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We investigate the memory structure and retrieval of the brain and propose a hybrid neural network
of addressable and content-addressable memory which is a special database model and can memorize
and retrieve any piece of information (a binary pattern) both addressably and content-addressably. The
architecture of this hybrid neural network is hierarchical and takes the form of a tree of slabs which consist
of binary neurons with the same array. Simplex memory neural networks are considered as the slabs of
basic memory units, being distributed on the terminal vertexes of the tree. It is shown by theoretical
analysis that the hybrid neural network is able to be constructed with Hebbian and competitive learning
rules, and some other important characteristics of its learning and memory behavior are also consistent
with those of the brain. Moreover, we demonstrate the hybrid neural network on a set of ten binary
numeral patters.
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1. Introduction

The key to understanding and modelling human

intelligence is how information is represented and

stored in memory. While there has been a great deal

of work on the structure of memory,1 it is clear that

definitive answers have not been found yet. However,

it has been shown by many psychological experi-

ments that information items in memory are both

addressable and content-addressable. In fact, as one

recognizes his friend from a photo, or even a part of

it, it is certain that the figure of his friend has been

memorized as well as retrieved content-addressably

in his brain. Content-addressable memory is a typi-

cal kind of associative memory in the brain and there

have been several models to describe it (e.g., Refs. 2

and 3). On the other hand, temporally modulated

information-processing and sequential behavior are

also essential to our everyday functioning, such as in

interpreting auditory stimuli and in using language.

So the information items in memory should be also

in serial order.4,5 Since there is a huge amount of

information in memory and the speed of informa-

tion transmission is limited in the brain, a sequential

information item can be only retrieved from some

cue which functions as the address of the informa-

tion item in memory. Therefore, information items

should be addressable in memory. Although a lot of

evidence has been found to support the argument

that the memory in the brain is both addressable and

content-addressable, there has not yet any reason-

able theory or model which can unify the characteris-

tics of addressable and content-addressable memory,

to our best knowledge.

With the development of neurobiology and ana-

tomy, researchers have been trying to investigate

the learning and memory mechanisms structurally
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on the basis of the neural cells (neurons). In this

way, the first breakthrough was the M-P model which

mathematically describes the function or behavior

of a neuron.6 Then, Hebb proposed a learning sup-

posal that the strength of efficiency of the synapse

between two neurons will increase when they both

activate at the same time, which is now known as

Hebbian learning rule.7 Anderson further proposed a

simple neural network which can generate an inter-

active memory.8 Moreover, several neural network

models of content-addressable or associative mem-

ory were established(e.g., Refs. 9–11). Especially,

Hopfield proposed a recurrent neural network which

was late referred to as Hopfield network.12 Under the

learning scheme of sum-of-outer product, a group of

sample patterns can be stored in the Hopfield net-

work with function of associative memory. It has

been recently shown that the asymmetric or gen-

eralized Hopfield network has a similar behavior of

associative memory as Hopfield network.13–15

Based on the psychological fact that the mem-

ory is stored in the brain by groups individually,

the author has proposed a biological neural network,

called simplex memory neural network(SMNN),16

which can learn and memorize (store) a single binary

pattern with content-addressable memory function.

Moreover, it can be constructed in the brain with

Hebbian learning rule. In certain sense, this network

can be considered as a basic unit of the memory in

the brain. In the light of this idea, we now assume

that each item of information (as a binary pattern)

is stored in its SMNN in the brain. Then, the mem-

ory of the brain will be considered as a SMNN bank.

One SMNN may have connection with other related

SMNNs in the SMNN bank, that is, the retrieval

of one pattern may cause the retrieval of the other

related patterns as a hetero-associative memory. In

such a way, a number of SMNNs may connect to-

gether in a certain order to learn and memorize a

spatio-temporal pattern sequence. Certainly, the

information association among these SMNNs is

very important to thinking, inference, decision,

etc., however, for simplicity, we will neglect these

hetero-associative memory connections among these

SMNNs in the current paper.

As each pattern is stored in its SMNN in a

content-addressable way and it can be retrieved only

from its own SMNN but the other SMNNs, one sim-

ple mechanism of the retrieval of a pattern on the

SMNN bank is to transmit the input pattern to all

the SMNNs in a full parallel way. Certainly, the

corresponding pattern can be retrieved from some

SMNN. If this mechanism is true, all neurons in the

brain will work together when we see or hear some-

thing. But this is inconsistent with the biological

finding that the neurons are active only in some local

region of the brain when we see or hear something.

