the other hand, there have been many ICA algorithms that explicitly or
implicitly utilize certain flexible pdfs to fit different types of sources. Actually,
these methods learn the separating matrix as well as the parameters in the flex-
ible model pdfs, or nonlinear functions, or switching functions, simultaneously.
From the simple switching or parametric functions (e.g., [11,12,13]) to the com-
plex mixture densities (e.g., [5,14,15]), these flexible functions have enabled the
algorithms to successfully separate the sources in both simulation experiments
and applications. However, there is still an essential issue whether all the local
optima of the objective function in each of these methods can correspond to the
feasible solutions. Clearly, if all the local optima correspond to the feasible solu-
tions, any gradient-type algorithm can be always successful on solving the ICA
problem. Otherwise, if there exists some optimum which does not correspond to
a feasible solution, any gradient-type algorithm may be trapped in such a local
optimum and lead to a spurious solution. Thus, for an objective function, it is
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vital to know whether there exists a local optimum which does not correspond
to a feasible solution or an algorithm to optimize it has no spurious solution.
Actually, the stability analysis by Amari et al. [16], Cardoso and Laheld [17]
just gave certain conditions for a feasible solution at which the algorithm can be
stable, but did not grantee a stable solution to be feasible.

Besides the mutual information, another typical independence measure is non-
gaussianity. If s1, . . . , sn are independent non-Gaussian random variables, their
linear combination x = a1s1 + . . . + ansn, (ai �= 0) is a random variable, which
tends to be closer to Gaussian than s1, . . . , sn individually. A classical measure
of nongaussianity is the fourth order cumulant or kurtosis. For extracting a sin-
gle component from the mixture, kurtosis or its square as contrast function has
been investigated by Delfosse and Loubaton [18], Hyvärinen and Oja [19]. The
extrema of the single unit contrast function corresponds to one of the original
sources. By a deflation approach, all the independent components can be de-
tected sequentially. It is just the origin of the FastICA algorithm [19]. On the
other hand, we can construct a kurtosis-sum objective function, i.e., the sum of
the absolute kurtosis values of all the estimated components, to solve the ICA
problem simultaneously. Although Vrins and Verleysen [10] already showed that
such a kurtosis-based contrast function is superior to those entropy-based ones,
for multimodal sources, at least when n = 2, there is still no theoretical analysis
on the spurious solution on it.

In this paper, we investigate the kurtosis-sum objective function theoretically
and propose a kurtosis switching algorithm to maximize it. It is proved that, for
two-source case, all the local maxima correspond to the feasible solutions of the
ICA problem, or in other words, the kurtosis switching algorithm has no spurious
solution, only if the sources have non-zero kurtosis. Moreover, we demonstrate
our theoretical results by the simulation experiments.

In the sequel, the kurtosis-sum objective function and the kurtosis switching
algorithm are introduced in Section 2. Then, the no spurious solution property
of the kurtosis switching algorithm is proved for the two-source case in Sec-
tion 3. Furthermore, simulation experiments are conducted to demonstrate the
algorithm in Section 4. Finally, Section 5 contains a brief conclusion.

2 Kurtosis-Sum Objective Function and Kurtosis
Switching Algorithm

As well-known, kurtosis is one of the most important features for a source signal
or pdf. Actually, supposing that x is a random variable with zero mean, its
kurtosis is defined by

kurt{x} = E{x4} − 3(E{x2})2, (2)

where E{·} denotes the expectation. Clearly, Gaussian variables have zero kur-
tosis. If a signal or random variable is non-Gaussian, it is called super-Gaussian
if its kurtosis is positive. Otherwise, it is called sub-Gaussian if its kurtosis is
negative.
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It follows from Eq.(2) that:

kurt{αx} = α4kurt{x}, α ∈ IR; (3)

and if x1 and x2 are independent, we certainly have

kurt{x1 + x2} = kurt{x1} + kurt{x2} . (4)

2.1 Kurtosis-Sum Objective Function

We consider the ICA problem with n sources and n observations. Without loss
of generality, we assume that the sources have zero mean and unit variance.
Moreover, the observed signals can be further pre-whitened such that E{x} =
0, and E{xx}T = I. Then, for any orthogonal transformation matrix W, the
estimated signals y = Wx are always whitened.

