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This paper presents a new neural network approach to real-time pattern recognition on
a given set of binary (or bipolar) sample patterns. The perceptive neuron of a binary
pattern is defined and constructed as a binary neuron with a neighborhood perceptive
field. Letting its hidden units be the respective perceptive neurons of the patterns, a
three-layer forward neural network is constructed to recognize these patterns with mini-
mum error probability in a noisy environment. The theoretical and simulation analyses
show that the network is effective for pattern recognition and can be easily implemented
under strict real-time constraints.
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1. Introduction

The major application of artificial neural network may be pattern recognition.

Given a set of binary (or bipolar) sample patterns, the problem of pattern recog-

nition via a neural network is how to design a neural network which is able to

learn and store these patterns, and then recognize each of these patterns from any

noisy pattern within its possibly large neighborhood. Obviously, we meet the same

problem when we apply a neural network to an associative memory on the same

sample pattern set. As an important model of associative memory, Hopfield network

has been extensively studied and applied to such kind of pattern recognition with

the sum-of-outer product scheme.4 Since the memory capacity of Hopfield network

with the sum-of-outer product scheme is very low,9 further researches have been

made on the asymmetric or generalized Hopfield model with the other learning

algorithms.1,5,6,12 Recently, the author proposed the object perceptron learning al-

gorithm on the generalized Hopfield network which makes each sample pattern have

a larger basin of attraction in comparison with the sum-of-outer product scheme

on Hopfield network.7 Unfortunately, this kind of recurrent neural networks cannot

∗This work was supported by the NSFC(19701022) and the Natural Science Foundation of
Guangdong Province (970377).

937



September 3, 2001 17:16 WSPC/115-IJPRAI 00124

938 J. Ma

be applied to pattern recognition under the real-time constraints simply because

the time for one recognition process, i.e. the number of iterations from one initial

pattern to the final stable pattern (one of the sample patterns), cannot be known

or limited.

For the purpose of real-time pattern recognition, multilayer forward neural net-

works (e.g. the multilayer Back-Propagation network,11 the radial basis function

network2) may be more suitable since the processing time for an input pattern

is clear and limited. However, in attempting to apply a multilayer forward neural

network to real-time pattern recognition, two major difficulties will be encountered:

(1) The existing learning algorithms are capable of making the network recognize

(or retrieve) each sample pattern from itself, but it is rather difficult to make

the network recognize each sample pattern from any noisy pattern within a

large neighborhood of patterns.

(2) For real-time pattern recognition, the network should be implemented by the

electronical devices and circuits. But the weights of the network obtained by any

existing learning algorithm are real numbers and thus require high precision.

Therefore, it is difficult to design these weights on the implementation of the

network.

In order to overcome these two difficulties, we will propose a three-layer for-

ward neural network based on so-called perceptive neurons for real-time pattern

recognition in this paper.

In the sequel, the definition and constructivity theorem of the perceptive neuron

of a binary pattern is given in Sec. 2. Section 3 proposes the neural network archi-

tecture for real-time pattern recognition. The implementation of the network is

then discussed in Sec. 4. Section 5 further presents some simulation results and

comparisons. A brief conclusion appears in Sec. 6.

2. The Perceptive Neuron

We now introduce the perceptive neuron and begin with a brief description of a

binary neuron which is also referred to as a M-P neuron8 or perceptron.10

As sketched in Fig. 1, a binary neuron is a processing element with n input

signals x1, x2, . . . , xn and an output signal y. There is a weight wi on the connection

from each input signal xi to the neuron. And there is a threshold value θ for the

neuron. For an input signal pattern X = [x1, x2, . . . , xn]T , the output signal y of

the neuron is computed by

y = Sgn(H(x)) =

{
1 if H(x) > 0

0 otherwise
(1)

where

H(x) =
n∑
i=1

wixi − θ .
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Fig. 1. The sketch of a neuron.