Moreover, it is also inconsistent with the result of

psychological experiments that the memory is re-

trieved both addressably and content-addressably.

How does the brain retrieve a piece of information

(pattern) in the SMNN bank addressably? The clas-

sification system of books in a library gives us a clue.

We can imagine that the information is memorized

into classes, subclasses, etc., in the brain. In fact,

when we get some new information, we always think

how it relates to the other memorized information.

In this way, the new information will be memorized

by its class, subclass, etc., as well as its content.

When we retrieve an item of information from the

input, we may search its class, subclass, etc., and

finally retrieve it by a certain SMNN in the SMNN

bank. Therefore, the membership of the class, sub-

class, etc. of the information may serve as an address

for the information. With such an address, we may

retrieve the information quickly and correctly. In

the light of this idea, we will propose a hybrid neu-

ral network of addressable and content-addressable

memory on the SMNN bank by which an item of

information (as a binary pattern) is memorized and

retrieved both addressably and content-addressably.

Consequently, this hybrid model makes it possible

that the content-addressable memory is compatible

with the addressable memory.

In sequel, we propose the hybrid neural network

of addressable and content-addressable memory in

Sec. 2. We further discuss the learning rules of the

hybrid neural network in Sec. 3. In Sec. 4, a sim-

ple simulation experiment is conducted to demon-

strate our proposed network. Finally, we give a brief

conclusion in Sec. 5.

2. The Model of the Hybrid Neural

Network

We begin with a brief description of simplex mem-

ory neural network(SMNN).16 Generally, an SMNN

consists of n connected binary or M-P neurons
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defined by a weight matrix W = (wij)n×n and a

threshold vector θ with certain content-addressable

memory function. The SMNN for a binary pattern

U = [u1, u2, . . . , un]T ∈ {0, 1}n with an error-

correcting capacity t can be constructed by

wij =



















1 if ui + uj = 2, i 6= j

−1 if ui + uj = 1, i 6= j

0 if ui + uj = 0, i 6= j

0 if i = j

, θi = dH(U) − (t + 1) (1)

for all i, j = 1, 2, . . . , n, where dH(U) (=
∑n

i=1
ui)

is the Hamming weight of U . Clearly, it is a Hop-

field network of n binary neurons. For clarity, we

let dH(X, U) =
∑n

i=1
|xi − ui| be the Hamming dis-

tance between X and U . Indeed, such constructed

SMNN has the retrieval characteristic that when the

input pattern X = [x1, x2, . . . , xn]T ∈ {0, 1}n, sat-

isfies dH(X, U) ≤ t, i.e., the number of errors ap-

pearing on the bits of the input pattern in contrast

to U is no more than t, the network will be stable

at U (U is retrieved); otherwise, the network will

be stable at 0 (U is not retrieved and the network

is in a quiescent state). Clearly, the pattern U is

stored in the SMNN in a distributable and content-

addressable way. It is also shown by theoretical anal-

ysis in Ref. 16 that an SMNN for a pattern can be

constructed with Hebbian learning rule.

We now propose our hybrid neural network of

addressable and content-addressable memory on the

SMNN bank. Structurally, it can be described as the

graph of a tree of slabs. That is, each vertex of the

tree is a slab which consists of n binary neurons with

the same array. The root vertex is just the unique

input slab of our network. The terminal vertexes

are slabs of SMNNs in the SMNN bank, i.e., the

SMNNs are considered as the slabs of basic memory

units, being distributed on the terminal vertexes of

the tree. There are a number of intermediate or hid-

den slabs between the input slab and these SMNN

slabs, which will be used for information transmis-

sion and processing. The neurons of any slab but

an SMNN, have no interconnections, but they are

connected to the corresponding neurons of each of

connected slabs to transmit the information forward,

and also dominate the communication through it in

a certain way.

More precisely, the network can be further de-

scribed as a multi-layer forward neural network. For

the sake of clarity, we assume that the network

consists of l layers and the ith layer has mi slabs.

The first layer is just a single input slab (or the root

vertex in the tree), i.e., m1 = 1. It receives the in-

formation, i.e., a binary pattern, from the outside

environment and transmits this information to the

slabs on the second layer. The m2 slabs on the sec-

ond layer divide all the memory units into m2 classes.

