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Abstract— In this paper, the complex-valued ICA problem
is studied in the context of blind complex-source separation.
We formulate the complex ICA problem in a general setting,
and define the superadditive functional that may be used for
constructing a contrast function for circular complex sources
separation. We propose several contrast functions and study
their properties. Finally, we also discuss relevant issues and
present the convex analysis of a specific contrast function.

I. INTRODUCTION

Independent component analysis (ICA) is a powerful tool
in statistical signal and image processing [1]-[4], and it
has also been an intensive research topic in neural network
community. been However, most of ICA research thus far
focused on real domain. Recently, many research efforts
attempted to generalize the ICA concept to complex domain,
e.g. [5]-[14]. Because there are numerous ICA algorithms
and related theories, it is imagined that there are also several
routes that lead to complex ICA. Despite their differences,
we category two important approaches here

• Complex ICA based on second-order statistics (SOS) or
generalized eigenvalue decomposition (GEVD): In this
approach, generalization from real to complex domain
is relatively straightforward by replacing symmetric
covariance matrix with Hermitian covariance matrix.
Examples [2, 5] include AMUSE and SOBI (SOS-
based), and FOBI, and JADE (GEVD-based). Specif-
ically, SOS was found useful for separating complex
circular Gaussian sources which have different spectra
[10, 11].

• Complex ICA based on high-order statistics (HOS): In
this approach, nonlinearity is used to produce high-order
decorrelation. Example of such a class include adaptive
algorithms such as complex FastICA [6] and complex
Infomax [7, 8, 13].

Because of the unique nature of complex random variables,
complex analysis has many inherent properties (such as
differentiability, nonlinearity, etc.) that are different from real
analysis. It is observed that most available research results
are rather preliminary, a deep theoretical understanding of
complex ICA, is far from complete. The current contribution
may be viewed as an effort along this research line.

In this paper, we propose and derive suitable contrast
functions for the complex ICA problem in the simultaneous
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separation setup. Non-circular and circular complex sources
are both discussed, but attention is focused on the circular
sources. To sidestep the difficulty of constructing generic
discriminating contrast functions in complex domain, we
construct superadditive functions of class II [19] for circular
complex variables, and show how to extend to complex do-
main as discriminating contrast functions. Our paper is rather
theoretically oriented and currently contains no experimental
study; we also present a convex analysis on the contrast
function for a two-by-two source separation problem.

The rest of the paper is organized as follows. Section
II presents mathematical preliminaries and an overview
of important concepts. Section III describes the problem
of complex ICA in a general setting. In Section IV, we
define the criteria for contrast functions in complex ICA,
and propose several contrast functions for circular complex
sources. Section V presents a case study analysis of local or
global minima/maxima of a specific contrast function. This is
further followed by discussion in Section VI and concluding
remarks in Section VII.

II. MATHEMATICAL PRELIMINARIES

A complex random variable z ∈ C is defined as z =
zRe + jzIm, where j =

√−1, and the real part zRe ∈ R

and imaginary part zIm ∈ R are both real-valued random
variables. By “complex-valued” here we mean the random
number is strictly complex if not stated otherwise; namely,
the variable’s imaginary part is not almost sure zero. For a
complex-valued z = zRe + jzIm, its complex conjugate is
defined by z∗ = zRe − jzIm. The relationship z = z∗ holds if
and only if zIm = 0. The complex-valued variable can also be
represented as z = |z|ejθ, with modulus |z| =

√
z2

Re + z2
Im

and the phase θ = arg(z) (0 ≤ θ < 2π). The statistical
properties of z ∈ C are characterized by the joint probability
density function (pdf) of zRe and zIm: p(z) = p(zRe, zIm) ∈ R,
provided that it exist. Let z̃ = [zRe, zIm]T , then p(z) can be
written as a form of p(z̃) with its associated first and second
cumulant statistics defined as E[z̃] and Σz = cov[z̃]

Σz =
[

E[z2
Re] − E2[zRe] E[zRezIm] − E[zRe]E[zIm]

E[zRezIm] − E[zRe]E[zIm] E[z2
Im] − E2[zIm]

]
.

Consequently, the Shanon (differential) entropy of the com-
plex random variable z, denoted as H(z), is defined as the
joint entropy of the real and imaginary components:

H(z) = H(zRe, zIm) = H(zRe|zIm) +H(zIm).

Notably, the entropy H(z) is a quantity that is independent
on the mean value of z.
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Given an appropriate probability metric of the random
complex variable z, we can identity and calculate the first
and second-order moment statistics:

• The first-order moment (mean):

E[z] = E[zRe + jzIm] = E[zRe] + jE[zIm].

• The second-order moment:

E[z2] = E[z2
Re] − E[z2

Im] + 2jE[zRezIm].

• The second-order cumulant (variance):

var[z] = E[|z − E[z]|2] = E[|z|2] − ∣∣E[z]
∣∣2.

The covariance of two complex random variables zi and zj

is defined as Cij = E
[
(zi −E[zi])(z∗j −E[z∗j ])

]
= E[ziz

∗
j ]−

E[zi]E[z∗j ]. Two complex random variables zi and zj (j �= i)
are said to be mutually uncorrelated if Cij = 0.

