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Under the Bayesian Ying–Yang (BYY) harmony learning theory, a harmony function has
been developed on a BI-directional architecture of the BYY system for Gaussian mixture
with an important feature that, via its maximization through a general gradient rule, a
model selection can be made automatically during parameter learning on a set of sample
data from a Gaussian mixture. This paper further proposes the conjugate and natural
gradient rules to efficiently implement the maximization of the harmony function, i.e.
the BYY harmony learning, on Gaussian mixture. It is demonstrated by simulation
experiments that these two new gradient rules not only work well, but also converge
more quickly than the general gradient ones.
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1. Introduction

As a powerful statistical model, Gaussian mixture has been widely applied to data
analysis and there have been several statistical methods for its modeling (e.g. the
method of moments,3 the maximum likelihood estimation4 and the expectation-
maximization (EM) algorithm12). But it is usually assumed that the number of
Gaussians in the mixture is pre-known. However, in many instances this key infor-
mation is not available and the selection of an appropriate number of Gaus-
sians must be made with the estimation of the parameters, which is a rather
difficult task.7

The traditional approach to this task is to choose a best number k∗ of Gaussians
via some selection criterion. Actually, there have been many heuristic criteria in
the statistical literature (e.g. Refs. 1, 5, 11, 13 and 14). However, the process of
evaluating a criterion incurs large computational cost since the entire parameter
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estimating process is to be repeated at a number of different values of k. On the
other hand, some heuristic learning algorithms (e.g. the greedy EM algorithm15 and
the competitive EM algorithm20) have also been constructed to apply a mechanism
of split and merge on the estimated Gaussians to certain typical estimation methods
like the EM algorithm at each iteration to search the best number of Gaussians in
the data set. Obviously, these methods are also time consuming.

Recently, a new approach has been developed from the Bayesian Ying–Yang
(BYY) harmony learning theory16–19 with the feature that model selection can be
made automatically during the parameter learning. In fact, it was already shown
in Ref. 10 that the Gaussian mixture modeling problem in which the number of
Gaussians is unknown can be equivalent to the maximization of a harmony function
on a specific BI-directional architecture (BI-architecture) of the BYY system for
the Gaussian mixture model and a gradient rule for maximization of this harmony
function was also established. The simulation experiments showed that an appro-
priate number of Gaussians can be automatically allocated for the sample data
set, with the mixing proportions of the extra Gaussians attenuating to zero. More-
over, an adaptive gradient rule was further proposed and analyzed for the general
finite mixture model, and demonstrated well on a sample data set from Gaussian
mixture.9 On the other hand, from the point of view of penalizing the Shannon
entropy of the mixing proportions on maximum likelihood estimation (MLE), an
entropy penalized MLE iterative algorithm was also proposed to make model selec-
tion automatically with parameter estimation on Gaussian mixture.8

In this paper, we propose two further gradient rules to efficiently implement
the maximization of the harmony function in a Gaussian mixture setting. The first
rule is constructed from the conjugate gradient of the harmony function, while
the second rule is derived from Amari and Nagaoka’s natural gradient theory.2 It
is demonstrated by simulation experiments that these two new gradient rules not
only work well for automated model selection, but also converge more quickly than
the general gradient ones.

In the sequel, the BYY harmony learning system and the harmony function are
introduced in Sec. 2. The conjugate and natural gradient rules are then derived in
Sec. 3. In Sec. 4, they are both demonstrated by simulation experiments, and finally
a brief conclusion is made in Sec. 4.

2. BYY System and Harmony Function

A BYY system describes each observation x ∈ X ⊂ Rn and its corresponding
inner representation y ∈ Y ⊂ Rm via the two types of Bayesian decomposition
of the joint density p(x, y) = p(x)p(y|x) and q(x, y) = q(x|y)q(y), called Yang
and Ying machines, respectively. In this paper, y is only limited to be an inte-
ger variable, i.e. y ∈ Y = {1, 2, . . . , k} ⊂ R with m = 1. Given a data set
Dx = {xt}N

t=1, the task of learning on a BYY system consists of specifying all the
aspects of p(y|x), p(x), q(x|y), q(y) via a harmony learning principle implemented
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by maximizing the functional

H(p||q) =
∫

p(y|x)p(x)ln[q(x|y)q(y)]dx dy − lnzq, (1)

where zq is a regularization term. The details of the derivation can be found in
Ref. 17.

