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ABSTRACT
The	emerging	cost-effective	depth	sensors	have	facilitated	the	action	recognition	task	significantly.	In	this	
paper,	 the	authors	address	 the	action	recognition	problem	using	depth	video	sequences	combining	 three	
discriminative	features.	More	specifically,	the	authors	generate	three	Depth	Motion	Maps	(DMMs)	over	the	
entire	video	sequence	corresponding	to	the	front,	side,	and	top	projection	views.	Contourlet-based	Histogram	
of	Oriented	Gradients	(CT-HOG),	Local	Binary	Patterns	(LBP),	and	Edge	Oriented	Histograms	(EOH)	are	
then	computed	from	the	DMMs.	To	merge	these	features,	the	authors	consider	decision-level	fusion,	where	a	
soft	decision-fusion	rule,	Logarithmic	Opinion	Pool	(LOGP),	is	used	to	combine	the	classification	outcomes	
from	multiple	classifiers	each	with	an	individual	set	of	features.	Experimental	results	on	two	datasets	reveal	
that	the	fusion	scheme	achieves	superior	action	recognition	performance	over	the	situations	when	using	each	
feature	individually.
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INTRODUCTION

Automatic human action/gesture recognition is an active research topic in the area of computer 
vision. Researchers are fueled by the increasing number of real-world applications including 
autonomous visual surveillance, video retrieval, human-computer interaction, health care, sports 
training, etc.(e.g., C. Chen, Liu, Jafari, & Kehtarnavaz, 2014a; C. Chen, Kehtarnavaz, & Jafari, 
2014b). Human action recognition is very challenging due to the significant variations in human 
body sizes, appearances, postures, motions, clothing, camera motions, viewing angles, illumi-
nation changes, etc. Moreover, the complexity grows due to that the same action is performed 
differently by different persons, even for same person at different times.
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A large portion of researchers have addressed this problem by using features extracted from 
2D intensity images (Chaaraoui, Climent-Pérez, & Flórez-Revuelta, 2012; Poppe, 2010; Wiliem, 
Madasu, Boles, & Yarlagadda, 2010; H. Wang & Schmid, 2013). However, the 2D intensity 
images captured by the conventional RGB video cameras do not have enough information to 
perform the comprehensive analysis. Moreover, they are sensitive to lighting condition, and the 
process of identifying key points depends on the object texture instead of object geometry (L. 
Chen, Wei, & Ferryman, 2013). On the other hand, these intensity images have many obstacles 
to perform robust computer vision tasks such as background subtraction and object segmentation.

Recently, with the availability of low-cost depth cameras (e.g., Microsoft Kinect), some 
of the difficulties for intensity images have been alleviated. The outputs of depth cameras are 
called depth images (which are sometimes mentioned as depth maps or depth frames according 
to context). Depth images preserve the depth information corresponding to the distances from 
the surface of scene objects to the viewpoint (Shotton, et al., 2013). The pixels in a depth image 
indicate calibrated depths (i.e., depths in a scale) in the scene, instead of intensity or color. This 
depth information achieves an additional robustness to color information due to its invariant to 
illumination and textures changes (Zhu & Pun, 2013). Moreover, the depth data captures the 3D 
structure of the scene as well as the 3D motion of the subjects/objects in the scene. Therefore, 
depth cameras show many advantages over the conventional intensity cameras, such as working 
under low light conditions and even in darkness, estimating calibrated depth, being steady to 
color and texture variations, and giving solution of the silhouette problem in posture (Shotton, 
et al., 2013). They also remove many ambiguities in computer vision tasks like background 
subtraction and object segmentation.

