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Abstract—This paper proposes a four-layer neu-
ral network filter for complex spatio-temporal pat-
terns (or sequences). For any given complex spatio-
temporal pattern, it can be constructed according
to the order of the spatio-temporal pattern. More-
over, it is demonstrated by the simulation results.

L. INTRODUCTION

Filtering and recognition of spatio-temporal pat-
terns (or sequences) is very important in the appli-
cations for both signal processing and pattern recog-
nition. With the development of neural network, there
have been many approaches using neural network mod-
els and training algorithms to process spatio-temporal
patterns, e.g. [1]-{7]. However, the main task of them
is to learn and retrieve spatio-temporal patterns from
some initial information, e.g., small parts of spatio-
temporal patterns. This is generally different from the
task of filtering and recognition of spatio-temporal pat-
terns. As a matter of fact, there are only a few neural
network approaches which can be applied to filtering
and recognition of spatio-temporal patterns directly.

One important neural network approach meeting
this demand is the avalanche matched filter(AMF)
which was proposed by Hecht-Nielsen[3] as a gener-
alization of Grossberg’s outstar avalanche[l]. By a
training scheme, the AMF can learn a spatio-temporal
pattern and recognize it in a noise environment in the
sense of nearest matching. However, in using the AMF
there is a major disadvantage that the spatio-temporal
pattern cannot be recognized if its phase is changed.
Another neural network approach is to convert the
spatio-temporal signal into a spatial signal by ignoring
the temporal component and treating the entire signal
as a spatial pattern. Then, the filtering and recogni-
tion of these spatial patterns can be realized by con-
ventional neural netwoerks such as back-propagation(8],
radial basis functions(9], and time-delayed neural net-
work[10]. But this neural network approach has a dis-
advantage that the training time is long when solv-
ing large scale problems. Recently, a topological and
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temporal correlator network is proposed to solve the
problem of spatio-temporal pattern learning, recogni-
tion, and retrieval[7]. It is a synthetical network based
on a Kohonen's self-organizing map and a fuzzy ART
network. However, the number of the processing neu-
rons in some layer varies with the complexity of spatio-
temporal patterns, which makes difficult to implement
the network.

In this paper, we propose a neural network based
filter for any given complex spatio-temporal pattern
under a general noise environment. It is a four-layered
forward neural network designed from the order of the
spatio-temporal pattern and the pattern itself. More-
over, we substantiate the filter by some simulation re-
sults.

II. THE ORDER OF A SPATIO-TEMPORAL
PATTERN

The order of a patio-temporal pattern is a key index
to represent its complexity. In studying how to learn
and generate spatio-temporal patterns, the order of a
spatio-temporal pattern has been already introduced
in the literature, e.g., [4]-[6]. Here, in preparation for
our neural network approach, we make a mathemat-
ical study on the order of a spatio-temporal pattern.
Since the purpose of our approach is to filter and recog-
nize spatio-temporal patterns, the following definition
of the order of a spatio-temporal pattern is slightly
different from the old oncs. We now begin with the
definition of a spatio-temporal pattern.

Definition 1. A spatio-temporal pattern S is de-
fined as

S=PP,- - Pn,

where m is a positive integer or infinity, and P; =
[pi1,piz, - pin)]T € ECR® fori=1,---,m. If P, €
{-1,1}" ({0,1}"), & is called u bipolar(binary) spatio-
temporal pattern.

Generally, m is called the length of the spatio-
temporal pattern and these P; are called the spatial
pattern of §. When § is periodic, i.e., P; is periodic,
it is further called a spatio-temporal cycle. If its mini-
mum cycle is {F, - -, Py, }, we further represent it by
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8¢ = P, -, Pp,P1. And myp is called the length of
the spatio-temporal cycle.