Here, a slab actually represents a class of the mem-

ory. The m3 slabs on the third layer further divide

all the memory units into m3 subclasses belonging

to m2 classes. A slab on the second layer transmits

the information only to the slabs on the third layer

which represent the subclasses belonging to the class

of this slab. In this way, each slab except an SMNN

or the input slab has one original slab on the pre-

ceding (left) layer and a number of generative slabs

on the next (right) layer. So it transmits the infor-

mation only to its generative slabs. However, such

a slab should have an additional dominant neuron

which contains the information of the class it rep-

resents. When the information is transmitted from

the original slab to this slab, the dominant neuron

also receives this information and matches it with the

class information. If the input information belongs

to the class, the dominant neuron spreads a positive

signal to let the information pass through it to the

generative slabs. Otherwise, the dominant neuron

spreads an inhibitory signal (or nothing) to prevent

the information from passing through it to the gen-

erative slabs. That is, the information stops and

disappears at this slab. Since the memory units may

have different number of the classifications, SMNN

slabs may appear on the hidden layers as the terminal

vertexes of the tree.

As shown in Fig. 1, the architecture sketch of

a simple hybrid neural network is given. It is a

three-layer forward neural network with eight slabs.

Obviously, it can be considered as the graph of a tree
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slab 1

slab 2 slab 4

slab 5

slab 6

slab 7

slab 8

slab 3

Fig. 1. The architecture sketch of a simple hybrid neural network.

generative slabslab

dominate
neuron

Fig. 2. The sketch of the connections from a slab to its generative slab.

with eight vertexes. Here, the final layer consists of

the five slabs which are the SMNNs for five binary

patterns. Clearly, slab 2 has three generative slabs

and slab 3 has two generative slabs. In this simple

case, the five binary patterns belonging to two classes

are stored addressably and content-addressably.

We further explain how a slab connects to a gen-

erative slab which is not an SMNN (slab). As shown

in Fig. 2, every neuron in the array of the left slab

connects only to the corresponding neuron in the

array of the generative (right) slab. Furthermore, all

the neurons in the left slab connect to the dominant

neuron of the generative slab which then connects

to all the neurons of the generative slab. Certainly,

we should assume that when the activating signals

of the neurons on the left slab are transmitted to the

corresponding neurons on the right slab, the domi-

nant neuron has processed the input signal from the

left slab and sent the output signal to these neurons

on its slab in the same time. Obviously, it is easy
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to design the slabs and their connections. However,

it may be difficult to design the dominant neurons

for the slabs. We will discuss the construction of

the dominant neurons in the next section. Since an

SMNN slab does not need the dominant neuron, the

information (a binary pattern) on its original slab

will be transmitted only to it and then it will re-

trieve the memorized pattern or evolve to the zero

state.

With such architecture, this neural network can

retrieve or restore a piece of memorized information

(pattern) from one of the SMNNs in the memory,

i.e., the SMNN bank, as follows. When a pattern (a

piece of information) is inputted on the input layer

or slab, it will be transmitted only to its class slab,

subclass slab, etc., through the dominant neurons’

positive signals. That is, when the dominant neuron

of a slab is activated and sends a positive signal to

each neuron of the slab, the threshold value of the

neurons of the slab decreases enough to let the in-

put pattern pass through the slab. Otherwise, the

threshold value remains high enough to prevent the

input pattern from passing through the slab and the

input pattern disappears at the slab. In this way, it

will be finally transmitted to a number of SMNNs

(SMNN slabs) in the parallel way. By the content-

addressable memory function of the SMNNs, the pat-

tern will be certainly retrieved or restored from its

SMNN even if the input pattern contains some er-

rors in contrast to the memorized pattern. In the

case that there are some errors on the input pattern,

we assume that the pattern with a small number of

errors still has the same class as the pattern itself

by the decision of the dominant neurons. Obviously,

this neural network is a hybrid model of addressable

and content-addressable memory. The information

or pattern is always transmitted in a small passage

and directed by the dominant neurons. Therefore,

the membership of the class, subclass, etc., of a pat-

tern directs the input signal to retrieve it, that is, the

membership serves as its address in the SMNN bank.

The pattern is finally retrieved content-addressably

in its SMNN from a number of SMNNs.

3. The Learning Rules and Biological

Discussions

We further discuss the learning rules and biolog-

ical characteristics of our proposed hybrid neural

network of addressable and content-addressable

memory. In this situation, the hybrid neural net-

work is considered biologically. The weight on the

connection between two neurons is the efficiency of

the synapse between them. As being expressed by

the SMNN model, the neurons in a slab evolve syn-

chronously and a pattern is retrieved or restored

when its SMNN is stable at this pattern, that is,

the SMNN can maintain the state as this pattern for

a period of time.