This paper proposes an effective action recognition framework by fusing the outcomes of 
multiple classifiers, each of which has an individual features set. This type of fusion is essential, 
as often a single kind of features or feature-level fusion may not exhibit enough discriminatory 
power. Therefore, we combine the classification decisions from classifiers with three types of 
features that extracted from Depth Motion Maps (DMMs) (C. Chen, Liu, & Kehtarnavaz, 2013): 
i) Contourlet-based Histogram of Oriented Gradients (CT-HOG) (Farhad, Jiang, & Ma, 2015a), 
ii) Local Binary Patterns (LBP) (Ojala, Pietikäinen, & Mäenpää, 2002) and iii) Edge Oriented 
Histograms (EOH) (Conaire). More specifically, we first represent an action video sequence 
with three DMMs (see Section 3 for more details). Then, CT-HOG, LBP and EOH are computed 
on each DMM separately. Finally, three feature sets are fed into three Kernel-based Extreme 
Learning Machine (KELM) (Huang, Zhu, & Siew, 2006) classifiers to provide the probability 
outputs for each action. The obtained probability outputs are merged using Logarithmic Opin-
ion Pool (LOGP) (Benediktsson & Sveinsson, 2003) and Majority Voting (MV) (Lam & Suen, 
1997) decision rules to label the query sample. Overall, the decision-level fusion operates on 
probability outputs and fuses multiple decisions into a joint one.

The main contributions of this paper are summarized as follows:

1.  We compute three feature descriptors employing DMMs, CT-HOG, LBP and EOH. DMMs 
are utilized to capture specific appearances and shapes in a depth video sequence. Then, CT-
HOG, LBP and EOH are employed on DMMs to obtain contour, texture and edge features 
respectively. Here, all these features lead us to achieve a compact representation of DMMs 
and enhance discriminatory power for the recognition algorithm.

2.  Decision-level fusion is employed to the extracted compact features. In the decision-level 
fusion, more than one decision strategies are utilized to merge the probability outputs of 
each classification.
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3.  The proposed features and the classification framework have been tested extensively on two 
publicly available human action datasets, MSR-Action3D (Li et al., 2010) and UTD-MAD 
(C. Chen, Jafari, & Kehtarnavaz, 2015b). The experimental results demonstrated that the 
proposed action recognition method achieved superior performance over several state-of-
the-art methods.

The rest of this paper is organized as follows: In Section 2, are view on related work is 
stated. The details of CT-HOG, LBP and EOH feature descriptors and KELM classifiers are 
described in Section 3. DMMs-based multiple features pooling and decision-level fusion are 
stated in Section 4. In Section 5, the experimental results on two standard datasets are reported 
and compared. Finally, the conclusion appears in Section 6.

RELATED WORK

Action recognition using depth images has drawn much more attraction to the computer vision 
community after the proliferation of the depth sensors. In this context, we broadly divide the ac-
tion recognition approaches into four categories: depth image-based approaches, skeleton joints 
based approaches, depth and color images (fusion) based approaches, and depth/color images 
and skeleton joints (fusion) based approaches. Here, our discussion is restricted with several 
well-known approaches. See the work of Aggarwal and Ryoo (2011) for the comprehensive 
reviews of the previous studies.

In the first category, some researchers have focused on exploiting silhouette and edge pixels 
as discriminative information. For example, a collection-of-3D-points feature was proposed for 
action recognition from depth video sequences, where the 3D points were sampled from the 
silhouettes of the depth images (Li, Zhang, & Liu, 2010). An action graph was then employed 
for their classification framework, where each action was encoded in one or multiple paths in 
the action graph. The nodes of the action graph were used to represent the salient postures. How-
ever, the method suffers from two main disadvantages: the loss of spatial context information 
between interest points as well as the high computational cost due to having 3D points sampling 
scheme. In addition, due to noise and occlusions in the depth images, the side and top view of the 
silhouettes was noisy. Thus, it was very difficult to get a robust sampling scheme for the interest 
points describing the geometry and motion variations between different subjects.

On the other hand, silhouettes were generated in 3-dimensional space utilizing space-time 
occupancy patterns (Vieira, Nascimento, Oliveira, Liu, & Campos, 2012). In a cell structured 
spatiotemporal depth volume, a filled cell was labeled by 1, an unfilled by 0 and a partially-
filled cell by a fraction. All the fully and partially cells were distinguished based on an ad hoc 
parameter. Instead of using simple occupancy patterns, a vector consisting of ..Haar features on 
a uniform grid in the 4-dimensional volume was considered by J. Wang, Liu, Chorowski, Chen, 
and Wu (2012a). In this approach, LDA and SVM were used for the detection of discriminative 
feature positions and action classification respectively. However, high computational complexity 
was the barrier for the both methods.