The kurtosis-sum objective function is defined by

J(W) =
n∑

i=1

|kurt{yi}| =
n∑

i=1

|kurt{wT
i x}|, (5)

where x is the (pre-whitened) observed signal (as a random vector), and W =
[w1,w2, · · · ,wn]T is the orthogonal de-mixing matrix to be estimated.

Since the two transformations are linear, y = Wx = WAs = Rs, where R is
another orthogonal matrix. Because A is constant, we consider R instead of W
and have

J(W) = J(R) =
n∑

i=1

|kurt{
n∑

j=1

rijsj}| =
n∑

i=1

|
n∑

j=1

r4
ijkurt{sj}|

=
n∑

i=1

|
n∑

j=1

r4
ijκj | =

n∑
i=1

ki

n∑
j=1

r4
ijκj, (6)

where κj denotes the kurtosis of the j-th source signal, and

ki = sign{
n∑

j=1

r4
ijκj}. (7)

In the above equations, κj is unknown. Moreover, R is related with W, but
also unknown. However, with the samples of x we can directly estimate kurt{yi}
and the kurtosis objective function. Since the absolute value of a function cannot
be differentiable at zero, we set ki as a ±1 coefficient, which leads to a kurtosis
switching function.

2.2 Kurtosis Switching Algorithm

We further construct a kurtosis switching algorithm to maximize the kurtosis-
sum objective function. Before doing so, we give an estimate of kurt{yi} with the
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samples from the observation. Actually, with a set of samples D = {x1, . . . ,xN},
it is quite reasonable to use the following statistic:

f(wi|D) =
1
N

N∑
l=1

(wT
i xl)4 − 3 (8)

to estimate kurt{wT
i x}.

With the above preparations, we can construct the kurtosis switching algo-
rithm as follows.

(1) Initialization. The mixed signal x should be pre-whitened. W is initially set
to be an orthogonal matrix, and ki is set to be either 1 or −1.

(2) Select a sample data set D from the mixed signals.
(3) Evaluate the kurtosis values of the current estimated components, f(wi|D)

and update ki := sign{f(wi|D)}, for i = 1, . . . , n. (Note that this update is
not always active in each iteration.)

(4) Calculate the gradient. Compute ∂f(wi|D)/∂wi for i = 1, . . . , n, and set

∇JW =
[
k1

∂f(w1|D)
∂w1

, · · · , kn
∂f(wn|D)

∂wn

]
. (9)

(5) Obtain the constraint gradient. Project ∇JW onto Stiefel manifold by

∇̂JW = WWT ∇JW − W∇JT
WW. (10)

(6) Update W := W + η∇̂JW. Certain regularization process may be imple-
mented on W if W is far from orthogonal.

(7) Repeat step (2) through (6), until ||∇̂JW|| < ε, where || · || is the Euclidean
norm and ε(> 0) is a pre-selected threshold value for stopping the algorithm.

In this algorithm, the absolute value operator | · | is replaced by multiplying
a switch coefficient ki = ±1, which guarantees the maximization of the original
kurtosis-sum objective function, because the kurtosis signs are always checked.
Meanwhile, we utilize a modified gradient of the objective function w.r.t. W,
which automatically keeps the constraint WWT = I satisfied after each update
of W, for small η.

3 No Spurious Solution Analysis in Two-Source Case

With the kurtosis switching algorithm, we can lead to a local maximum of the
kurtosis-sum objective function. We now analyze the no spurious solution prop-
erty of the kurtosis-sum objective function for two-source case in the asymptotic
sense. The two sources are required to have zero kurtosis.

Clearly, in the two-source case, R is a 2 × 2 orthogonal matrix, and can be
parameterized by

R =
[

cos θ sin θ
− sin θ cos θ

]
or

[
cos θ sin θ
sin θ − cos θ

]
. (11)
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Thus, we have

J(W) = J(R) = J(θ) = |κ1 cos4 θ + κ2 sin4 θ| + |κ1 sin4 θ + κ2 cos4 θ|. (12)

Below we analyze the local maxima of J(θ) for different signs of κ1 and κ2.
Case 1. If κ1 > 0 and κ2 > 0, or κ1 < 0 and κ2 < 0, we have

J(θ) = (|κ1| + |κ2|)(cos4 θ + sin4 θ) = |κ1 + κ2|(
3
4

+
1
4

cos 4θ).