Definition 2. When a spatio-temporal pattern S is
not periodic, the order of S is defined by

r{8) = min{k: PiPu - Piqro1 # PiPj - Pigeo

for all i,j<m—k+1land i#j} (1)

Clearly, the order of 8 is the minimum of the number
k which enable all the possible k-step blocks in S are
different. Surely, it is a positive integer in the range
(1,m]. For clarity, r{S)-step blocks of & are called
basic blocks of §. When the order of & is just one, it
is called a simple spatio-temporal pattern. In this case,
all the spatial patterns are different. When the order
of § is larger than one, it is called a complex spatio-
temporal pattern. Obviously, some spatial patterns in
a complex spatio-temporal pattern must be repeated.

Similarly, we can define the order of a spatio-
temporal cycle as follows.

Definition 3. For a spatio-temporal cycle &° =
Py, Py Py, its order is defined by

T‘(Sc} = min{k H P.*_P,-.H e P,-+k,1 :;é Pjpj+1 e Pj+k_1

for all i, <m-1l,and i#j.} (2}

That is, the order of a spatio-temporal cycle is the
minimum of the number k which enable all the first
m sequential k-step blocks in the spatio-temporal cy-
cle are different. Similarly, #{S}-step blocks of 8¢ are
called basic blocks of S¢. When the order of S° is
just one, it is called a simple spatio-temporal pattern.
That is, all the spatial patterns in the minimum cy-
cle of a simple spatio-temporal cycle are different, ie.,
P(,--+, Py are different. Otherwise, when the order
of 8¢ is larger than one, it is called a complex spatio-
temporal cycle. In some cases, €.g., for a simple spatio-
temporal cycle, the order of §¢ is equal to that of the
spatio-temporal pattern & = P, - -, P,. However,
they are not equal in the general case. A simple ex-
ample is 8¢ = 112211. 1t can be easily found that
7(8¢) =3, but 7(S) = r(11221) = 2.

We further study the relation between a spatio-
temporal pattern and its basic blocks. Actually, when
a spatio-temporal pattern S is given, we certainly
have the set of its basic blocks. For convenience,
this set is called the basic black set and denoted by
Bs. Certainly, it Bs only corresponds to the true
spatio-ternporal sequence &, that is, Bg corresponds
to a unique spatio-temporal sequence, we can recog-
nize S by equivalently recognizing its basic blocks in
Bs. Clearly, this is not true when 8 is a simple spatio-
temporal pattern or cycle. However, this is always true
when & is a complex spatio-tetnporal pattern or cycle,
which can be proved by the following theorem.

Theorem 1. Suppose that §; and Sy are both com-
plex spatio-temporal patterns or cycles. If & and Ss
are different, t.e., they differ at either length or some
component position(s), Bs, # Bs,-
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The proof will be given in [11].

According to Theorem 1, we certainly have that the
map from & to Bs is one to one in the cases of both
complex spatio-temporal pattern and cycle. That is,
Bs uniquely corresponds to its true spatio-temporal
pattern or cycle when & is complex. Thus, a com-
plex spatio-ternporal pattern or cycle can be recog-
nized from its basic blocks. We will use this idea to
design the neural network spatio-temporal filter.

II1. THE NEURAL NETWORK
SPATIO-TEMPORAL FILTER

Suppose that & is a given complex spatio-temporal
pattern of finite length (i.e., m is finite) or a given
complex spatio-temporal cycle and its order is k{> 1).
Moreover, we let M be the number of different spatial
patterns in &, and let N be the number of the basic
blocks of S, i.e., N = |Bg|. We now propose our neural
network spatio-temporal filter for S.

As sketched in Figure 1, it is a four-layer forward
neural network. The first or input layer consists of n
input neurens corresponding to the dimension of the
spatial patterns in §. These n input neurons only
receive and transmit the input signals to the second
layer at each time.