Yang, Zhang, and Tian (2012b) used Depth Motion Maps (DMMs)-based Histograms of 
Oriented Gradients (HOG) features and Support Vector Machine (SVM) classifier for human 
action recognition. More specifically, the depth frames were projected onto three orthogonal 
Cartesian planes and the entire depth video sequence was accumulated generating three DMMs 
similar to the Motion History Images (MHI) (Bobick & Davis, 2001). Then, HOG features are 
computed for each DMM. The concatenation of the three HOG feature vectors was used as the 
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input feature vector to a linear SVM classifier. The computational cost of this approach was 
relatively low as HOG was computed for DMMs. C. Chen et al. (2013) presented a computation-
ally efficient solution for human action recognition problem using modified DMMs descriptors 
and l2 -collaborative representation classifier ( l

2
-CRC). The proposed approach was able to 

achieve real-time action recognition. Later, compact texture features using DMMs and LBP were 
extracted in (C. Chen, Jafari, & Kehtarnavaz, 2015a). This feature exhibits higher discrimina-
tory power than the features used in (Yang et al., 2012b; C. Chen et al., 2013). Furthermore, we 
proposed an effective method by using HOG features from DMMs-based contourlet sub-bands 
(Farhad et al., 2015a). We also enhanced the discriminatory power of the feature representation 
through the fusion approach of the DMMs-based texture and edge features (Farhad, Jiang, & 
Ma, 2015b).

In the second category, some algorithms have been built discovering the correlation between 
action categories and body-part joints from the depth images. For instance, Yang and Tian (2012a) 
computed pairwise 3-dimensional joint position differences for each depth frame and temporal 
differences across images to describe human actions. However, the recognition accuracy of 
this approach was not high as 3-dimensional joints were not good enough to capture all the 
discriminative information. In the same year, this approach was extended by J. Wang, Liu, Wu, 
and Yuan (2012b) using the depth histogram-based features. These features were obtained from a 
specific domain around each joint in each depth frame. Low-frequency Fourier components were 
treated as temporal dimension features over the temporal dimension. An SVM was employed to 
establish a discriminative set of joints.

Joint positions could be represented compactly as reported by Xia, Chen, and Aggarwal 
(2012). In specific, they proposed a new feature called Histogram of 3D Joints Locations (HOJ3D), 
which essentially encodes spatial occupancy information relative to the skeleton root. They ap-
plied linear discriminant analysis to reduce feature dimensionality and Hidden Markov Model 
(HMM) to model the dynamics and action recognition.

To optimize skeleton joints features, a genetic-based evolutionary algorithm was proposed 
(Chaaraoui, Padilla-López, Climent-Pérez, &Flórez-Revuelta, 2014). The topological structure 
for the skeleton was considered to improve the performance of the algorithm. Basically, they 
took into account a binary vector where each gene described the further consideration or not 
of a special feature. They employed filter and wrapper model for its implementation. But, the 
high computational cost of the approach and early convergence created some drawbacks of this 
approach. In the wrapper-based evolutionary approach, the fitness calculation of an important 
number of solutions was required to reach the final solution. Here, the involvement of the calcu-
lation of a single fitness with a complete training and recognition process resulted in consider-
able time for the whole evolution. In addition, early convergence occurs while the evolutionary 
search was accumulated in a local minimum and a good solution was not achieved. However, 
for the applications of those skeleton-based algorithms, it’s required to have available skeleton 
information beforehand.

In the third category, Ni, Wang, and Moulin (2013) introduced two feature extraction methods 
for fusing color and depth information. These feature extraction schemes were developed based 
on two state-of-the-art action representation approaches: Spatial-temporal Interest Points (STIPs) 
and Motion History Images (MHIs). Specifically, on the one hand, they derived a framework 
(named as depth-layered multi-channel STIPs) to partition the STIPs into several depth-layered 
channels. These STIPs within different channels are pooled independently to obtain a multiple 
depth channel histogram representation. On the other hand, three-dimensional MHIs were used 
to equip the conventional MHIs with two additional channels.
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In the last category, the discriminative features from depth/color images as well as from 3D 
joint positions were fused to boost the discriminating capabilities of the algorithm. Rahmani, 
Mahmood, Huynh, and Mian (2014) incorporated four features from depth videos and the 3D 
joint positions: the 4D depth, depth gradient histograms from depth videos and joint displace-
ment histograms, joint movement occupancy volumes from 3D joint positions. Random decision 
forest was used for feature pruning and classification. In order to improve recognition accuracy, 
some researchers combine features from RGB and depth video sequences. Furthermore, 3D joint 
features are also associated with spatio-temporal features to classify actions more accurately 
(Luo, Wang, & Qi, 2014). The spatio-temporal features were extracted from the RGB video 
sequence using center-symmetric motion local ternary pattern.