The above definitions can be generalized to complex
vectors. Let z = [z1, . . . , zn] be a complex-valued random
vector, and let zH = [z∗1 , . . . , z∗n]T ≡ (z∗)T be its Hermitian
transpose (i.e., conjugate plus transpose), then we can define
its mean E[z], and covariance matrix cov[z] ≡ E

[
(z −

E[z])(z−E[z])H
]
; in addition, the pseudo-covariance matrix

can be defined as pcov[z] ≡ E
[
(z − E[z])(z − E[z])T

]
.

Definition 1: A complex random variable z is defined as
“circular” if for any real-valued number α, the pdfs of p(z)
and p(ejαz) are the same (i.e., p(z) is rotation invariant).

The complex-valued random vector z is called second-
order circular if its pseudo-covariance matrix is a null
matrix (i.e., with all entries as zeros); if E[z] = 0, then
the second-order circularity implies that E[z2] = 0 and
real and imaginary parts of z are uncorrelated and have
equal variances. If E[zzH ] is diagonal, then we say z is
uncorrelated; z is called strongly uncorrelated if E[zzH ] and
E[zzT ] are both diagonal. When the real and imaginary parts
of z have equal variance, z is often said to be symmetric; if
z is symmetric and strongly uncorrelated, then z is second-
order circular, namely E[zzT ] = 0.

Similarly, the skewness and kurtosis statistics for a zero-
mean complex random variable z can be defined [1]:

skewness(z) = E[|z|3]/(E[|z|2])3/2
, (1)

kurtosis(z) = E[|z|4] − 2
(
E[|z|2])2 − ∣∣E[z2]

∣∣2.(2)

Definition 2: Two complex random variables z1 and z2 are
said to be mutually independent if p(z1, z2) = p(z1)p(z2);
if z1 and z2 are both circular, then they are mutually
independent if p(|z1|, |z2|) = p(|z1|)p(|z2|).

Consider an optimization problem in the complex domain.
Let J(z) denote a real-valued, bounded scalar function
with an argument of a complex-valued vector z ∈ CN ,
the stationary point is described by equating the gradient
operator to zero:

∇J ≡ ∂J(z)
∂z∗

=
1
2

(∂J(z)
∂zRe

+ j
∂J(z)
∂zIm

)
= 0.

which implies that at stationary points, ∂J(z)
∂xRe

= ∂J(z)
∂zIm

= 0.

Definition 3: A real-valued function J(z) (where z ∈
C

N ) is said to be convex in the complex plane if

J
(
λz1 + (1 − λ)z2

) ≤ λJ(z1) + (1 − λ)J(z2)

for all z1, z2 ∈ CN and 0 ≤ λ ≤ 1.
Alternatively, if the Hessian matrix, H = ∂2J(z)

∂z∂zH , is positive
semidefinite (i.e., with nonnegative real eigenvalues), then
J(z) is a convex function.

III. COMPLEX-VALUED ICA

In a similar vein in real-valued ICA, let us further con-
sider a complex version of standard ICA model: x = As,
where s ∈ Cn denotes the n-dimensional complex-valued,
elementwise-independent source vector, x ∈ Cn denotes
the n-dimensional complex-valued vector of mixture signals,
and A ∈ Cn×n denotes a nonsingular (i.e., with full rank)
complex-valued mixing matrix. It is noted that there are three
types of indeterminacies arisen in complex-valued ICA:

• Permutation indeterminacy;
• Sign and scaling indeterminacy;
• Phase indeterminacy.

The first two indeterminacies are shared with the real-
valued ICA; whereas the phase ambiguity arises from the
inherent nature of the complex-valued data. The second and
third indeterminacies, when combined together, is referred to
complex scale ambiguity.

In the context of BSS, there are two kinds of approaches:
(i) sequential extraction (deflation) approach, which extracts
the independent components one by one in order (thereby
referred to as “one-unit ICA”; and (ii) simultaneous sep-
aration approach, which separates all independent sources
at the same time. In this paper, we will focus on the
simultaneous separation approach; the one-unit complex ICA
can be regarded as a special case of simultaneous separation
as in real domain [20].

In terms of simultaneous separation, the goal of complex
ICA is to find an unmixing matrix W, to recover the original
source signal vector s, up to the above-mentioned three
indeterminacies. Specifically, the separated output y ∈ Cn×1

is given by

y = Wx = (WA)s ≡ Rs, (3)

where we have defined R = WA for the later use. If
we assume E[s] = 0 and E[ssH ] = I, it follows that
E[y] = RE[s] = 0, and E[yyH ] = RRH . In order
to achieve source separation in a blind fashion, similar to
the real-valued case, we minimize a contrast function such
that in the global (or local) minima, the desirable solution
W = A−1 is obtained (or up to scale, permutation, and
phase ambiguities). In this sense, we may write the separated
signals as y = PDs, where D is a complex-valued diagonal
matrix: D = diag{α1e

jβ1 , . . . , αne
jβn} (where αi, βi ∈

R), and P denotes the permutation matrix. The design of
appealing contrast function is an essential topic in the ICA or
BSS community (e.g.,[4, 15, 20]); however, most researches
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thus far are limited in real domain. We will extend the
discussion to the context of complex ICA in the next section.