The second layer consists of M neurons
Ui, Ua,-+-,Un, which correspond to the M dif
ferent spatial patterns SP,---, 5Py, respectively,
in S. Each neuron in the second layer represents an
individual spatial pattern and its aim is to recognize
this spatial pattern from the input pattern in a noise
environment. That is, it should be such a binary
neuron that when the input pattern is similar to the
spatial pattern, the neuron is activated (the state is
1}; otherwise, the neuron is inhibited (the state is
0). Let SP; = [spi,---,8Pin]’, we can design the
corresponding neuron U; in the two cases of binary
and real input patterns as follows.

(i). The Binary Input Case.

We first introduce the perceptive neuron which has
been defined and constructed in [12]. As well-known,
a binary or MP neuron is a processing element with
n input signals z1, 22, -+, Zn and an output signal y.
There is a weight w, on the connection from each input
signal z; to the neuron. And there is also a threshold
value @ for the neuron. For an input signal pattern
X = [z1,%2,:--,Ta]T, the output signal y of the neu-
ron is computed by

1 if H{(z) >0

y = Sgn(H(z)) = f 0 otherwise

(3)
where

H(I) = Ynﬂ’wiﬂfi — 8.

i=1

Let X = [71,%2, -, 247 be a n-dim birary input
pattern, i.e., X € {0,1}*, and C = [c1, 62, -, ¢a)T be
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a fixed n-dim binary pattern, we define

du(X,C) =S i —a

i=1

(4)

as the Hamming distance between X and C. We then
define the t-neighborhood of C over the n-dim binary
space {0,1}" as follows:

R{C) = {X : dp(X,C) < t}. (5)
The definition of the perceptive neuron is given as
follows.
Definition 1 If a binary neuron with a fired weight
vector W = fwi, w2, +,wn]? and a fized threshold
value 8, satisfies the following input-output relation:

(1 ifXeR(C)

v = Sgn(> wizi ~6) = 0 otherwise

i=1

(6)

it is called a t-neighborhood perceptive neuron of (pat-
ternj C.

For a binary neuron, we can consider that it per-
ceives the pattern when its output is one, and it does
not perceive the pattern when its cutput is zero. From
Definition 1, the perceptive neuron perceives or recog-
nizes a unique pattern under a noisy environment, The
perceptive field of a t-neighborhood perceptive neuron
of C is just the t-neighborhood of C. Actually, the
perceptive neuron can be easily constructed according
to the following theorem[12].

Theorem 2. Suppose that C = [c1,¢2,---,¢alT i5a
constant binary pattern, and that dy(C) =Y 1 ci is
the Hamming weight of C. If a neuron is constructed
by

(_1)1+Ci’
dag(C)~(t+1)

)
(8}

wy

o

i=1,-,n

I

then it is a t-neighborhood perceptive neuron of C.

By the perceptive neuron, we can easily define the
neuron U; for the spatial pattern SF; in the case of
binary input signals. Certainly, SF; is also a binary
pattern in this case. In fact, we can simply let it be
a t;-neighborhoed perceptive neuron of (pattern) SF;.
t; is selected according to the noise environment.

When the input signals and the spatial patterns are
bipolar, we can still construct the perceptive neuron
by Eq.(7,8) under the transformation v = 2u ~ 1{u €
{0,1},v € {-1,1}) and have the similar results.

(ii). The Real Input Case.

In the case of real input signals, each spatial pattern
SPF; is a real pattern in R®. When the input pattern
X and the spatial pattern SF; are normalized, i.e.,
| X {l=]| SP; ||= 1, we can design the neuron N; by a
binary neuron where W = SP; and 8 = 1 — £ where
€ > 0. That is, when X7SP, = Y_7_, z;sp;; is near
one, i.e., larger than 1 — ¢, the neuron is activated and
we consider the input pattern is recognized as SF;;
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otherwise, the neuron is inhibited and we consider the
input pattern cannot be recognized as SP;. £ is se-
lected according to the noise environment.