PRELIMINARIES

In this section, we first study on descriptors that are used here to represent an action video se-
quence. Then, a comprehensive overview of KELM classifier is presented. However, the next 
section shows the implementation of those descriptors in this paper.

DMMs Computation
Yang et al. (2012b) first introduced the so-called DMMs to represent human actions by 

stacking motion energy of each depth frame in a depth video sequence. In fact, the accumulated 
motion energy corresponding to an action category generates specific appearances and shapes 
on DMMs. However, the concept of the DMMs was modified by C. Chen et al. (2013) and it’s 
used in this work due to its computational simplicity. Concretely, we consider a depth video 
sequence with M depth frames. Each depth frame in the video can generate three 2D projected 
maps by projecting the frame onto three orthogonal Cartesian planes. These projections are 
taken from the front ( )f , side ( )s  and top ( )t projection views (see Figure 1). The 2D pro-
jected maps corresponding to the projection views are labeled bymap

f
, maps andmap

t
. The 

summation of all the absolute differences between two consecutive projected maps for a spe-
cific projection view produces a single DMM. As a result, we obtain three DMMs for the three 
projection views, which are denoted asDMM f , DMM

s
andDMMt .The generation of DMMs 

can be expressed in mathematical form as follows:

DMM map map
p v

k
v
k

k

M

= −+

=

−

∑ 1

1

1

,  (1)

where k  is the index for a depth video frame, v f s t∈ { , , }  and mapv
k  is the projection of the 

kth  frame under a projection view v f s t∈{ , , } .The non-zero region of each DMM is cropped 
(setting a suitable bounding box) and is considered as the final DMM.

There are two main advantages of using DMMs. The 4D information of body shape and 
motion in depth maps are encoded in three projected maps through the DMMs representation of 
the video sequence. On the other hand, DMMs mechanism reduces data of the depth sequence 
to just three 2D maps, which alleviates the computation cost considerably.

An example of DMM
f
 generation for a two	hand	wave depth sequence is shown in Figure 

2. In the figure, there is an action video sequence consists of six depth frames. The front projec-
tion views of these video frames produce the equal number of projected maps. Then, there are 
five absolute differences are gained by considering consecutive difference between two pro-
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jected maps. The summation of all the absolute differences generate theDMM f of the video 
sequence.

CT-HOG Features

In our previous work, we computed CT-HOG features on DMMs (Farhad et al., 2015a) to capture 
human contour compactly. Contourlet (Do & Vetterli, 2005) was applied on DMMs to remove 
noise and enhance the shape information, i.e. to enhance DMMs. Since the computational 
complexity of the algorithm increases by employing all the contourlet sub-bands correspond-
ing to each DMM, the low-frequency sub-band is coupled with the high-frequency sub-bands 
obtained from the first-level contourlet decomposition (if the decomposition-level is more than 
one). The experimentations were also carried out using high-frequency sub-bands from other 
decomposition-levels, but the promising result was occurred for high-frequency sub-bands from 
the first-level. Overall, five sub-bands (one low-frequency sub-band and four high-frequency 
sub-bands) were selected for each DMM. Since there are three DMMs for each video sequence, 
fifteen sub-bands were used to describe a depth video. To build a compact feature representa-
tion of the fifteen sub-bands, we employed HOG on overlapped-structured sub-bands to achieve 
computational efficiency as well as good classification performance. See our paper for more 
details (Farhad et al., 2015a).

Figure	1.	Projection	views	of	a	depth	video	frame

Figure	2.	The	DMM
f
of	a	two	hand	wave	depth	video	sequence
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LBP Features

The LPB (Ojala et al., 2002) operator is an effective gray scale and rotation invariant operator 
that can be used to capture texture information of an image. To extract texture information, the 
LBP-coded image corresponding to the raw-image is first calculated. In the LBP-coded image, 
original pixels are labeled with decimal numbers that encode local texture information.