Supposing that X = [x1, x2, . . . , xn]T is a n-dim binary input pattern, i.e. X ∈
{0, 1}n, and that C = [c1, c2, . . . , cn]T is a fixed n-dim binary pattern, we define

dH(X,C) =
n∑
i=1

|xi − ci| (2)

as the Hamming distance between X and C. We then define the t-neighborhood of

C over the n-dim binary space {0, 1}n as follows:

Rt(C) = {X : dH(X,C) ≤ t} . (3)

Then, we give the definition of the perceptive neuron as follows.

Definition 1. If a binary neuron with a fixed weight vectorW = [w1, w2, . . . , wn]T

and a fixed threshold value θ, satisfies the following input–output relation:

y(X) = Sgn

(
n∑
i=1

wixi − θ
)

=

{
1 if X ∈ Rt(C)

0 otherwise
(4)

it is called a t-neighborhood perceptive neuron of (pattern) C.

For a binary neuron, we can consider that the neuron perceives the pattern when

its output is one, and it does not perceive the pattern when its output is zero. From

Definition 1, the perceptive neuron perceives or recognizes a unique pattern under

a noisy environment. The perceptive field of a t-neighborhood perceptive neuron of

C is just the t-neighborhood of C.

We further give the constructivity theorem of the perceptive neuron as follows.

Theorem 1. Suppose that C = [c1, c2, . . . , cn]T is a constant binary pattern, and

that dH(C) =
∑n
i=1 ci is the Hamming weight of C. If a neuron is constructed by

wi = (−1)1+ci , i = 1, . . . , n (5)

θ = dH(C) − (t+ 1) (6)

then it is a t-neighborhood perceptive neuron of C.
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Proof. We first introduce the variables on input pattern X with C as follows:

N ij(X) = |{k : xk = i, ck = j}| i, j = 0, 1 (7)

where |A| is the number of elements of a set A. According to above notations, we

certainly have the following two equalities:

dH(C) = N11(X) +N01(X) (8)

dH(X,C) = N10(X) +N01(X) . (9)

We then have

n∑
k=1

wkxk =
n∑
k=1

(−1)1+ckxk =
∑
xk=1

(−1)1+ck

=
∑

xk=1,ck=1

1 +
∑

xk=1,ck=0

(−1)

= N11(X)−N10(X) .

From Eqs. (8) and (9), we further have

n∑
k=1

wkxk = (dH(C) −N01(X))−N10(X)

= dH(C)− (N01(X) +N10(X))

= dH(C)−DH(X,C) .

Thus we have

y(X) = Sgn

(
n∑
i=1

wixi − θ
)

= Sgn(dH(C)− dH(X,C)− dH(C) + (t+ 1))

= Sgn(t+ 1− dH(X,C))

=

{
1 if X ∈ Rt(C)

0 otherwise.

Therefore the constructed neuron is a t-neighborhood perceptive neuron of C. The

proof is completed.

By Theorem 1, we find that the perceptive neuron can be easily constructed

from the components of the pattern. Moreover, t is dominated by the threshold

value of the neuron, which is very useful to design our neural network architecture

for real-time pattern recognition.
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Fig. 2. The sketch of the proposed neural network for real-time pattern recognition.

3. The Neural Network Architecture for

Real-Time Pattern Recognition

Given a binary sample pattern set S = {S1, S2, . . . , Sm}, where Si = [si1, s
i
2, . . . ,

sin]T ∈ {0, 1}n for i = 1, 2, . . . ,m. We define the minimum Hamming distance of

each sample pattern Si to the other ones by

d∗i = min
j 6=i

dH(Si, Sj) = min {dH(Si, Sj) : j = 1, . . . , i− 1, i+ 1, . . . ,m} . (10)

As is well-known in coding theory, d∗1, d
∗
2, . . . , d

∗
n really give the bounds of radii of

error-correcting hyperspheres of the sample patterns (codes) in n-dim binary space.