Without loss of generality and for discussion simplicity, we
assume E[x] = 0 and E[xxH ] = I, otherwise the condition
can be fulfilled by a preprocessing procedure known as the
strong-uncorrelating transform [10, 11].

Before discussing specific contrast functions, let us first
consider a generic contrast function known as mutual in-
formation, which is equivalent to the popular Kullback-
Leibler divergence criterion that measures the discrepancy
between the joint probability and the product of marginal
probabilities:

I(y1, . . . , yn) = Ep(y)

[
log

p(y)∏n
i=1 p(yi)

]

=
∫
p(y) log

p(y)∏n
i=1 p(yi)

dy (4)

Equation (4) is nonnegative and equals to zero if and only if
the random variables {y1, . . . , yn} are mutually independent.
Notably if {y1, · · · , yn} are jointly complex Gaussian, then
(4) can also be rewritten as

I(y1, . . . , yn) = −1
2

log
( det(Cy)∏n

i=1 Cii

)
= −1

2

n∑
i=1

log(λi) (5)

where Cij = E[(yi − E[yi])(y∗j − E[y∗j ])], and λi are the
eigenvalues obtained from a GEVD procedure: Cyu = λΛu,
where Cy = cov[y], and Λ = diag{C11, C22, . . . , Cnn}.

Recall that

I(y1, . . . , yn) =
n∑

i=1

H(yi) −H(y),

where H(y) denotes the joint entropy of the complex-valued
random variables {y1, . . . , yn}; because H(y) = H(x) +
log |det(W)|, equation (4) can be rewritten as

J(W) =
n∑

i=1

H(yi) − log |det(W)| −H(x), (6)

where H(x) is a term that is irrelevant to the optimization
with respect to (w.r.t.) W. Taking the derivative of (6) w.r.t.
W∗ yields the gradient operator

∇W∗J(W) =
(

Ey[ψ(y)yH ] − I
)
W−H , (7)

where W−H denotes the Hermitian transpose of W−1, and
ψ(y) = [ψ(y1), . . . , ψ(yn)]T is a complex vector function
defined by an elementwise operation:

ψ(yi) = −d log p(yi)
dy∗i

= −
∂p(yi)

∂yRe
i

+ j ∂p(yi)
∂yIm

i

p(yi)

=
∂ log p(yi)
∂yRe

i

+ j
∂ log p(yi)
∂yIm

i

, (8)

where ψ(·) is known as the complex score function. However,
p(yi) ≡ p(yRe

i , y
Im
i ) invokes a joint probability density

function that complicates the calculation of (8) because yRe
i

and yIm
i are generally not mutually independent.

From (6), applying the “natural gradient” trick (see [2])
would yield the stochastic complex-valued natural gradient
rule [7, 13]:

∆W = η
(
I − ψ(y)yH

)
W. (9)

In light of the Liouville’s theorem, we know that there is
a tradeoff between the boundedness and analyticity in the
choice of nonlinearity in complex domain; many research
efforts have been devoted to finding a proper ψ(·) (e.g., [7]-
[9], [13], [14]); however, the reported methods are rather
ad hoc or heuristic and rigorous theoretical justification still
remains unclear.

To sidestep such a difficulty, we may partially convert
the complex-valued problem into real domain. Specifically,
we may introduce an auxiliary complex random variable as
ei = yRe

i − yIm
i , and further define the conditional entropy of

H(yRe
i |yIm

i ) as

H(yRe
i |yIm

i ) = H(yRe
i − yIm

i ) ≡ H(ei) (10)

Therefore, the entropy H(yi) ≡ H(yRe
i , y

Im
i ) can be repre-

sented by

H(yi) = H(yIm
i |yRe

i ) +H(yRe
i ) ≡ H(−ei) +H(yRe

i )
= H(yRe

i |yIm
i ) +H(yIm

i ) ≡ H(ei) +H(yIm
i )(11)

Notably ei is generally non-Gaussian; if yRe
i and yIm

i are both
Gaussian and with zero mean and variance 1/2, then ei will
also be Gaussian, with zero mean and variance 1. In light of
(10), equation (6) may be rewritten as

J(W) =
n∑

i=1

H(yi) − log |det(W)|

=
n∑

i=1

H(ei) +
n∑

i=1

H(yIm
i ) − log |det(W)|(12)

By treating ei and yIm
i as two separate real-valued random

variables, we may approximate their differential entropy
using various approximate estimators (e.g., [4, 14, 15]). A
brief derivation and description of approximate estimate of

∂J
∂w∗

ij
of (12), based on Gram-Charlier expansion, is given in

the Appendix.