Let pc  be a pixel in an image, whose neighbors are equally spaced on a circle with center
p
c
( , )0 0  and radius r r( ).> 0 If there are n  neighbors pj ( , , )j n= −0 1… , the coordinates of 

the neighbors are ( sin( / n), rcos( / ))−r j j n2 2π π . An example of a neighbor set and the 
pixel labeling process is shown in Figure 3 for n = 8 and r =1. The thresholding of the neigh-
bors { , , }p p

n0 1
… − with the center pixel pc  generates the n-bit binary number (i.e., LBP). Notice 

that, in the thresholding, if a neighbor is greater than or equal to the center pixel, this neighbor 
will be assigned a value of 1 and otherwise 0. The decimal form of the binary numbers is used 
to label the center pixel or the candidate pixel p

c
.Thus, pixels in the image can be labeled using 

decimal form and the resulted image is denoted as LBP-coded image. Histograms features from 
the LBP-coded image are calculated to capture the texture information compactly.

EOH Features

The EOH (Conaire) feature descriptordescribes the edge-based shape information from an image. 
First, the image is subjected to filtering for noise removal. There are broadly used filters (e.g., 
Gaussian filter and Median filter) that are utilized to remove noise. In fact, this type of typical 
preprocessing step enhances the result of further processing of the image in the subsequent steps. 
Then, edges (4 directional and one non-directional edge) in the image are detected through an 
edge detection algorithm. Actually, the edge detection approachsignificantly reduces the amount 
of data and filters out the useless information in an image while preserving its structural shapes. 
Finally, EOH features are computed from the edge image. The implementation of the EOH feature 
extraction algorithm is comprehensively described in the discriminative features pooling section.

KELM Classifier

Extreme Learning Machine (ELM) was developed based on single-hidden-layer feed-forward 
neural networks (Huang et al., 2006). Recently, Extreme Learning Machine (KELM) (Huang, 

Figure	3.	LBP-label	generation	of	a	pixel	 pc for	the	neighborhood	( , )8 1
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Zhou, Ding, & Zhang, 2012) has been utilized by extending explicit activation functions in 
ELM to implicit mapping functions, which have exhibited a better generalization capability and 
stability than ELM (Li, Chen, Su, & Du, 2015).

Let us consider a dataset withC classes. The class label of a sample in the dataset can be 
defined asy

i
∈ { , }0 1 , where i C=1 2, , ,� . The sample belongs to the ith class if yi =1.As-

sume there arem  training samples{ , }x yj j j
m
=1 , where x

j
D∈ �  and y j

C∈� , the output func-
tion of a single-hidden-layer feed-forward neural network with N  hidden nodes can be pre-
sented as

h f e j m
N j k

k

N

k j k j
( ) ( . ) , , , ,x w x y= + = =

=
∑± 1 2…  (2)

where f (.)  denotes the nonlinear activation function, wk ∈ �
D and ±

k
C∈ � are the weight 

vectors connecting the kth  hidden node to the input and output nodes respectively, and e
k

 is 
the bias for the kth hidden node. Considering all them  equations, Equation 2 can be figured 
out as

F Yα = ,  (3)

where α α α= … ∈ ×[ , , ]
1
T

m
T T N C� , Y y yT

m
T T m C= … ∈ ×[ , , ]

1
� , and F  denotes the hidden layer 

output matrix of the neural network, which is written as

F

f x

f x

f w x e f w x e

f w
m

N N

=





















=
+ +( )

( )

( . ) ( . )

(

1 1 1 1 1

1

�

�

� � �

.. ) ( . )x e f w x e
m N m N
+ +



















1

�

 (4)

Here, f x f w x e f w x e
j j N j N
( ) [ ( . ), , ( . )]= + … +

1 1
is the output of the hidden nodes for the 

input x
j
. As N m�  (N is the number of hidden nodes and m is the number of training 

samples) happens frequently, the smallest norm least-squares solution (Huang et al., 2006) of 
Equation 3 can be considered, i.e.