In fact, the reasonable radius of error-correcting hypersphere of each Si should be

no more than t∗i = [
d∗i−1

2 ] by any learning algorithm or scheme. (Here [x] denotes

the integer part of the real number x.) For a recognition system, only when the

radius of the error-correcting hypersphere of each Si is just t∗i , the error probability

of recognition reaches the minimum in a noisy environment.

We now propose our neural network for real-time pattern recognition. As

sketched in Fig. 2, it is a three-layer forward neural network which has n neu-

rons on both the input and output layers, and m neurons on the hidden layer. We

let the hidden neuron i with its weights w1
i1, w

1
i2, . . . , w

1
in for n input signals and

its threshold value θ1
i , be a t∗i -neighborhood perceptive neuron of Si. According to

Theorem 1, we can construct it by

w1
ij = (−1)1+sij , j = 1, . . . , n (11)

θ1
i = d∗i − (t∗i + 1) . (12)

From m hidden neurons to n output neurons, the weights are given by

w2
ij = sij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n . (13)
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And the threshold values of all output neurons are assumed to be zero, i.e.

θ2
j = 0 , j = 1, 2, . . . , n . (14)

We further analyze the function of the neural network in a noisy environ-

ment. Suppose that X = [x1, x2, . . . , xn]T (∈ {0, 1}n) is an input pattern and

Y = [y1, y2, . . . , yn]T is the corresponding output pattern. Denote the output of

each hidden neuron i to be ui. When X is input to the neural network, the hidden

neurons process perceptively at the same time. The results are then transmitted

to the output layer and we finally get the output Y from the output neurons.

Obviously, this process can be done in a very short time. (The real-time processing

properties will be more discussed in the following section.) For pattern recognition,

we suppose that X is a noisy pattern of Si in Rt∗i (Si), that is, dH(X,Si) ≤ t∗i .

Because d∗i ≥ 2t∗i + 1, we have X /∈ Rt∗
k
(Sk), where k 6= i. Therefore we have

ui = Sgn

(
n∑
j=1

w1
ijxj − θ1

i

)
= 1

uk = Sgn

(
n∑
j=1

w1
kjxj − θ1

k

)
= 0 , (k 6= i) .

We further have

Y (X) = (y1(X), y2(X), . . . , yn(X))T = Si.

If X is not in any Rt∗i (S
i), that is, d(X,Si) > t∗i for i = 1, 2, . . . ,m, the out-

put of each hidden neuron becomes zero. Then the output of the network is zero

pattern (assuming that zero pattern is not a sample pattern). This shows that X

has too many error bits to be recognized by our neural network. Moreover, the

network makes mistakes in the case that one sample pattern polluted by too many

error bits turns to be in the neighborhood of the other sample pattern. However,

since the radius of the error-correcting hypersphere of each Si is t∗i by our neural

network, the error probability of recognition certainly reaches the minimum in a

noisy environment. In fact, this minimum error probability is generally very small

and we can neglect the two cases.

As a whole, our proposed neural network is able to store any set of m binary

sample patterns and recognize each of them from any noisy pattern within its

possibly large neighborhood. That is, the network recognizes the sample patterns

with the minimum error probability in a noisy environment. Furthermore, the

process of pattern recognition for any input pattern can be done in a very short

time.

When the sample patterns are bipolar, we can use bipolar neurons in our

proposed neural network and design the weights and threshold values by the corre-

sponding bipolar patterns. It is easy to prove that the neural network in the bipolar

case has the same real-time pattern recognition function as the above one.
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4. The Implementation of the Neural Network

We further discuss the implementation of our proposed neural network. As long

as the sample pattern set is given, the weights and threshold values of our neural

network can be computed directly from the binary sample patterns just as those of

Hopfield network with the sum-of-outer product learning scheme. Moreover, every

weight of the neural network is either 1 or −1 if it is not zero, which makes it very

easy to realize our neural network by electronic devices and circuits.