IV. CONTRAST FUNCTIONS FOR CIRCULAR SOURCES

In this section, we focus on a restricted class of complex-
valued ICA for circular complex random variables, whose
pdf is merely related to the modulus (i.e., phase independent).
Note that for zero-mean circular signals, the pdf p(z) =
g(|z|) is radially isotropic; hence, although p(z) is defined
as a two-dimensional pdf in complex plane, it has only one
degree of freedom (i.e., |z|), and we only need to estimate its
one-dimensional profile (i.e., the centrifugal direction along
the origin). Figure 1 illustrates one example of circular com-
plex Gaussian pdf and another example of circular complex
sub-Gaussian pdf; their one-dimensional centrifugal profiles
correspond to the one-dimensional Gaussian and two-modal
Gaussian mixture, respectively.
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(A) (B)

Fig. 1. The graphical plots of p(|z|) in the complex plane |z| =�
z2

Re + z2
Im. (A) Isotropic pdf Gaussian circular signal. (B) Isotropic pdf

sub-Gaussian (two-modal) circular signal.

Let us assume all the sources are circular and their
distributions have a form of ps(si) = g(|si|), where g(·)
denotes a specific nonlinear function associated with the ith
complex-valued source si; and the associated score function
has the form ψ(s) = − s

|s|
g′(|s|)
g(|s|) . In particular, given an

arbitrary nonzero complex number α ∈ C and a circular
complex random variable s, we have

pαs(αs) =
1
|α|ps(s) =

1
|α|g(|s|). (13)

and correspondingly,

H(αs) = −
∫
pαs(αs) log pαs(αs)d|αs|

= − 1
|α|

∫
ps(s)

(
log ps(s) − log |α|)d|αs|

= H(s) + log |α| (14)

exp(H(αs)) = |α| exp(H(s)). (15)

In complex ICA, a contrast function is a functional of the
distribution of y, which is minimized when R = WA equals
to the product of a permutation and a complex diagonal
matrix. Following Comon [3] and Pham [15], we call a
contrast function discriminating if it attains its minimum only
when the successful separation is achieved. The essential goal
is then to design discriminant contrast functions that lead to
feasible solutions (either local or global minima) of complex
ICA. Here, we restrict our attention on the contrast function
for separating independent circular complex signals.

To characterize the identifiability of the complex ICA
model, the complex analogue of the well-known Darmois-
Skitovich Theorem, which is fundamental to the concept of
ICA [3], is stated here [10]:

Theorem 1: Let s1, · · · , sn be mutually independent com-
plex random variables. For αi, βi ∈ C (i = 1, · · · , n), if
the linear forms x1 =

∑n
i=1 αisi and x2 =

∑n
i=1 βisi are

independent, then random variables {si} for which αiβi �= 0
are complex Gaussian.

A. Superadditive Functional and Contrast

Definition 4: A real functional of the distribution of a
circular complex random variable z, denoted as Q(z), is said
to be of class II (of a distribution) if it is

• (i) translation invariant, in the sense that Q(z + α) =
Q(z) for any complex number α;

• (ii) scale equivariant, in the sense that Q(αz) =
|α|Q(z) for any nonzero complex number α; and

• (iii) rotation invariant, in the sense that Q(z) =
Q(zejα) for any nonzero real number α.

Definition 5: The functional Q is superadditive if

Q2(z1 + z2) ≥ Q2(z1) +Q2(z2) (16)

for any two mutually independent circular complex random
variables z1 and z2; in contrast, Q is said to be k-subadditive
(0 < k ∈ R) if Qk(z1 + z2) ≤ Qk(z1) +Qk(z2).

Theorem 2: If Q is a superadditive functional of class II,
then a contrast function for separating instantaneous linear
mixtures of circular complex sources has the following form:

J(W) =
n∑

i=1

logQ(yi) − log |det(W)|, (17)

which is discriminating if Q(sj) > 0 for every independent
source sj and if the inequality is strict for any pair of nonzero
multiples of two distinct complex sources.
Note that when W is a unitary matrix (i.e., WWH = I),
then (17) is simplified to J(W) =

∑n
i=1 logQ(yi).

Proof: The proof follows almost the same as the real-
valued case [15] and is repeated here for completeness.
First, let y = W(As) = Rs, where R = [rij ]n×n is an
n × n complex-valued matrix; in the scalar form, we have
yi =

∑n
j=1 rijsj . In light of the scale equivariance and

superadditivity of Q, we have

Q2(yi) ≥
n∑

j=1

|rij |2Q2(sj) (i = 1, . . . , n). (18)

Let Λ = Rdiag{Q2(s1), . . . , Q2(sn)}RH , then Q2(yi) is
the ith diagonal entry of the Hermitian matrix Λ. If Q(sj) >
0, then Λ is a positive definite matrix. In light of the
Hadamard inequality, the product of the diagonal elements of
a positive definite matrix is lower bounded by its determinant
(with equality of bound if and only if the matrix is diagonal),
then equation (17) is bounded below by