α„= F Y†  (5)

whereF †  denotes the Moore-Penrose generalized inverse of matrixF ,F F FFT T† ( )= −1 . To 

gain a better stability and generalization 1 0
ρ
ρ( )>  is simply added to the diagonal ofFFT .Hence, 

Equation 2 (i.e., the output function) can be expressed as

h x f x f x F
I
FF Y

N j j j
T T( ) ( ) ( ) ( )= = + −α
ρ

1  (6)
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In ELM, a kernel matrix can be used as follows (if the feature mapping [INSERT FIGURE 
001] is unknown):

Ω Ω
ELM

T
ELM j s j s

FF f x f x K x x
j s

= = =: ( ). ( ) ( , )
,

 (7)

As a result, the output function for the kernel matrix-based ELM (KELM) is represented by

h x

K x x

K x x

I
N j

j

j m

ELM
( )

( , )

( , )

=





















+










−1

�
ρ
Ω

11

Y  (8)

The label of a query sample x
t
 is obtained according to

y
t

j C
=

= …
argmax

, , ,1 2
h ( )N t jx  (9)

where h x
N t j
( )  is the jth output of h x h x h x

N t N t N t C
T( ) [ ( ) , , ( ) ]= …

1
.

PROPOSED FUSION METHOD

In our approach, DMMs-based CT-HOG, LBP and EOH features are extracted to represent a 
depth video sequence from different perspectives. To fuse these features, decision-level fusion 
is considered. It should be noted that feature-level fusion could be employed here. But, the 
feature-level fusion mechanism is incompatible of multiple feature sets and large dimensionality 
although it is straightforward. Therefore, we consider decision-level fusion, where the results 
from a classifier ensemble are combined through Logarithmic Opinion Pool (LOGP) (Benedikts-
son et al., 2003) and Majority Voting (MV) (Lam & Suen, 1997)decision algorithms as both are 
simple and effective. In this section, we describe DMMs-based multiple features pooling and its 
decision-level fusion as well. The decision-level fusion based on LOGP is stated here compre-
hensively and the discussion on MV-based fusion is skipped as it’s well-known. Our proposed 
fusion approach is shown in Figure 7.

Discriminative Features Pooling

For each depth video sequence, we extract the CT-HOG, LBP and EOH features from the three 
DMMs respectively (see Figure 7). In this context, we figure out these features for a single DMM 
as an example. To extract the CT-HOG features from a DMM, contourlet transform is employed 
on the DMM and several contourlet sub-bands are selected using the concept as described by 
Farhad et al. (2015a). Then, HOG features (Junior, Delgado, Goncalves, & Nunes, 2009) are 
computed on these selected sub-bands. The HOG features corresponding to all the sub-bands 
are concatenated to represent the contour feature from the DMM. The CT-HOG feature vectors 
from the three DMMs are labeled asCT HOGf− ,CT HOG

s
− andCT HOGt− . An example 

of the CT-HOG feature extraction scheme is illustrated in Figure 4.
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In the LBP feature extraction procedures, the corresponding LBP-coded image of the DMM 
is split into overlapped blocks and histograms are computed block by block. The uniform pattern 
(Ojala et al., 2002) is used in this paper to calculate the histogram features. The LBP-histograms 
for all the blocks are merged to construct a feature vector. The LBP-histograms feature vectors 
are named as LBP

f
, LBPs and LBP

t
 corresponding to three DMMs. Figure 5 shows an ex-

ample of LBP-histogram features.
For the EOH features, we use the Gaussian filter kernel to remove the noise from each 

DMM. The Canny edge detection algorithm (Canny,1986) is used to detect the edges of the 
filtered DMM. The Canny operator is employed here as it is optimal and widely used as detec-
tion algorithm in research. On the other hand, an optimal edge detection technique is able to 
mark real edges as many as possible. The DMM is divided into non-overlapped blocks. Then, 
EOH are computed from each block. The EOH corresponding to all the blocks of the DMM are 
concatenated to form a feature vector. The EOH features fromDMM f , DMM

s
andDMMt  are 

indicated byEOH
f
, EOH

s
andEOH

t
respectively. An example of EOH generation is shown in 

Figure 6.