We suppose that the learning process is just a

process of synapse modification, while the threshold

values of neurons make no contribution to the learn-

ing result. So we further suppose that all the neu-

rons in a local field or slab have the same threshold

value, however, it can change with the environment.

With above facts and supposals, it is already shown

in Ref. 16 that an SMNN can be constructed with

Hebbian learning rule. Clearly, the connections from

one slab to its generative slab are simple and can be

also constructed by Hebbian learning rule. Then, we

only need to consider the learning rule to construct

a dominant neuron for a slab.

According to its function, the dominant neuron

for a slab detects whether the input pattern belongs

to the class it (or the slab) represents. When the in-

put pattern belongs to the class, the dominant neu-

ron sends a positive signal to each of the neurons in

the slab to let the pattern pass through. Otherwise,

when the input pattern does not belong to the class,

the dominant neuron sends an inhibitory signal (or

nothing) to each of the neurons in the slab to make

the pattern disappear at the slab. Essentially, these

dominate neurons of the slabs in one layer compete

each input pattern for their classes or subclasses. So,

we can apply the winner-take-all rule18 of competi-

tive learning to constructing these dominate neurons

of the slabs in the hidden layers of the hybrid neural

network as follows.

For clarity, we let V = {V 0, V 1, . . . , V N−1} be

the set of binary sample (or standard) patterns to

be processed. We first consider the dominate neu-

rons of the slabs in the second layer which classify all

the N binary sample patterns into m2 classes. Actu-

ally, these m2 dominate neurons form a competitive

layer for the input patterns. Here, we simply denote

the weight vector of the dominate neuron of slab i

by Wi = [wi1, . . . , win]T , i = 1, 2, . . . , m2. We also

assume these weight vectors to be normalized, i.e.,
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‖Wi‖ = 1. The winner-take-all (or classical com-

petitive learning) rule for these dominate neurons or

weight vectors consists of the following two steps.

Step 1: Randomly take a sample V from V , and for

i = 1, . . . , m2, let

ui =

{

1 , if i = c such that W T
c V = maxj W T

j V ,

0 , otherwise .

(2)

where ui denotes the output of the dominate neuron

of slab i.

Step 2: Update the weight vectors Wi by

∆Wi = ηui(V − Wi) , (3)

with normalizing.

Clearly, for each pattern, only the winning unit

Wc is updated. The parameter η with 0 ≤ η ≤ 1 is

the learning rate that either is a small positive num-

ber or starts from a reasonable initial value and then

reduces to zero according to the so called Robbin–

Monro stochastic approximation procedure.19

As the learning process is completed, we have ob-

tained the weight vectors of these dominate neurons.

Each dominate neuron represents a class of the sam-

ple patterns it wins. That is, if the dominate neuron

i wins the sample pattern V j in the competition, its

output ui is 1 and the outputs of the other domi-

nate neurons are zero. According to the function of

the competitive learning, the classification via these

dominate neurons is based on the similarity of the

sample patterns, which is consistent with the func-

tion of our hybrid neural network. Especially, if the

dominate neuron i only wins one sample pattern af-

ter the competitive learning is completed, we will use

the SMNN of this pattern instead of this slab.

For the dominate neuron of a slab in the se-

quential hidden layers, we can use the same method

to train its weight vector. In this situation, the trai-

ning set of sample patterns becomes the class of

sample patterns the dominate neuron of its original

slab represents and the dominate neurons in the com-

petition are those of the generative slabs with the

same original slab. Therefore, we can construct all

the dominant neurons with the winner-take-all rule

of competitive learning.

By above discussions, the dominant neuron can

be constructed with certain competitive learning

rule. Therefore, the hybrid neural network can be

constructed with Hebbian and competitive learning

rules. We leave the discussion of its performance in

the next section. Here, we give more discussion on

its biological significance. Since Hebbian learning

and competitive learning are strongly believed to ex-

ist in the brain, it is possible that there exists such a

biological hybrid network in the brain for the infor-

mation storage (memory) and retrieval. We further

have two arguments for the existence of the biological

hybrid network in the brain as follows.