When the input pattern X and the spatial pattern
SP; are net normalized, we can design U; by a special
second order binary neuron, called matching neuron.
Actually, a second order binary neuron is defined by
W which is an (n + 1)-order real symmetric matrix.
For an input signal pattern X, the output signal y of
the second order binary neuron is computed by

1 if H(z) >0

y = Sgn(H(z)) = [ 0 otherwise

(9)
where

n
H(X) = T\ Wi TiT 4, g = 1.

i,7=0

Then, a matching neuron of the spatial pattern SF; is
defined by such a second order binary neuron that

J -1 ifl=j,
L Spa 1E J = 0!
i SPij ifl= 0,

where 6 is a small positive number. That is, H(X) =
03 i (x; —spi)? =0 || X — SP; |®. When X
is close to SP;, i.e., the MSE between X and SP, is
less than &, the neuron is activated and we consider
the input pattern is recognized as S P;; otherwise, the
neuron is inhibited and we consider the input pattern
cannot be recognized as SP;. Thus, we can simply
design U; by such a matching neuron of SP;, where &
is selected according to the noise environment.

For the both cases, when the parameters are prop-
erly selected, we can always have that for any input
pattern there is at most one neuron in the second layer
which is activated. We will assume that this is true in
our design of the neurons in the second layer.

We now turn to the third layer of the neural net-
work which consists of N neurons V1,---,V}yy, corre-
sponding to the N basic blocks By,---, By, respec-
tively, in Bs. Clearly, each V; should be able to de-
tect whether B; appears in the input spatial pattern
sequence or not. In order to so, we design V; as a
Shift Register Matching (SRM) neuron of B;, which
is sketched in Figure 2. It consists of a receiving box,
shift register, k matching units and a decision binary
neuron. We further describe its structure and function
with B; = SF;, --- SF;,, where the index numbers of
these spatial patterns are subject to those of the cor-
responding neurons in the second layer. Since some
spatial patterns may be repeated in B;, i; may be also
repeated. We suppose that all the different index num-
bers of the spatial patterns in B; are ji,---, fx,. Then,
only these Uj,,---,Uj, in the second layer connect to
the receiving box of this SRM neuron.

0 — i sph, ifl=3=0,
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At each time with an input pattern, if some Uy, is
activated, it sends a signal to the receiving box where
the index number j; is obtained and transmitted to
the first left block of the shift register. Otherwise, the
receiving box has no input signal and send the number
zero to the first left block of the shift register. In the
meantime, the index number stored in each block of
the shift register is shifted to its right block. Here
we assume that each block of the register keeps the
number zero at the beginning. The index number in
the j-th block is then transmitted to the j-th matching
unit in the upper. The j-th matching unit has stored
the index number ¢; and make a decision whether the
input index number is i; or not. If the input index
number is i;, the matching unit will send a positive
signal 1 to the binary decision neuron; otherwise, it
will send a zero signal to the binary decision neuron.
All the matching units connect to the binary decision
neuron with a unit weight. And the threshold value
of the binary decision neuron is near k. Clearly, when
the index numbers in the k blocks from left to right
approximately matches those of the spatial patterns of
B; from the last to the first, the binary decision neuron
will be activated and the output is one. Otherwise, it
will be inhibited and the output is zero. Thus, the
SRM neuron will detect the basic block at all the time
as the input spatio-temporal pattern enters.

The fourth layer is just one output neuron. The aim
of this output neuron is to detect whether all or alimost
the basic blocks appear in the input spatial pattern
sequence or not. So we can similarly design it as a
binary neuron with one unit weight connection from
each V; and the threshold value near N. Moreover, it
should have the capability of summing in a period of
time.