In this case the kurtosis of each source component of s is always positive. It is
easily verified that J(θ) has local maxima only at θ ∈ {mπ/2}, m ∈ IK which
lead R to the following forms:

R =
[
λ1 0
0 λ2

] [
1 0
0 1

]
or

[
λ1 0
0 λ2

] [
0 1
1 0

]
,

where λi ∈ {±1}, i = 1, 2. Certainly, all these R, i.e., the local maxima, corre-
spond to the feasible solutions of the ICA problem.

Case 2. If κ1 < 0 and κ2 > 0, the kurtosis signs of the two source components
of s are different. In this case, J(θ) becomes a piecewise function as follows.

J(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(κ1 + κ2)(sin4 θ + cos4 θ), if sin4 θ
cos4 θ ≥ −κ1

κ2
and sin4 θ

cos4 θ < −κ2
κ1

(−κ1 − κ2)(sin4 θ + cos4 θ), if sin4 θ
cos4 θ < −κ1

κ2
and sin4 θ

cos4 θ ≥ −κ2
κ1

(κ1 − κ2)(cos4 θ − sin4 θ), if sin4 θ
cos4 θ ≥ −κ1

κ2
and sin4 θ

cos4 θ ≥ −κ2
κ1

(κ2 − κ1)(cos4 θ − sin4 θ), if sin4 θ
cos4 θ < −κ1

κ2
and sin4 θ

cos4 θ < −κ2
κ1

For convenience, we define α = −κ1
κ2

and φ = tan−1( 4
√

min(α, 1/α)) ≤ π
4 .

Then, the range of θ can be divided into three non-overlapping sets:

S1 = {θ| tan4 θ ≥ max(α, 1/α)} =
+∞⋃

m=−∞
[mπ +

π

2
− φ, mπ +

π

2
+ φ];

S2 = {θ| tan4 θ < min(α, 1/α)} =
+∞⋃

m=−∞
(mπ − φ, mπ + φ);

S3 = {θ| min(α, 1/α) ≤ tan4 θ < max(α, 1/α)} = IR \ (S1

⋃
S2).

We now consider θ in the three sets, respectively, as follows.
(a). If θ ∈ S1, J(θ) = (κ1 − κ2)(cos4 θ − sin4 θ) = −(κ2 − κ1) cos 2θ has local

maxima only at {mπ + π
2 }, m ∈ IK, and infθ∈S1 J(θ) = −(κ2 −κ1) cos(π −2φ) =

(κ2 − κ1) cos 2φ.
(b). If θ ∈ S2, J(θ) = (κ2 − κ1)(cos4 θ − sin4 θ) = (κ2 − κ1) cos 2θ has local

maxima only at {mπ}, m ∈ IK. And infθ∈S2 J(θ) = (κ2 − κ1) cos 2φ
(c). If θ ∈ S3, J(θ) = (κ1 + κ2)(sin4 θ + cos4 θ) if −κ1 < κ2; or J(θ) =

(−κ1 − κ2)(sin4 θ + cos4 θ) if −κ1 > κ2. So J(θ) = |κ1 + κ2|(sin4 θ + cos4 θ) =
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|κ1 + κ2|(3
4 + 1

4 cos 4θ). It is easy to see that J(θ) has no local maximum within
S3, and supθ∈S3

J(θ) = |κ1 + κ2|(3
4 + 1

4 cos 4φ).
According to the above analysis, we have

inf
θ∈S1

J(θ) = inf
θ∈S2

J(θ) = (κ2 − κ1) cos 2φ = (κ2 − κ1)(1 − tan4 φ) cos4 φ

= (κ2 − κ1)(1 − min(−κ1

κ2
, −κ2

κ1
)) cos4 φ

= (κ2 − κ1)
|κ2 + κ1|

max(−κ1, κ2)
cos4 φ; (13)

sup
θ∈S3

J(θ) = |κ1 + κ2|(
3
4

+
1
4

cos 4φ) = |κ1 + κ2|(1 + tan4 φ) cos4 φ

= |κ1 + κ2|(1 + min(−κ1

κ2
, −κ2

κ1
)) cos4 φ

= |κ1 + κ2|
κ2 − κ1

max(κ2, −κ1)
cos4 φ. (14)