∑n
j=1 logQ(sj) +

log |det(R)| − log |det(W)|; if Λ is singular, then the lower
bound approaches −∞; Since det(R)/det(W) = det(A),
the bound is attained when R equals to the product of a
permutation matrix P and a complex diagonal matrix D,
namely, R = PD. Second, to show the contrast function is
discriminating, we need to prove the lower bound is obtained
when R = PD. This can be seen that (17) attains its
minimum only if (18) achieves equality. For the ith equality,
we would have

Q2(rijsj + riksk) = Q2(rijsj) +Q2(riksk) (j �= k),
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which nevertheless contradicts the assumption unless rij or
rik is zero. Therefore, for each index i, there is at most
one index j for which rij �= 0. Given the assumptions
that Q(yi) > 0 and matrix R is nonsingular, each row and
column of the matrix R must merely contain one nonzero
complex numbers; thus R can be written as a product of
permutation matrix P and a complex diagonal matrix D. �

Corollary 1: If Q is a functional of class II and if

Q(z1 + z2) = Q(z1) +Q(z2) (19)

holds for two mutually independent circular complex vari-
ables z1 and z2; then (17) is an effective contrast function
for separating instantaneous linear mixtures of independent
circular complex sources; it is discriminating if Q(sj) > 0
for every independent source sj .

Proof: Notably the property (19) is much stronger than
the superadditivity. If Q is positive, from (19) it follows that

Q2(z1 + z2) = Q2(z1) +Q2(z2) + 2Q(z1)Q(z2)
≥ Q2(z1) +Q2(z2),

and the equality holds if and only if Q(z1) = Q(z2) = 0.
The rest of the proof is similar to that of Theorem 2. �

Theorem 2 and Corollary 1 essentially provide sufficient
criteria to design contrast functions, therefore finding super-
additive functional of class II is the key. However, unlike real-
valued case, most contrast functions (e.g.,[4], [15]) for real
ICA are neither superadditive nor subadditive in the general
complex ICA setup. For instance, the k-order cumulant
statistic (which is subadditive in real domain for k > 2)
would not satisfy cumk(z1 + z2) = cumk(z1) + cumk(z2)
for two independent complex random variables z1 and z2.
This is due to the phase dependence of sum of complex
numbers. To illustrate this, let z1 = |z1|ejθ1 , z2 = |z2|ejθ2

(θ1, θ2 ∈ R) be two complex random variables, then their
sum is represented as

z1 + z2 = |z1|ejθ1 + |z2|ejθ2

=
√
|z1|2 + |z2|2 + 2|z1| |z2| cos(θ1 − θ2)ejθ,

where θ = arctan z1 sin θ1+z2 sin θ2
z1 cos θ1+z2 cos θ2

. Obviously, the modulus
of the sum depends on θ1 − θ2, and we have

∣∣|z1| − |z2|
∣∣ ≤

|z1 + z2| ≤ |z1| + |z2|.
Theorem 3: If Q is a superadditive (or 2-subadditive)

functional of class II in real domain; let z = |z|ejθ (θ ∈ R),
then Q(z) = Q(|z|) =

√
Q2(|z| cos θ) +Q2(|z| sin θ) is

also a superadditive (or 2-subadditive) functional of class II
in complex domain.

Proof: Consider superadditivity first. Let z1 = |z1|ejθ1

and z2 = |z2|ejθ2 be two independent circular complex
random variables; let z = |z|ejθ = z1 + z2, then zRe =
zRe
1 +zRe

2 and zIm = zIm
1 +zIm

2 ; because of the superadditivity
of Q in real domain, we have

Q2(|z| cos θ) ≥ Q2(|z1| cos θ1) +Q2(|z2| cos θ2)
Q2(|z| sin θ) ≥ Q2(|z1| sin θ1) +Q2(|z2| sin θ2).

Summing up the above two inequalities and because of scale
equivariance, we obtain

Q
2
(z) = Q2(|z|) = Q2(|z| cos θ) +Q2(|z| sin θ)

≥ Q2(|z1|) +Q2(|z2|) = Q
2
(z1) +Q

2
(z2), (20)

which satisfies the Definition 5 and completes the proof.
Similarly, we can also prove 2-subadditivity. �

Hence, for circular complex variables, if we can find a
functional of class II, while its real counterpart is superad-
ditive, with Theorem 3 we may always find a superadditive
functional of class II in complex domain.

Lemma 1: If Q(z) (z ∈ C) is a real-valued function of
class II in complex domain; let z̃ = [zRe, zIm], then Q is
also a function of class II in real domain, with argument
of z̃ ∈ R

2; specifically, it satisfies (i) translation invariance:
Q(α + z̃) = Q(z̃) (∀α ∈ R2); and (ii) scale equivariance:
Q(αz̃) = |α|Q(z̃) (∀α ∈ R).

Proof: The proof is straightforward. The first property is
obvious. The second property can be verified by letting α =
|α|ej0 (i.e., zero phase). Notably the converse is not true. �

Similar to the real-valued ICA [15], we can also construct
contrast functions based on subadditive functional in the
complex ICA setting; specifically, a theorem follows in the
below.