Decision Fusion Using LOGP

In the KELM, the output function (i.e., hN j( )x in Equation 8) is used to estimates the accuracy 
of the output label. Therefore, the posterior probabilities are estimated through the decision 
function. In this case, all the posterior probabilities increase proportionally with the higher 

Figure	4.	CT-HOG	feature	from	DMM
f
of	a	bend	action	sequence

Figure	5.	LBP	histogram	feature	from	a	DMM



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Multimedia Data Engineering and Management, 6(4), 23-39, October-December 2015   33

values of the decision function (Platt, 1999). Hence, h
N
( )x  is scaled to [0, 1].Then, the poste-

rior probabilities are approximated employing the Platt’s empirical analysis as follows:

p( | )
exp( ( ) )

y
Ah Bi

N i

x
x

=
+ +

1

1
 (10)

To simplify the form of Equation (10), A and B are set to A = −1andB = 0 .
In the LOGP strategy, these approximated posterior probabilities are utilized to estimate a 

global membership function as

P y x p y x
i q

q

L

i
q( | ) ( | )=

=
∏
1

β  (11)

Or

log ( | ) ( | )P y x p y x
i q q i

q

L

=
=
∑β
1

 (12)

Figure	6.	EOH	feature	extraction	scheme

Figure	7.	Overview	of	the	proposed	fusion	approach
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where L stands for the number of classifier and { }β
q q
L
=1 are classifier weights. For simplicity, we 

use the uniform weights, i.e., 1 L .
The single outcome is determined as follows:

y
i C

*

, , ,
argmax=
=1 2…

P(y | )i x  (13)

EXPERIMENTAL RESULTS

We evaluate our recognition method on two standard public domain datasets: MSR-Action3D 
dataset (Li et al., 2010) and UTD-MHAD (C. Chen et al., 2015b) dataset. These datasets provide 
sequences of depth maps captured by commercial depth cameras. An example of depth maps 
from these datasets is shown in Figure 8. In our work, the Radial Basis Function (RBF) kernel 
is considered in KELM.

Evaluation on MSR-Action3D Dataset

The MSR-Action3D dataset (Li et al., 2010) consist of20  different action categories performed 
by 10 subjects: high	wave,	horizontal	wave,	hammer,	hand	catch,	forward	punch,	high	throw,	
draw	x,	draw	tick,	draw	circle,	hand	clap,	two	hand	wave,	side	boxing,	bend,	forward	kick,	side	
kick,	jogging,	tennis	swing,	tennis	serve,	golf	swing,	and	pick	up	throw. Each action was per-
formed two or three times by each subject facing to the depth camera during performance. 
Overall, the dataset includes557 segmented depth sequences. Recognition task using this da-
taset is very challenging as it contains many actions with similar appearance (e.g., draw	x and 
draw	tick). In order to facilitate a fair evaluation of the method, the same experimental setup by 
J. Wang et al. (2012a) is followed. A total of 20 actions are employed and half of the total subjects
( , , , , )1 3 5 7 9 are utilized for training and the rest ones for testing.

For CT-HOG feature extraction, all the DMMs are first resized to256 256×  according to 
our empirical analysis (Farad et al. 2015). Then, four-level contourlet decomposition with for 
directional sub-bands, i.e., [ , , , ]2 2 2 2 is applied on each DMM. The HOG features on contour-
let sub-bands are computed using 7 7×  blocks and 8 bins (Junior et al., 2009). In LBP,m and
r are set tom = 4 andr = 1  in terms of using 5 -fold cross-validation accuracy. To compute 
LBP histogram featuresDMM

f
, DMMs and DMM

t
are split into 4 2× , 4 3× and 3 2× over-

Figure	8.	Sample	depth	images	from	MSR-Action3D	dataset	(top)	and	UTD-MHAD	dataset	(bottom)
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lapped blocks respectively (C. Chen et al. 2015a). Here, the overlap between two blocks is 
taken to be one half of the block size. Besides,DMM

f
,DMMs and DMM

t
are divided into 4 4×

non-overlapped blocks to get EOH features (Farhad et al. 2015b). In our experiment, The RBF 
kernel parameters for the KELM classifier are chosen using 5 -fold cross-validation

We compare our method with the existing methods in Table 1. As can be seen from this 
table, our decision-level fusion approach (based on both the fusion algorithms) achieves superior 
performance over the listed methods as well as our other methods. The class-specific accuracies 
for the decision-level fusion are presented in Figure 9. Notice that 13 out of 20 actions in the 
MSR-Action3D dataset are classified with 100% classification accuracy. The classification ac-
curacies of the remaining 7 actions are pretty good, where 3 actions are recognized with above 
90% accuracy. Overall, the proposed approach achieves considerable recognition accuracies for 
all the actions except hammer and draw	x.