Because IR = S1
⋃

S2
⋃

S3, and infθ∈S1 J(θ) = infθ∈S2 J(θ) = supθ∈S3
J(θ),

J(θ) cannot reach any local maximum at the boundary points of S3. Thus, J(θ)
can have local maxima only at {mπ/2}, m ∈ IK.

For the case κ1 > 0 and κ2 < 0, it can be easily verified that J(θ) behaves in
the same way as in Case 2. Summing up all the analysis results, we have proved
that in the two-source case, J(W) = J(R) can only have the local maxima
that correspond to the feasible solutions of the ICA problem. That is, J(W) is
locally maximized only at a separation matrix W which leads R to a permutation
matrix plus sign ambiguities.

From the above analysis, we can find that when the sources with positive
kurtosis and negative kurtosis co-exist, the range of R (corresponding to a unit
circle of θ) can be divided into some non-overlapping sets and on each of them,
the kurtosis signs of yi does not change. Thus, the update of the kurtosis sign of
yi in each iteration is not necessarily active. In fact, a real switching operation
happens only when the parameter moves across the boundaries of two such sets.

4 Experimental Results

In order to substantiate our theoretical results and test the kurtosis switching
algorithm, we conducted two experiments on real and artificial signals. We also
compared the results of our algorithm with those of the Extended Infomax al-
gorithm [11] and FastICA algorithm [20].

Firstly, we utilized two audio recordings as independent source signals. Each
of these two signals contain 4000 samples and their sample kurtosis are 0.6604
and 0.1910, respectively. The observation signals were generated as two linear
mixtures of these two audio signals through a random matrix. We implemented
the kurtosis switching algorithm on the observation signals. After the kurtosis
switching algorithm stopped, it was found that the two sources were separated
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Fig. 1. The Sketches of the Kurtosis-sum Objective Function J(θ) and the Absolute
Kurtosis Values of the Estimated Components of y in the Two-source Experiment for
θ from Zero to π

with

R =
[

1.0021 −0.0280
−0.0233 −1.0020

]
.

Actually, the performance index (refer to [4]) of this separation result was 0.1024.
In the same situation, the Extended Infomax algorithm could arrive only at a
performance index 0.4658. For the FastICA algorithm, the symmetric approach
was selected, and the performance index was 0.1215 by using “tanh” as nonlin-
earity, but improved to 0.0988 by using “power 3”. As a result, on the correctness
of the ICA solution, the kurtosis switching algorithm could be as good as the
FastICA algorithm, although it required more iterations and took much longer
time than FastICA.

For illustration, we further show the sketches of the kurtosis-sum objective
function and the absolute kurtosis values of the two estimated components of y in
the above two-source experiment for θ from zero to π in Fig. 1. Theoretically, as
the two sources are super-Gaussian, their mixtures should have positive kurtosis.
However, the estimated kurtosis of yi could be negative at some θ or W. Besides,
our analysis indicates that either of |kurt{yi}| is the maximum at θ = nπ/2, but
it is not so for finite data. Actually, the maxima of the kurtosis-sum objective
function were not exactly at θ = nπ/2, due to the errors from the estimation.

We further conducted another experiment on seven synthetic sources: random
samples generated from (a). Laplacian distribution, (b). Exponential distribu-
tion which is not symmetric, (c). Uniform distribution, (d). Beta distribution
β(2, 2), (e). A Gaussian mixture (bimodal): 1

2N(−1.5, 0.25)+ 1
2N(1.5, 0.25), (f).