Theorem 4: Given a unitary mixing matrix, if Q is a k-
subadditive functional of class II for some k ≥ 2, then
−∑n

i=1Q
k(yi) and −∑n

i=1Q
2k(yi) are contrast functions

for separating an instantaneous mixture of independent circu-
lar complex sources when the demxing matrix is also unitary;
the contrasts are discriminating if k > 2 and for sources {sj},
there is at most one index j for which Q(sj) = 0.

Proof: The proof is close to that of [15] and only sketched
here. When k = 2 and R = WA is unitary, by subad-
ditivity of Q, we obtain Q2(yi) ≤ ∑n

j=1 |rij |2Q2(sj) ≤∑n
j=1Q

2(sj) because of |rij | ≤
∑n

k=1 |rik|2 = 1; when k >
2, we have Qk(yi) ≤

∑n
j=1 |rij |kQk(sj) ≤

∑n
j=1Q

k(sj). It
then follows that −∑n

i=1Q
k(yi) ≥ −∑n

j=1Q
k(sj), hence

−∑n
i=1Q

k(yi) is a contrast function. The rest of the proof
is omitted due to lack of space. �

Remark: The constraint of unitary mixing matrix can be
satisfied by a prewhitening procedure with EVD: E[xxH ] =
AE[ssH ]AH = UΣUH , where Σ is a diagonal matrix
with nonnegative real-valued entries, and U is a unitary
matrix. Define a linear transformation z = D−1/2UHx =
D−1/2UHAs ≡ Ãs, where Ã = D−1/2UHA denotes a
new mixing matrix such that E[zzH ] = ÃE[ssH ]ÃH = I;
the new mixing matrix Ã becomes unitary if E[ssH ] = I.

B. Examples of Contrast Functions

1) Range Function: In [15] and [21], range function
was used as a contrast function for real-valued ICA, we
may also generalize its use to complex domain. Assume all
complex variables are distributed within bounded support
circles, i.e., the probability that the complex variables is
inside the bounded or finite support circle is nonnegative,
and zero elsewhere. Correspondingly, the range of a complex
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number z, denoted by R(z), is defined by the radius of its
support circle in the complex plane:

R(z) = d, where {p(z) ≥ 0
∣∣ |z − z0| ≤ d} (21)

where z0 denotes the center of the support circle, and the
positive scalar d ∈ R+ denotes the radius.

Theorem 5: If two circular complex bounded random vari-
ables z1 and z2 are independent, then their range satisfies the
linear superposition principle

R(z1 + z2) = R(z1) +R(z2). (22)
Proof: The proof follows the simple fact that |z1 + z2| ≤

|z1| + |z2| and range is a maximum operation. �
Corollary 2: If z = αz1 + βz2, where z1 and z2 are two

independent circular complex bounded random variables, and
α, β ∈ C, then

R(z) = |α| ·R(z1) + |β| ·R(z2). (23)
The proof follows directly from Theorem 5 and the fact that
the radius of the support circle of αz1 (or βz2) is just |α| (or
|β|) multiple of the radius of z1 (or z2), which is independent
on the phase of α (or β).

Let Q(yi) = R(yi), then (17) may be rewritten as

J(W) =
n∑

i=1

log
( n∑

j=1

|rij |R(sj)
)
− log |det(W)|. (24)

With little modification, the contrast function may be also
used for finite circular complex sources.

Definition 6: Let z be a circular complex random variable
with unbounded support, {z : |z| ≤ +∞}; z is said to be
finite if

∫ d

0
pz(|z|)d|z| ≈ 1 (0 < d < +∞).

Correspondingly, we can view d as the radius parameter of
the finite variable z.

2) Shannon Entropy Function: A well-known
information-theoretic contrast function is the marginal
Shannon entropy, H(yi). Let

Q(yi) = Q(|yi|) = exp(H(|yi|)), (25)

then from entropy power inequality, it is known that (25)
is a superadditive functional of class II in real domain.
From Theorem 3 we can also construct a superadditive
functional of class II for circular complex variables. It is
observed that plugging (25) into (17) yields (6) except for
a constant difference. Given finite samples of a complex
random variable {yi}, one can obtain the modulus {|yi|}
and estimate their pdfs/entropies using the conventional real-
valued pdf/entropy estimators, such as the kernel estimator
or spacing estimator [16],[17].

3) Rényi Entropy Function: In addition to Shannon en-
tropy, we can also define the generalized k-order Rényi
entropy (0 < k ∈ R):

Hk(yi) =
1

1 − k
log

(∫
p(yi)kdyi

)
. (26)

When the limit k → 1 is taken, Rényi entropy reduces to
the standard Shannon entropy. When k = 2, Rényi entropy

of order 2 is often called extension entropy

H2(yi) = − log
( ∫

p(yi)2dyi

)
.

By virtue of the Jensen inequality, we have H2(yi) ≤ H(yi).
In general, Rényi entropy is a non-increasing function in the
sense that Hk(yi) ≥ Hr(yi) for any r > k.

Lemma 2: For circular complex variable {z : p(z) =
g(|z|)}, the exponent of quadratic Rényi entropy,
exp(H2(z)), is a functional of class II.