If both p(y|x) and q(x|y) are parametric, i.e. from a family of probability densi-
ties parametrized by θ, the BYY system is said to have a Bi-directional Architecture
(BI-Architecture). For the Gaussian mixture modeling, we use the following spe-
cific BI-architecture of the BYY system. q(j) = αj with αj ≥ 0 and

∑k
j=1 αj = 1.

Also, we ignore the regularization term zq (i.e. set zq = 1) and let p(x) be the
empirical density p0(x) = 1

N

∑N
t=1 δ(x − xt), where x ∈ X = Rn. Moreover, the

BI-architecture is constructed in the following parametric form:

p(y = j|x) =
αjq(x|θj)
q(x, Θk)

, q(x, Θk) =
k∑

j=1

αjq(x|θj), (2)

where q(x|θj) = q(x|y = j) with θj consisting of all its parameters and Θk =
{αj, θj}k

j=1. Substituting these component densities into Eq. (1), we have

H(p||q) = J(Θk) =
1
N

N∑
t=1

k∑
j=1

αjq(xt|θj)∑k
i=1 αiq(xt|θi)

ln[αjq(xt|θj)]. (3)

That is, H(p||q) becomes a harmony function J(Θk) on the parameters Θk, origi-
nally introduced in Ref. 16 as J(k) and developed into this form in Ref. 17 being
used as a selection criterion of the number k. Furthermore, we let q(x|θj) be a
Gaussian density given by

q(x|θj) = q(x|mj , Σj) =
1

(2π)
n
2 |Σj | 12

e−
1
2 (x−mj)

T Σ−1
j (x−mj), (4)

where mj is the mean vector and Σj is the covariance matrix which is assumed
positive definite. As a result, this BI-architecture of the BYY system contains the
Gaussian mixture model q(x, Θk) =

∑k
j=1 αjq(x|mj , Σj) which tries to represent

the probability distribution of the sample data in Dx.
According to the best harmony learning principle of the BYY system18 as well as

the experimental results of the general gradient rules obtained in Refs. 9 and 10, the
maximization of J(Θk) can realize the automated model selection during parameter
learning on a sample data set from a Gaussian mixture. That is, when we set k to be
larger than the number k∗ of actual Gaussians in the sample data set, it can cause
k∗ Gaussians in the estimated mixture match the actual Gaussians, respectively,
and force the mixing proportions of the other k−k∗ extra Gaussians to attenuate to
zero, i.e. eliminate them from the mixture. Here, in order to efficiently implement
the maximization of J(Θk), we further derive two gradient rules with a better
convergence behavior to solve the maximum solution of J(Θk) in the next section.
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3. Conjugate and Natural Gradient Rules

For convenience of derivation, we let

αj =
eβj∑k
i=1 eβi

, Σj = BjB
T
j , j = 1, . . . , k,

where −∞ < β1, . . . , βk < +∞ and Bj is a nonsingular square matrix. Under these
transformations, the parameters in J(Θk) turn into {βj, mj , Bj}k

j=1. Furthermore,
we have the derivatives of J(Θk) with respect to βj , mj and Bj as follows. (See
Ref. 6 for the derivation.)