The complexity of architecture of a three-layer forward neural network depends

on the number of processing neurons (having the computing capability) and the

distribution of the fan-in connection density of processing neurons in the network.

Clearly, the input neurons are not processing neurons, but the hidden neurons are

certainly processing neurons. Generally, the output neurons are processing ones.

But in our neural network, each output neuron works actually as a signal-inspecting

device since there is always at most one connection to it carrying the positive signal,

that is, ui = 1. Therefore the output neurons of the neural network do not need the

computing capability and we will not consider them as processing neurons. Thus

there are only m processing neurons in our neural network. It is clear that the fan-in

connection density of each processing neurons is n. By summing up two results, we

find that the complexity of architecture of our proposed neural network is much

less than that of a general three-layer forward neural network. Therefore it can be

implemented much easily than a general three-layer forward neural network.

With the development of technique of VLSI and artificial neural network, we

can implement the neural network with eight thousand processing neurons.3 So the

proposed neural network can be constructed with enough processing neurons to

fulfill a practical and complex pattern recognition task. On the other hand, one

computation of a neuron can be fulfilled in a nanosecond. Then the time for pro-

cessing an input pattern by our neural network is at most a few nanoseconds.

Therefore our neural network can be used for pattern recognition under strict

real-time constraints.

5. Simulation Analyses and Comparisons

In this section, we make some simulations to compare our proposed neural network

with the other typical neural networks or learning algorithms for real-time pattern

recognition. Since the real-time processing characteristic of each of these neural

networks is very clear, we do not consider the executing time of every simulation.

So we here compare our neural network with the other typical neural networks

or learning algorithms only on the performance of pattern recognition or error-

correcting.

Our simulation experiments are undertaken on the sample set of ten Arabic

numerals {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} which are expressed by 7× 7 pixies in Fig. 3. For

the sake of convenience, here we use the same set of sample patterns as that of

Ref. 7 in which the author made some simulations to check the performance of
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Fig. 3. The sample patterns of ten Arabic numerals {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

the generalized Hopfield network on associative memory of this sample set via the

object pecerptron learning algorithm.

Based on the Hamming distances between these sample patterns, we have

(t∗1, t
∗
2, t
∗
3, t
∗
4, t
∗
5, t
∗
6, t
∗
7, t
∗
8, t
∗
9, t
∗
10) = (3, 6, 5, 4, 9, 4, 5, 8, 3, 4) .

With these sample patterns and above data, we can easily construct our neu-

ral network with 49 input neurons, 10 hidden neurons and 49 output neurons

respectively by Eqs. (11)–(14). Then the radius of attraction of a sample pattern

Si(= i− 1), i.e. the radius of the largest error-correcting hypersphere of Si, is just

t∗i for i = 1, 2, . . . , 10.

Before we make the following discussions, we introduce how to estimate the

radius of attraction of a sample pattern (as a stable state) under a neural network

if it cannot be computed directly. For a sample pattern Si(i ∈ {1, 2, . . . , 10}) and the

integer number j(j ≥ 0), we randomly select 1000 initial (or input) patterns with

a Hamming distance being j from Si for a recurrent (or forward) neural network.

These initial (or input) patterns can be considered as Si polluted by j errors in

some j components. Then the neural network operates with each initial (or input)

pattern. We check whether the network finally evolves to (or produce) Si or not. If

the network evolves to (or produces) Si for all 1000 initial patterns, we are sure that

j is a possible radius of attraction of Sk. In this way for j from 0, 1, 2, . . . , we can

estimate the radius of attraction of Sk — the largest possible radius of attraction

of Sk.