Proof: First, it is easy to see H2(z) = H2(z+α) for any
complex number α. Next, we have

H2(αz) = − log
( ∫

g(|αz|)2d|αz|
)

= − log
( ∫

g(|z|)2d|z|
)

+ log |α|.

and then exp(H2(αz)) = |α| exp(H2(z)). Similarly, we can
prove exp(H2(z)) is rotation invariant. �

Specifically, by letting Q(yi) = Q(|yi|) =
exp(H2(|yi|)) = 1�

p(|yi|)2dyi
, we obtain the generalized

2-Rényi entropy power. By introducing generalized Gaussian
densities, generalized power inequalities can be similarly
derived [26,27]; then Q is a superadditive functional of class
II. Given a finite number of samples of {|yi|}, an efficient
quadratic Rényi entropy kernel estimator is available [18].

4) Fisher Information Function: Let us further consider
the functional of Fisher information

G = E
[
ψ(z)2

]
= E

[(d log p(z)
dz

)2]
, (27)

where ψ(z) = d log p(z)
dz = p′(z)

p(z) is called the score function.

If we let Q(z) = G−1/2, it can be proved that Q is a
functional of class II that is superadditive in real domain
[15]. For circular complex variables, we obtain

Q(z) = E

[(p′(|z|)
p(|z|)

)2]−1/2

.

In parallel with the k-order Rényi entropy, the k-score
function can be defined as ψk(z) = p′(z)

p(z)2−k , and the k-Fisher
information matrix can also be defined as [26]:

Gk(z) =

∫
p(z)

(
ψk(z)

)2
dz∫

p(z)kdz
. (28)

5) Determinant Function: Let ω ∈ C (which is determin-
istic) and z ∈ C (which is random) denote two complex
variables, and denote

Ω =
[
ωRe −ωIm

ωIm ωRe

]
, z̃ =

[
zRe

zIm

]
,

and Σz = cov[z̃]. Let z′ = ωz, then

z̃′ =
[
z′Re
z′Im

]
= Ωz̃ =

[
ωRezRe − ωImzIm

ωImzRe + ωRezIm

]
.
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If we let Q(z) = det(Σz)1/2 ≡ det
(
cov[z̃]

)1/2

, then

Q(ωz) = det
(
cov[z̃′]

)1/2

= det
(
cov[Ωz̃]

)1/2

= det
(
Ωcov[z̃]

)1/2

= det(Ω)1/2det
(
cov[z̃]

)1/2

= (ω2
Re + ω2

Im)1/2det(Σz)1/2 = |ω|det(Σz)1/2.

Therefore Q(z) is scale equivariant. It is also easy to prove
Q(z) is translation and rotation invariant; thus Q(z) is
a functional of class II. If z is circular, then it is also
straightforward to verify Q(z) is superadditive.

Correspondingly, let Q(yi) = det
(
cov[yRe

i , y
Im
i ]

)1/2
, we

can design the following contrast function

J(W) =
n∑

i=1

log
( n∑

j=1

|rij |det
(
cov[sRe

j , s
Im
j ]

)1/2
)
, (29)

where log |det(W)| = 0 holds for a unitary matrix W. Note
that if sRe

j is uncorrelated with sIm
j , then their covariance ma-

trix is diagonal, and det
(
cov[sRe

j , s
Im
j ]

)
= var[sRe

j ]var[sIm
j ].

6) Modified Kurtosis Function: Let us further consider a
modified kurtosis function as follows

Q(yi) =
(
E

[∣∣yi − E[yi]
∣∣4])1/4

. (30)

It is easy to prove that (30) is a functional of class II.
In the meantime, Q is superadditive in real domain if the
independent real variables (e.g., x, y ∈ R) are sub-Gaussian
[15], such that Q4(x + y) ≥ Q4(x) +Q4(y).

Assuming E[s] = 0 and E[yi] = 0, |det(W)| = 1, and
denoting γj = E

[|sj |4
]
, then the contrast function can be

rewritten as

J(R) =
n∑

i=1

1
4

log
( n∑

j=1

|rij |4γj

)
. (31)

V. CASE STUDY: TWO-BY-TWO MIXTURE

In this section, we use a simple (2-by-2 mixing) example
to illustrate the contrast function analysis in the context of
local/global minima or maxima. Specifically, we consider
the range contrast function defined in (24). For discussion
simplicity, we assume the sources, mixtures, and outputs are
all whitened such that E[ssH ] = E[xxH ] = E[yyH ] = I,
which implies that W and R are both unitary matrices.
In general, the unitary matrix R can be written with the
following general form:

R =
[

ejβ1 cos θ ejβ2 sin θ
−e−jβ2 sin θ e−jβ1 cos θ

]
�

[
c s

−s∗ c∗

]
, (32)

with β1, β2 ∈ R and θ ∈ [0, 2π); det(R) = |c|2 + |s|2 = 1.
Because log |det(W)| = 0, equation (24) may be written in
the form of J(R):

J(R) =
2∑

i=1

log
( 2∑

j=1

|rij |R(sj)
)
. (33)

0

1

2

0

1

2
0

0.5

1

θ (unit π)
 R(s

2
)

J(
 R

)

  0.1

  0.2

  0.3

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

Fig. 2. Figural illustration of local maxima and global minima of J(R)
w.r.t. θ ∈ [0, 2π), where we assume the source range R(s1) = R(s2) = 1
in the left plot and R(s1) = 1 in the right plot.