A Gaussian mixture (unimodal): 1
2N(0, 0.25)+ 1

2N(0, 2.25), (g). A Gaussian mix-
ture (trimodal): 1

3N(−2, 0.25) + 1
3N(0, 0.25) + 1

3N(2, 0.25). Three of them ((a),



Analysis of the Kurtosis-Sum Objective Function for ICA 587

(b) and (f)) were super-Gaussian while the rest four sources were sub-Gaussian.
All the sources were normalized before mixing. For each source, there were 1000
samples. The observation signals were generated as seven linear mixtures of these
seven independent synthetic signals through a random matrix. We implemented
the kurtosis switching algorithm on these observation signals and obtained a
successful separation matrix with R being given as follows:

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0205 0.0141 0.0139 −0.0223 −0.0361 0.0397 1.0231
−0.0178 0.0008 −1.0108 0.0049 0.0015 0.0106 0.0697

1.0103 0.0121 −0.0088 −0.0071 −0.0688 0.0019 0.0103
−0.0333 −0.0398 0.0034 −1.0165 −0.0057 −0.0130 −0.0106
−0.0740 0.0320 −0.0114 0.0392 −1.0097 −0.0138 −0.0378
−0.0179 1.0062 0.0085 −0.0614 0.0200 0.0430 −0.0017
−0.0232 0.0575 −0.0059 0.0466 −0.0407 −1.0112 0.0111

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

According to R, we obtained that the performance index of the kurtosis
switching algorithm was 2.0003. In the same situation, the FastICA algorithm’s
performance index was 1.9542 when using “power 3” as nonlinearity, but be-
came 1.3905 when using “tanh”. However, the Extended Infomax algorithm did
not separate all the sources, with a performance index of 15.4736. Therefore,
in this complicated case with seven sources, the kurtosis switching algorithm
achieved a separation result almost as good as the FastICA algorithm though it
required more steps to converge, but outperformed the Extended Infomax algo-
rithm. Moreover, this experimental result also demonstrated that our theoretical
results on the kurtosis-sum objective function can be extended to the cases with
more than 2 sources.

Besides the two demonstrations above, we have conducted many simulations,
with various types of signal sources. All the experimental results conformed to
the theoretical analysis and no spurious solutions have been encountered.

5 Conclusions

We have investigated the ICA problem through the kurtosis-sum objective func-
tion which is just the sum of absolute kurtosis values of the estimated components.
Actually, we prove that for two-source case, the maxima of this kurtosis-sum ob-
jective function all correspond to the feasible solutions of the ICA problem, as long
as the sources have non-zero kurtosis. Moreover, in order to maximize the kurtosis-
sum objective function, a kurtosis switching algorithm is constructed. The experi-
mental results show that the kurtosis-sum objective function works well for solving
the ICA problem and apart from the convergence speed, the kurtosis switching al-
gorithm can arrive at a solution as good as the FastICA algorithm.

Acknowledgements. This work was supported by the Ph.D. Programs Foun-
dation of Ministry of Education of China for grant 20070001042.



588 F. Ge and J. Ma

References

1. Comon, P.: Independent Component Analysis – a New Concept? Signal Process-
ing 36, 287–314 (1994)

2. Cardoso, J.F.: Infomax and Maximum Likelihood for Blind Source Separation.
IEEE Signal Processing Letters 4, 112–114 (1997)

3. Bell, A., Sejnowski, T.: An Information-Maximization Approach to Blind Separa-
tion and Blind Deconvolution. Neural Computation 7, 1129–1159 (1995)

4. Amari, S.I., Cichocki, A., Yang, H.: A New Learning Algorithm for Blind Separa-
tion of Sources. Advances in Neural Information Processing 8, 757–763 (1996)

5. Xu, L., Cheung, C.C., Amari, S.I.: Learned Parametric Mixture Based ICA Algo-
rithm. Neurocomputing 22, 69–80 (1998)

6. Liu, Z.Y., Chiu, K.C., Xu, L.: One-Bit-Matching Conjecture for Independent Com-
ponent Analysis. Neural Computation 16, 383–399 (2004)

7. Ma, J., Liu, Z.Y., Xu, L.: A Further Result on the ICA One-Bit-Matching Conjec-
ture. Neural Computation 17, 331–334 (2005)

8. Ma, J., Chen, Z., Amari, S.I.: Analysis of Feasible Solutions of the ICA Problem
under the One-Bit-Matching Condition. In: Rosca, J.P., Erdogmus, D., Pŕıncipe,
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