We further describe how to operate the neural net-
work filter for §. When an input spatio-temporal
pattern X --- X, is provided to the input layer of
the filter sequentially, each spatial pattern X, is then
transmitted to all the neurons in the second layer in
a parallel way. When a neuron in the second layer is
activated by X, it will send a signal each of the re-
lated SRM neurons synchronously. In the third layer
at each time, if a SRM neuron has received a signal
from some neuron in the second layer, the index num-
ber of this preceding neturon will enter the left block
of the register while the old index numbers in the left
k — 1 blocks of the register will be shifted their right
blocks, respectively. Then, the new index numbers will
be transmitted to the decision units, respectively, and
the decision results will be further transmitted to the
binary neuron which will finally send a positive signal
1 or no signal to the output neuron of the filter. If a
SRM neuron has not received a signal from each neu-
ron in the second layer, a spacial index number 0 will
enter the left block of the register and the other pro-
cess keeps the same. During the period of the m times,
if a SRM neuron has been activated one or more times,
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i.e., it has sent one or more positive signals to the out-
put neuron, its contribution to the cutput neuron is
considered only as one positive signal. Summing up
all the signals in the m times, the output neuron will
make the final decision. That is, if its output is one,
the input spatio-temporal pattern is recognized as S;
it is zero, the input spatio-temporal pattern cannot be
recognized as §.

We finally analyze the function of the neural net-
work spatio-temporal filter for S in a noisy environ-
ment. We first consider the case that & is a spatio-
temporal pattern, i.e., § = P,--- B,. When the in-
put spatio-temporal pattern A = X;..-X,, is just
8§ = P, .-- P, we can easily find that the output of
the filter is one. In fact, as each P; enters the network
sequentially, the corresponding neuron in the second
layer will be activated and send the signal to the re-
lated SRM neurons synchronously. According to the
function of the SMRM neuron, it will be certainly
activated if the corresponding basic block enters the
network sequentially. Thus, as P, --- B, enters the
network sequentially, each basic block enters the net-
work and the corresponding SRM neuron is activated
at some time. That is, all the SRM neurons will be
activated during the period of m times. So the output
neuron will be finally activated and give the positive
result.

In a noisy environment, the input spatio-temporal
pattern X is near & as a whole, but different from it.
That is, there exists some errors on the spatial pat-
terns in comparison with those of $. Then, we need
to filter the errors in &'. Actually, there are three fil-
tering processes in our neural network filter. If there
are a small number of errors in a spatial pattern X; in
comparison with its real spatial pattern SP;, they can
be filtered by the SP neuron Uf; as the parameters of
the neurons in the second layer are properly selected.
Sometimes, there may be so many errors in some X,
that the neurons in the second layer cannot filter them.
That is, X, is recognized as some other spatial pattern
but SF;, or cannot be recognized and all the neurons
in the second layer are inhibited. Then, there appears
a wrong spatial pattern in certain k-step blocks of the
processed X! in comparison with the corresponding
basic blocks. If there exist a small number of wrong
spatial patterns in a k-step block of the processed &’
in comparison with the corresponding basic block, the
errors can be filtered by the SRM neuron for this basic
block if the threshold value is properly selected. More-
over, if there exists too many wrong spatial patterns
in a k-step block of the processed X' in comparison
with the corresponding basic block, the SRM neurons
cannot filter those errors. That is, the corresponding
SRM neuron will not be activated and thus cannot
contribute to the output neuron. However, since S is
near S, there exits only a small number of these wrong

INote that each spatial pattern X; has been processed by the
neurons in the second layer.
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k-step blocks. The errors can be filtered by the out-
put neuron if the threshold value is properly selected.
Therefore, the neural network filter can recognize & in
a noisy environment.

We further consider the case that & is a spatio-
temporal cycle, ie., § = P ---Pp,P. In this
situation, we design the neural network spatio-
temporal filter as for the spatio-temporal pattern &' =
PP Pr--- By, te, m = mp + k —- 1. Clearly,
when the input spatio-temporal cycle enters the neural
network spatio-temporal filter in such a way as &', we
have the same result as above. Moreover, since the out-
put neurons all check whether all or most of the basic
blocks of &' appears in the input pattern sequence in a
period of m times and there is not any other require-
ment, we can enter the input spatio-temporal cycle
from any spatial pattern. Therefore, the neural net-
work filter can recognized & in a noisy environment
even if its phase is changed.