We first compare the performance of our neural network with those of Hopfield

network and the generalized Hopfield network. According to the simulation results

given in Ref. 7, the ten sample patterns cannot be all stable on the Hopfield network

constructed by the sum-of-outer product scheme. Therefore we cannot use Hopfield

network with the sum-of-outer product scheme to fulfill the pattern recognition

or associative memory task on these sample patterns. By the object perceptron

learning algorithm on the generalized Hopfield network, the ten sample patterns

can be all stable with their radii of attraction, RGHN (Si), listed in the third row of

Table 1. Comparing the radii of attraction under our neural network, i.e. the data
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Table 1. The radii of attraction of the ten Arabic numerals

under the four neural networks for pattern recognition.

Si 0 1 2 3 4 5 6 7 8 9

t∗i 3 6 5 4 9 4 5 8 3 4

RGHN (Si) 2 6 3 2 8 4 3 9 2 3

RBPN (Si) 1 2 2 5 4 1 2 3 1 1

RRBFN (Si) 2 3 4 2 5 6 2 3 2 2

of t∗i in the second row of Table 1, with these data, we find that the performance

of our neural network on pattern recognition is better than that of the generalized

Hopfield with the object perceptron learning algorithm.

We further compare the performance of our neural network with that of the

three-layer Back-Propagation network. Obviously, the three-layer Back-Propagation

network has the same architecture as our neural network. We apply the Back-

Propagation algorithm to training the network, i.e. the weights and threshold values

of the network, to fit the following object function:

F (Si) = ei , i = 1, 2, . . . , 10 (15)

where ei is the ten-dim vector of which the ith component is one and the other

components are all zero. After 2306 iterations, we obtained a three-layer Back-

Propagation network which can fit the object function with the total error being

less than 0.1. When we estimate the radii of attraction of the sample pattern with

the trained network, the output of an output neuron is considered to be zero if its

actual output for an input pattern is less than 0.5, otherwise, it is considered to

be one. By the simulation on the Back-Propagation network, we obtain the radii

of attraction of the ten sample patterns, RBPN (Si), listed in the fourth row of

Table 1. Comparing the data of t∗i with these data, we find that the performance

of our neural network is much better than that of the Back-Propagation network

with the same architecture on pattern recognition.

We finally compare the performance of our neural network with that of the

radial basis function network for the same architecture. We select the Gaussian

functions of σ = 1 as the radial basis functions and use the ten sample patterns as

the centers of the ten Gaussian functions respectively. The object function is now

changed to

F (Si) = Ei , i = 1, 2, . . . , 10 (16)

where Ei is the ten-dim vector of which the ith component is one and the other

components are all −1. We use the Widrow learning algorithm to train the coeffi-

cients from the Gaussian functions to each output linear element in the network.

After about 400 iterations of the coefficients of the radial basis functions for each
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output linear elements, we finally obtained a radial basis function network which

can fit the object function with the total error being less than 0.1. When we estimate

the radii of attraction of the sample pattern with the trained radial basis function

network in this case, the output of an output neuron is considered to be −1 if

its actual output for an input pattern is less than zero, otherwise, it is considered

to be one. By the simulation, we obtain the radii of attraction of the ten sample

patterns, RRBFN (Si), listed in the fifth row of Table 1. Comparing the data of t∗i
with these data, we find that the performance of our neural network is still much

better than that of the radial basis function network with the same architecture on

pattern recognition. However, the performance of the radial basis function network

is improved in comparison with that of the Back-Propagation network.

As a result of the simulation analyses and comparisons, our proposed neural

network is more effective for pattern recognition than the other typical neural

networks or learning algorithms.

6. Conclusion

Based on the perceptive neurons, we have constructed a three-layer forward neural

network for real-time pattern recognition on a sample set of binary (or bipolar)

patterns. The neural network is able to store these sample patterns and to recognize

each of them from any noisy pattern within its possibly large neighborhood in a

few nanoseconds. Moreover, the neural network can be easily implemented by elec-

tronical devices and circuits. The simulation results also show this neural network

is more effective for pattern recognition than the other existing models or learning

algorithms.
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