• First, according to the anatomy of the brain, it

is known that the memory or information is dis-

tributed on the cortex. However, the input sig-

nals from the eyes, ears, etc., will be transmitted

through a number of layers of intermediate neu-

rons to reach at the cortex and retrieve the infor-

mation there. Since the cortex covers on all the

information channels from the sensory organs, the

neural network architecture from the input layer of

one sensory organ to the cortex takes the form of

a tree if we do not consider the hetero-associative

memory in the cortex. This is consistent with our

proposed hybrid network.

• Second, the dominant neurons can serve as the ad-

dress of information in a simple and natural way.

By above discussions, the dominant neuron is a de-

tector of certain similarity in the sample patterns

and we can design it by the competitive learning.

If the similarity is detected, the dominant neuron

will be excitatory and send some (chemical) sub-

stances to decrease the threshold value of the neu-

rons on the slab. (Note that all the neuron on

a slab have the same threshold value by our sup-

posal.) Then, the pattern will pass through the

slab for further transmission. Otherwise, if the

similarity is not detected, the dominant neuron

will be inhibitory and send some other substances

(or nothing) to increase (or remain) the thresh-

old value so that all the neurons will keep quies-

cent even if the pattern is transmitted at the slab.

Therefore, the pattern will certainly disappear at

this slab.

Summing up all the discussions above, we have

found that this hybrid neural network is a reasonable

model to describe the memory structure or informa-

tion storage and retrieval mechanism in the brain.
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Fig. 3. The ten binary numeral patterns for the simula-
tion experiment.

4. The Simulation Results

In this section, a simulation experiment on the ten

binary numeral patters is carried out to demon-

strate our proposed hybrid neural network. Then,

we need to only memorize the ten binary patterns

of Arabic numerals in our hybrid neural network.

As shown in Fig. 3, these ten Arabic numerals

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} for the simulation are ex-

pressed by 8×8 pixels. Specifically, each number i is

expressed by a binary matrix Sk = (sk
ij)8×8, where

sk
ij = 1 represents the black pixel. Actually, we con-

sider it as a vector binary pattern, i.e., V k = vec[Sk]

in the experiment. For analysis, we introduce the

minimum Hamming distance of each sample pattern

V k to the other ones by

d∗k =min
j 6=k

dH(V k, V j)

=min{dH(V k, V j) : j =0, . . . , k − 1, k + 1, . . . , 9}.

As is well-known in coding theory, d∗
0
, d∗

1
, . . . , d∗

9

reflect the bounds of radiuses of attraction or

error-correcting hyperspheres of the binary numeral

patterns(codes) in 64-dim binary space. In fact, the

reasonable and largest radius of attraction hyper-

sphere of each V k should be t∗k = [
d∗

k
−1

2
]. (Here [x]

denotes the integer part of the real number x). For

an associative memory system, only if the radius of

the attracting hypersphere of each V k is just t∗k, the

error probability of retrieval of the numeral patterns

in an equally distributed noisy environment reaches

the minimum.

Based on the Hamming distances between these

ten binary numeral patterns, we have

(t∗0, t
∗
1, t

∗
2, t

∗
3, t

∗
4, t

∗
5, t

∗
6, t

∗
7, t

∗
8, t

∗
9)

= (6, 8, 5, 5, 5, 6, 5, 5, 6, 5) .

We then use these t∗k to design the threshold values

of the neurons of the SMNN slabs in the output layer

of the hybrid neural network for the ten numeral

patterns. That is, we just let the threshold value

of the neurons in the SMNN slab for V k be

θk = dH(V k) − (t∗k + 1) , k = 0, 1, . . . , 9 . (4)

In the simulation experiment, we take the four-

layer hybrid neural network in which there are one

input slab, two hidden slabs in the second layer and

four hidden slabs in the third layer for classification,

and ten SMNN slabs in the output layer for these

ten binary numeral patterns. There are two gen-

erative slabs in the third layer for each slab in the

second layer. Clearly, the ten SMNN slabs can be

constructed directly from these ten binary numeral

patterns via Eqs. (1) and (4). For the two hidden

slabs in the second layer, we use the winner-take-

all rule to train the weight vectors of their dominate

neurons respectively. After the competitive learning,

we have found that the first hidden slab (or the dom-

inate neuron of it) wins the numeral patterns 0, 2, 3,

5, 7, 9, while the second hidden slab wins the other

numeral patterns 1, 4, 6, 8. Furthermore, we train

the weight vectors of the dominate neurons of the

slabs in the third layer by the winner-take-all rule.