Plugging (32) into (33), and differentiating J(R) w.r.t. θ and
letting dJ(R)

dθ = 0, we obtain(
R2(s1) +R2(s2)

)(
sign(sin 2θ)

(
cos2 θ − sin2 θ

))
= 0.

Since R(s1) and R(s2) are positive, therefore the stationary
point is the solution of sign(sin 2θ)

(
cos2 θ − sin2 θ

)
= 0,

then the solutions are either θ = kπ
2 (k = 0, 1, 2, 3), or

θ = π
4 + kπ

2 (k = 0, 1, 2, 3). However, it is noted that the
function J(R) at stationary points kπ

2 is not continuous, and
therefore is non-differentiable.

Calculating the Hessian (for θ �= kπ/2) would further
yield

d2J(R)
dθ2

=
4�1

(
2δ(sin 2θ) cos2 2θ − sign(sin 2θ) sin 2θ

)
(
| sin 2θ|�1 + (�2 − �1)

)

− 4�21 cos2 2θ(
| sin 2θ|�1 + (�2 − �1)

)2 ,

where we denote �1 = R2(s1) + R2(s2), �2 =
(
R(s1) +

R(s2)
)2

, and R(s1)R(s2) = �2−�1
2 . It then concludes

• When θ = π
4 + kπ

2 , sin 2θ = ±1 and cos 2θ = 0, and
the Hessian value at the stationary points is −4�1

�2
< 0,

thus the stationary points are only local maxima.
• When θ = kπ

2 , because there are no other stationary
points for J(R) to be minimized, it can be inferred
that they all correspond to the global minima.

Figure 2 shows a graphical illustration of all local maxima
and global minima of (33) within the region [0, 2π). The
above analysis procedure is quite general, similar analysis
can also be conducted for other contrast functions, such as
equations (29) and (31).

VI. DISCUSSION

In this paper, we have focused on the design criteria of
contrast functions for complex ICA, especially for circular
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complex sources. Obviously, there are still many important
theoretical issues that require further investigations. A num-
ber of them are listed here.

• As reported in the real ICA, spurious local minima
exist for information-theoretic criteria (such as mutual
information or negentropy) as well as cumulant-based
contrast (such as kurtosis) [22]-[24], it is interesting to
examine such phenomena in complex ICA.

• Typical optimization algorithms for ICA use local gra-
dient search, with or without unitary constraint [25]
(depending if W is a unitary matrix). The n×n unitary
matrices form a unitary group U(n), which is a Lie
group of dimension n2. Such a special structure may
require special design of the optimization algorithm.

• Although we only discuss simultaneous separation ap-
proach of complex ICA in this paper, it would be also
interesting to investigate the contrast function for the
sequential extraction (i.e., deflation) approach, which
can be viewed as a degenerate case of the former ap-
proach. In both cases, stability analysis of the algorithm
is important.

VII. CONCLUDING REMARKS

Complex-valued ICA problems occur in many practical
applications, such as separation of fMRI images or EEG [7,
13], speech processing in frequency domain [14], communi-
cations and array signal processing [5, 12]. Recent years have
witnessed many developments of complex ICA algorithms
[6]-[14]. However, the theory of complex ICA is still not as
well understood as its real counterpart, especially for simul-
taneous separation. Essentially, designing effective contrast
functions is the key to the solution. In this paper, a number of
contrast functions have been studied for the circular complex
sources, and we overview and extend some established work
and derive several new results. The current paper is purely
theoretically oriented; practical implementations and design
of efficient algorithms are the topics of future investigation.

APPENDIX

For a real-valued random variable u (which can be either
the real/imaginary component, or its modulus, of a complex
number), we may obtain its up-to-fourth-order Gram-Charlier
expansion p(u) ≈ N (u)

(
1 + κ3

6 H3(u) + κ4

24H4(u)
)

, where

Hk(u) denotes the k-order Chebyshev-Hermite polynomial,
κk denotes the k-order cumulant of u, and N (u) denotes the
Gaussian probability density as N (u) = 1√

2π
exp(−u2/2).

Upon some approximation [2], we may derive

H(u) ≈ 1
2

log(2πe) − κ2
3

12
− κ2

4

48
+

3
8
κ2

3κ4 +
κ3

4

16
,

and the relevant partial derivatives of (12): ∂ log |det(W)|
∂w∗

ij
=

(W−H)ij ,
∂H(yIm

i )
∂w∗

ij
≈

(
−3
2 (yIm

i )5 − 239
12 (yIm

i )7 − 15
4 (yIm

i )9 +
3
2 (yIm

i )11
)
xj , and similarly for ∂H(ei)

∂w∗
ij

(omitted here due to
its lengthy expression).
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