UTD-MHAD DATASET

The UTD-MHAD (C. Chen et al., 2015b) dataset consists of 27 different actions performed by
8 subjects ( 4  females and 4  males). Each action was repeated 4  times by each performer. 
There are 861  action sequences after removing 3  corrupted data sequences. The 27  actions 
are: right	arm	swiping	to	the	left,	right	arm	swiping	to	the	right,	right	hand	wave,	two	hand	front	
clap,	right	arm	throw,	cross	arms	in	the	chest,	basketball	shoot,	right	hand	draw	x,	right	hand	
draw	circle	 (clockwise),	 right	hand	draw	circle	 (counter	clockwise),	draw	 triangle,	bowling	
(right	hand),	front	boxing,	baseball	swing	from	right,	tennis	right	hand	forehand	swing,	arm	curl	
(two	arms),	tennis	serve,	two	hand	push,	right	hand	knock	on	door,	right	hand	catch	an	object,	
right	hand	pick	up	and	throw,	jogging	in	place,	walking	in	place,	sit	to	stand,	stand	to	sit,	forward	
lunge	(left	foot	forward),	squat	(two	arms	stretch	out). The actions were captured using a Mi-
crosoft Kinect camera and a wearable inertial sensor. For the actions 1through21 , the inertial 
sensor was placed on the subject’s right wrist while for the actions 22 through27 , the inertial 
sensor was placed on the subject’s right thigh. It can be seen from the list of actions, there are a 
comprehensive set of human actions in the dataset. For example, sport actions (e.g., bowling), 

Table	1.	Comparison	of	recognition	accuracies	on	MSR-Action3D	dataset

Method Accuracy (%)

Yang et al. (2012b) 
J. Wang et al. (2012a) 
Oreifej & Liu (2013) 
Xia & Aggarwal (2013) 
C. Chen et al. (2015a) 
Vieira et al. (2012) 
Yang et al.(2012a)

85.5 
86.5 
88.9 
89.3 
93.0 
84.8 
82.3

Ours DMMs-based CT-HOG 
DMMs-based LBP 
DMMs-based EOH 
Decision-level fusion(MV)
Decision-level fusion(LOGP)

89.7 
91.9 
83.2 
91.9 
94.9
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hand gestures (e.g., draw x), daily activities (e.g., knock on door), and training exercises (e.g., 
arm curl).

For the UTD-MHAD dataset, all the parameters are set as MSR-Action3D dataset except 
m andr . Here, m = 6 andr = 5  are set following the same technique. The classification results 
are stated in Table 2. In the table, the decision-level fusion scheme (either using LOGP or MV) 
recognizes actions with higher recognition accuracy. The individual classification accuracy is 
shown in Figure 10.

Figure	9.	Class-specific	accuracy	 for	MSR-Action3D	dataset	 (Using	LOGP-based	decision-
level	fusion)

Table	2.	Comparison	of	recognition	accuracies	on	UTD-MHAD	dataset

Method Accuracy (%)

C. Chen et al. (2015b) 79.1

Ours DMM-CT-HOG 
DMM-LBP 
DMM-EOH 
Decision-level fusion(MV)
Decision-level fusion (LOGP)

83.5 
84.2 
75.3 
85.3 
88.4

Figure	10.	Class-specific	accuracy	for	UTD-MHAD	dataset	(Using	LOGP-based	decision-level	
fusion)
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CONCLUSION

We have established an effective action recognition method of fusing classification outcomes 
from multiple classifiers with different kinds of features. Three feature descriptors, Contourlet-
based Histogram of Oriented Gradients (CT-HOG), Local Binary Patterns (LBP) and Edge Ori-
ented Histograms (EOH) are computed on depth motion maps. All of them are fed into different 
Kernel-based Extreme Learning Machine (KELM) classifier and their probability outputs are 
merged using soft decision rules, Logarithmic Opinion Pool (LOGP)and Majority Voting (MV), 
to assign a class label of the unknown sample. We carry out experiments on two standard datasets 
and compare with other existing methods as well as results using DMMs-based CT-HOG, LBP 
and EOH features. Experimental results demonstrate that the human actions can be recognized 
more accurately while we use LOGP-based decision-level fusion approach rather than employ-
ing individual feature descriptor.
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