∂J(Θk)
∂βj

=
αj

N

k∑
i=1

N∑
t=1

h(i|xt)U(i|xt)(δij − αi), (5)

∂J(Θk)
∂mj

=
αj

N

N∑
t=1

h(j|xt)U(j|xt)Σ−1
j (xt − mj), (6)

vec
[
∂J(Θk)

∂Bj

]
=

∂(BjB
T
j )

∂Bj
vec

[
∂J(Θk)

∂Σj

]
, (7)

where δij is the Kronecker function, vec[A] denotes the vector obtained by stacking
the column vectors of the matrix A, and

U(i|xt) =
k∑

r=1

(δri − p(r|xt)) ln[αrq(xt|mr, Σr)] + 1,

h(i|xt) =
q(xt|mi, Σi)∑k

r=1 αrq(xt|mr, Σr)
, p(i|xt) = αih(i|xt),

∂J(Θk)
∂Σj

=
αj

N

N∑
t=1

h(j|xt)U(j|xt)Σ−1
j

[
(xt − mj)(xt − mj)T − Σj

]
Σ−1

j ,

and
∂(BBT )

∂B
= In×n ⊗ BT

n×n + En2×n2 · BT
n×n ⊗ In×n,

where ⊗ denotes the Kronecker product (or tensor product), and

En2×n2 =
∂BT

∂B
= (Γij)n2×n2 =




Γ11 Γ12 · · · Γ1n

Γ21 Γ22 · · · Γ2n

· · · · · · · · · · · ·
Γn1 Γn2 · · · Γnn




n2×n2

,

where Γij is an n × n matrix whose (j, i)th element is just 1, with all the other

elements being zero. With the above expression of ∂(BjBT
j )

∂Bj
, we have

vec
[
∂J(Θk)

∂Bj

]
=

αj

2N

N∑
t=1

h(j|xt)U(j|xt)(In×n ⊗ BT
n×n + En2×n2 · BT

n×n ⊗ In×n)

× vec
[
Σ−1

j (xt − mj)(xt − mj)T Σ−1
j − Σ−1

j

]
. (8)
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Based on the above preparation, we can derive the conjugate and natural gra-
dient rules as follows.

Combining these βj , mj , and Bj into a vector Φk, we can construct the conjugate
gradient rule by

Φi+1
k = Φi

k + ηŜi, (9)

where η > 0 is the learning rate, and the searching direction Ŝi is obtained from
the following recursive iterations of the conjugate vectors:

S1 = ∇J(Φ1
k), Ŝ1 =

∇J(Φ1
k)

‖∇J(Φ1
k)‖

Si = ∇J(Φi
k) + Vi−1Si−1, Ŝi =

Si

‖Si‖ , Vi−1 =
‖∇J(Φi

k)‖2

‖∇J(Φi−1
k )‖2

,

where ∇J(Φk) is just the general gradient vector of J(Φk) = J(Θk) and ‖·‖ is the
Euclidean norm.

As for the natural gradient rule, we further consider Φk as a point in the
Riemann space. Then, we can construct a k(n2 + n + 1)-dimensional statistical
model F = {P (x, Φk) = q(xt, Θk) : Φk ∈ Ξ}. The Fisher information matrix of the
statistical model at a point Φk is defined as G(Φk) = [gij(Φk)], where gij(Φk) is
given by

gij(Φk) =
∫

∂il(x, Φk)∂j l(x, Φk)P (x, Φk)dx, (10)

where ∂i = ∂
∂Φki

, i.e. the derivative with respect to the ith component of Φk, and
l(x, Φk) = ln P (x, Φk). By the derivatives of P (xt, Φk) with respect to βj , mj , Bj

(See Ref. 2 for details):

∂P (xt, Φk)
∂βj

= αjq(xt|mj , Σj)
k∑

i=1

(δij − αi), (11)

∂P (xt, Φk)
∂mj

= αjq(xt|mj , Σj)Σ−1
j (xt − mj), (12)

vec
[
∂P (xt, Φk)

∂Bj

]
= αjq(xt|mj , Σj)

∂BT
j Bj

∂Bj
vec[Σ−1

j [(xt − mj)(xt − mj)T Σ−1
j − Σ−1

j ],

(13)

we can easily get an estimate of G(Φk) on a sample data set via Eq. (10) under the
law of large numbers. According to Amari and Nagaoka’s natural gradient theory,2

we have the following natural gradient rule:

Φi+1
k = Φi

k − ηG−1(Φi
k)∇J(Φi

k), (14)

where η > 0 is the learning rate.
According to the theories of optimization and information geometry, the conju-

gate and natural gradient rules generally have a better convergence behavior than
the general gradient ones, especially on the convergence rate, which will be further
demonstrated by the simulation experiments in the next section.
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4. Experimental Results

In this section, several simulation experiments are carried out to demonstrate the
conjugate and natural gradient rules for the automated model selection as well
as the parameter estimation on seven data sets from Gaussian mixtures. We also
compare them with the batch and adaptive gradient learning algorithms.9,10

We conduct 7 Monte Carlo experiments to sample data drawn from a mixture of
three or four bivariate Gaussian distributions (i.e. n = 2). As shown in Fig. 1, each
data set is generated with different degree of overlap among the clusters and with
equal or unequal mixing proportions. The values of the parameters of the seven
data sets are given in Table 1 where mi, Σi = [σi

jk ]2×2, αi and Ni denote the mean
vector, covariance matrix, mixing proportion and the number of samples of the ith
Gaussian cluster, respectively.

Using k∗ to denote the number of Gaussians in the original mixture, i.e. the
number of actual clusters in the sample data set, we implemented the conjugate
and natural gradient rules on those seven sample data sets by setting a larger k

Fig. 1. Seven sets of sample data used in the experiments. (a). Set S1; (b). Set S2; (c). Set S3;
(d). Set S4; (e). Set S5; (f). Set S6; (g). Set S7.
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Table 1. Values of parameters of the seven data sets.

The Sample Set Gaussian mi σi
11 σi

12 σi
22 αi Ni

S1 Gaussian 1 (2.5, 0) 0.25 0 0.25 0.25 400
(N = 1600) Gaussian 2 (0, 2.5) 0.25 0 0.25 0.25 400

Gaussian 3 (−2.5, 0) 0.25 0 0.25 0.25 400
Gaussian 4 (0, −2.5) 0.25 0 0.25 0.25 400

S2 Gaussian 1 (2.5, 0) 0.5 0 0.5 0.25 400
(N = 1600) Gaussian 2 (0, 2.5) 0.5 0 0.5 0.25 400

Gaussian 3 (−2.5, 0) 0.5 0 0.5 0.25 400
Gaussian 4 (0, −2.5) 0.5 0 0.5 0.25 400

S3 Gaussian 1 (2.5, 0) 0.28 −0.20 0.32 0.34 544
(N = 1600) Gaussian 2 (0, 2.5) 0.34 0.20 0.22 0.28 448

Gaussian 3 (−2.5, 0) 0.50 0.04 0.12 0.22 352
Gaussian 4 (0, −2.5) 0.10 0.05 0.50 0.16 256

S4 Gaussian 1 (2.5, 0) 0.45 −0.25 0.55 0.34 544
(N = 1600) Gaussian 2 (0, 2.5) 0.65 0.20 0.25 0.28 448

Gaussian 3 (−2.5, 0) 1.0 0.1 0.35 0.22 352
Gaussian 4 (0, −2.5) 0.30 0.15 0.80 0.16 256

S5 Gaussian 1 (2.5, 0) 0.1 0.2 1.25 0.5 600
(N = 1200) Gaussian 2 (0, 2.5) 1.25 0.35 0.15 0.3 360

Gaussian 3 (−1,−1) 1.0 −0.8 0.75 0.2 240

S6 Gaussian 1 (2.5, 0) 0.28 −0.20 0.32 0.34 272
(N = 800) Gaussian 2 (0, 2.5) 0.34 0.20 0.22 0.28 224

Gaussian 3 (−2.5, 0) 0.50 0.04 0.12 0.22 176
Gaussian 4 (0, −2.5) 0.10 0.05 0.50 0.16 128

S7 Gaussian 1 (2.5, 0) 0.25 0 0.25 0.3333 150
(N = 450) Gaussian 2 (0, 2.5) 0.25 0 0.25 0.3333 150

Gaussian 3 (−1,−1) 0.25 0 0.25 0.3333 150

(k ≥ k∗) and η = 0.1. Moreover, the other parameters were initialized randomly
within certain intervals. In all the experiments, the learning was stopped when
|J(Φnew

k ) − J(Φold
k )| < 10−5.