Additionally, if & is a given simple spatio-temporal
pattern or cycle, all the 2-step blocks of S are certainly
different. Moreover, S is uniquely defined by the set of
its 2-step blocks. Thus, we can consider § as a second
order spatio-temporal pattern or cycle to design the
neural network spatio-temporal filter for it.

In a summary, the neural network spatio-temporal
filter for a spatio-temporal pattern or cycle is con-
structed with the binary neurons for the spatial pat-
terns and the SRM neurons for the basic blocks. It is
able to store and recognize the spatio-temporal pat-
tern or cycle in a noisy environment. Moreover, in the
case of the spatio-temporal cycle, it can recognize the
cycle even when its phase is changed.

IV. THE SIMULATION RESULTS

In this section, some simulation experiments are
carried out to demonstrate our proposed neural net-
work spatio-temporal filter. We begin with a de-
scription of the spatio-temporal pattern used in our
simulation. Our simulation experiments are under-
taken on the spatial pattern set of ten Arabic numer-
als {0,1,2,3,4,5,6,7, 8,9} which are expressed by 7x7
pixels in Figure 3. That is, each number i is expressed
by a binary matrix S; = {si;)}7x7, where s;; = 1 rep-
resents the black pixel. Essentially, we can consider
it as a vector, i.e., vec[S;]. For those ten spatial pat-
terns, we define the minimum Hamming distance of
each sample pattern S; to the other ones by

d: = m'.in#,-d_r,-(Si,Sj)
= min{dp(S:,S;):j=1,---,i—1,i+1,---,10}.

As is well-known in coding theory, df,d3, -, d3, re-
ally give the bounds of radiuses of error-correcting hy-
perspheres of the spatial patterns(codes) in 49-dim bi-
nary space. In fact, the reasonable radius of error-
correcting hypersphere of each S; should be no more
than t] = [5‘.5_-5]. (Here [z] denotes the integer part

1032

of the real number z). For a filtering or recognition
system, only when the radius of the error-correcting
hypersphere of each 8; is just {7, the error probability
of recognition reaches the minimum in a noisy envi-
ronment.

Based on the Hamming distances between these
sample patterns, we have

(t;,t;,t;,t;,t;,t;,t;,t;,t;,tlo‘)
=(3,6,5,4,9,4,5,8,3,4).

Then, we can design the binary neuron U; in the
second layer of the neural network filter as the ¢}-
neighborhood perceptive neuron of S; according to
Theorem 2.

Furthermore, we design the neural net-
work filter for the spatio-temporal pattern
S = {7,8,8,3,6,56,4,9,2,0,3,6,1,6,4,7} whose
order is 3 and the number of the basic blocks is 15.
Then, the filter is a four-layer neural network with 49
input neurons, 10 spatial pattern neurons (as designed
above), 15 SRM neurons, and one output neuron.
Each SRM neuron is designed as in Section III with
the threshold value of the binary decision neuron 2.5,
The threshold value of the output neuron is designed
as 12.5.

We then generate four input spatial-temporal pat-
terns under certain noise environment, which are given
in Figure 4. We run the neural network filter on these
four input spatio-temporal patterns. We have found
that the neural network filter recognizes the input
spatio-temporal patterns (a), (b), and (c), which con-
tain a small number of errors, but does not recognize
the input spatic-temporal pattern (d} which contains
a large number of errors.

V. CONCLUSION

We have investigated the problem of fitering and
recognition of complex spatio-temporal patterns or cy-
cles through a neural network system in a general noise
environment. By analysis, we have proved that the
identification of a complex spatio-temporal pattern or
cycle is equivalent to the identification of the set of its
basic blocks. Based on this equivalence, we have estab-
lished the neural network filter for a complex spatio-
temporal pattern or cycle. According to the temporal
carrelations of the spatial patterns, the filter can be de-
signed to remove the noise and recognize the pattern or
cycle. Moreover, the neural network spatio-temporal
filter is demonstrated by the simulation results.
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