We begin to train the first two slabs(the two gener-

ative slabs of the first slab in the second layer) with

the binary numeral patterns 0, 2, 3, 5, 7, 9 and find

out that the first slab wins the binary numeral pat-

terns 7, 9, while the second slab wins the other four

numeral patterns 0, 2, 3, 5. We then train the last

two slabs(the two generative slabs of the second slab

in the second layer) with the binary numeral pat-

terns 1, 4, 6, 8 and find out that the third slab just

wins the single numeral pattern 1, while the fourth

slab wins the other three numeral patterns 4, 6, 8.

After all, we get the structure of the hybrid neural

network for the ten binary numeral patterns shown

in Fig. 4.

We finally turn to the performance of the trained

hybrid neural network. Clearly, if any numeral pat-

tern V k is inputted to the hybrid neural network,

according to the construction of the hybrid neural

network, the SMNN slab of V k will be finally acti-

vated and stable at V k, while all the other SMNN

slabs will be always quiescent. We further verify the

hybrid neural network by retrieving each numeral

pattern in a noisy environment. In this situation,

the performance of the hybrid neural network is dom-

inated by the radiuses of attraction of these V k un-

der the hybrid neural network. For clarity, we let

t̂∗i be the radius of attraction of V k. That is, t̂∗k is

the largest integer satisfying that if an input binary

pattern V belongs to Nt̂∗
k

(V k) = {V ∈ {0, 1}64 :

dH(V, V k) ≤ t̂∗k} — the hypersphere of V k with the
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Fig. 4. The structure of the trained hybrid neural network for the ten binary numeral patterns. The numerals over each
hidden slab represent the binary numeral patterns the slab wins. The slab with a single numeral is just the SMNN slab
of this binary numeral pattern.

radius t̂∗k, the SMNN slab of V k will be finally acti-

vated and stable at V k, while all the other SMNN

slabs will be always quiescent. According to the

function of the constructed SMNN slabs, t̂∗k ≤ t∗k.

However, t̂∗k cannot be computed directly from the

parameters of the hybrid neural network. We now

estimate them from the simulation results in the

following way.

For each V k and an integer number j(j ≥ 0), we

randomly select 1000 input binary patterns with a

Hamming distance being j from V k for the hybrid

neural network.a These input binary patterns can be

considered as V k polluted by j errors in some j com-

ponents of it. We then operate the hybrid neural

network with each input binary pattern and check

whether it finally activate the SMNN slab of V k and

make the other SMNN slabs be quiescent. If the hy-

brid neural network does so for all 1000 input binary

patterns, we are sure that j is a possible radius of at-

traction of V k. In this way for j from 0, 1, 2, . . . , we

can get t̂∗k — the largest possible radius of attraction

of V k.

Based on the simulation results, we have esti-

mated these t̂∗i as follows.

(t̂∗
0
, t̂∗

1
, t̂∗

2
, t̂∗

3
, t̂∗

4
, t̂∗

5
, t̂∗

6
, t̂∗

7
, t̂∗

8
, t̂∗

9
)

= (6, 7, 5, 4, 5, 6, 5, 5, 5, 5) .

By comparing t̂∗k with t∗k, we find that the ten binary

numeral patterns can be reasonably retrieved from

the hybrid neural network when they are in a noisy

environment. Since t∗k−t̂∗k ≤ 1, i.e., t̂∗k is close to t∗k, it

is further shown that the weight vector of each dom-

inate neuron obtained from the competitive learning

is reasonable and robust for the numeral patterns,

although it has been trained only from the partic-

ular numeral patterns. In a very special situation

that the input binary pattern V does not belong to

any Nt∗
k
(V k), the hybrid neural network may have

a wrong retrieval result or be quiescent at all the

SMNN slabs, i.e., no numeral pattern is retrieved.

5. Conclusion

We have investigated the memory structure and re-

trieving mechanisms in the brain. Regarding the

SMNNs as the memory units in the brain, we have

proposed a hybrid neural network of addressable and

content-addressable memory. By this hybrid model,

aIf the number of all the input binary patterns with a Hamming distance being j from V k , is less than 1000, we will use all the
possible input binary patterns.
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a binary pattern is memorized and retrieved both

addressably and content-addressably. By the anal-

ysis, we have found that the hybrid neural network

can be constructed with Hebbian and competitive

learning rules. Moreover, it has certain important

functions in accord with the memory behavior of

the brain. Finally, we have demonstrated the hy-

brid neural network on a set of ten binary numeral

patterns.
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