The experimental results of the conjugate and natural gradient rules on the
data set S2 are given in Figs. 2 and 3, respectively, with case k = 8 and k∗ = 4. We
can observe that four Gaussians were finally located accurately, while the mixing
proportions of the other four Gaussians were reduced to below 0.01, i.e. these Gaus-
sians are extra and can be discarded. That is, the correct number of the clusters
were detected on these data sets. Moreover, the experiments of the two gradient
rules have been made on S4 with k = 8, k∗ = 4. As shown in Figs. 4 and 5, clusters
are typically elliptical. Again, four Gaussians are located accurately, while the mix-
ing proportions of the other four extra Gaussians become less than 0.01. That is,
the correct number of the clusters can still be detected on a general data set. Fur-
thermore, the two gradient rules were also implemented on S6 with k = 8, k∗ = 4.
As shown in Figs. 6 and 7, each cluster has a small number of samples, the correct
number of clusters can still be detected, with the mixing proportions of other four
extra Gaussians reduced below 0.01.
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Fig. 2. The experimental result of the conjugate gradient rule (or algorithm) on the sample set
S2 (stopped after 63 iterations). In this and the following three figures, the contour lines of each
Gaussian are retained unless its density is less than e−3 (peak).
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Fig. 3. The experimental result of the natural gradient rule on the sample set S2 (stopped after
126 iterations).
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Fig. 4. The experimental result of the conjugate gradient rule on the sample set S4 (stopped
after 112 iterations).
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Fig. 5. The experimental result of the natural gradient rule on the sample set S4 (stopped after
149 iterations).
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Fig. 6. The experimental result of the conjugate gradient rule on the sample set S6 (stopped
after 153 iterations).
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Fig. 7. The experimental result of the natural gradient rule on the sample set S6 (stopped after
194 iterations).
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Further experiments of the two gradient rules on the other sample sets were
also made successfully for the correct number detection in similar cases. Actually,
in many experiments, a failure rarely occurred for the correct number detection
when we set k with k∗ ≤ k ≤ 3k∗. However, they may lead to a wrong detection
when k > 3k∗.

In addition to the correct number detection, we further compared the converged
values of parameters (discarding the extra Gaussians) with those parameters in the
original mixture from which the samples came from. We checked the results in these
experiments and found that the conjugate and natural gradient rules converge with
a lower average error between the estimated parameters and the true parameters.
Actually, the average error of the parameter estimation with each rule was generally
as good as that of the EM algorithm on the same data set with k = k∗.

In comparison with the simulation results of the batch and adaptive gradient
rules9,10 on these seven sets of sample data, we found that the conjugate and natural
gradient rules converge more quickly than the two general gradient ones. Actually,
for the most cases it had been demonstrated by simulation experiments that the
number of iterations required by each of these two rules is only about one quarter
to a half of the number of iterations required by either the batch or adaptive
gradient rule.

As compared with each other, the conjugate gradient rule converges more
quickly than the natural gradient rule, but the natural gradient rule obtains a
more accurate solution on the parameter estimation.

5. Conclusion

We have proposed the conjugate and natural gradient rules for the BYY harmony
learning on Gaussian mixture with automated model selection. They are derived
from the conjugate gradient method and Amari and Nagaoka’s natural gradient
theory for the maximization of the harmony function defined on Gaussian mixture
model. The simulation experiments have demonstrated that both the conjugate and
natural rules lead to the correct selection of the number of actual Gaussians as well
as a good estimate for the parameters of the original Gaussian mixture. Moreover,
they converge more quickly than the general gradient ones.
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