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Abstract. Gaussian mixture modelling is a powerful tool for data analy-
sis. However, the selection of number of Gaussians in the mixture, i.e., the
mixture model or scale selection, remains a difficult problem. In this pa-
per, we propose a new kind of dynamic merge-or-split learning (DMOSL)
algorithm on Gaussian mixture such that the number of Gaussians can
be determined automatically with a dynamic merge-or-split operation
among estimated Gaussians from the EM algorithm. It is demonstrated
by the simulation experiments that the DMOSL algorithm can auto-
matically determine the number of Gaussians in a sample data set, and
also lead to a good estimation of the parameters in the original mixture.
Moreover, the DMOSL algorithm is applied to the classification of Iris
data.

1 Introduction

Many problems in data analysis, especially in clustering analysis and classifi-
cation, can be solved through Gaussian mixture model [1]. Actually, several
statistical methods have been proposed for Gaussian mixture modelling (e.g.,
the EM algorithm [2] and k-means algorithm [3]). But it is usually assumed that
the number k of Gaussians in the mixture is given in advance. However, in many
cases, this key information is not available and the selection of an appropriate
number of Gaussians must be made with the parameter estimation, which is a
rather difficult task [4].

The traditional approach to this task is to choose a best k∗ via some selection
criterion, such as the Akaike’s information criterion [5] or its extensions. How-
ever, these methods incur a large computational cost since we need to repeat
the entire parameter estimation process independently at a number of different
values of k. Moreover, all these criteria have their limitations and often lead to
a wrong result.

Recently, a new kind of automated model selection approach has been devel-
oped using the idea that an appropriate number of Gaussians can be automat-
ically allocated during the parameter learning, with the mixing proportions of
� This work was supported by the Natural Science Foundation of China for Project

60471054

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 203–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



204 Jinwen Ma and Qicai He

the extra Gaussians attenuating to zero. From the Bayesian Ying-Yang (BYY)
harmony learning theory, the gradient-type harmony learning algorithms [6]-[7]
have been proposed via the maximization of a harmony function on the archi-
tecture of the BYY system for Gaussian mixture. The simulation experiments
showed that these algorithms can make model selection automatically with pa-
rameter estimation on Gaussian mixture. Moreover, from the point of view of
penalizing the Shannon entropy of the mixing proportions on maximum likeli-
hood estimation (MLE), an entropy penalized MLE iterative algorithm was also
proposed to make model selection automatically with parameter estimation on
Gaussian mixture [8]. However, an obvious drawback of this approach is that the
initial value of k cannot be smaller than the number of actual Gaussians in the
sample data. Although we can always select k to be large enough, the algorithms
may lead to a wrong result when the initial value of k is much larger than the
number of actual Gaussians in the sample data.

On the other hand, the EM algorithm is an efficient algorithm for Gaussian
mixture modelling when the number of actual Gaussians is given in advance.
But it often suffers from local convergence. In order to overcome this problem,
a split-and-merge operation was introduced in the EM algorithm so that the
EM algorithm can probably escape a local solution [9]-[10]. In these revised
EM algorithms, the split and merge operations on the estimated Gaussians are
forced to come together in each phase. Moreover, a greedy EM algorithm was
also proposed to search the number of actual Gaussians in the sample data by
increasing k step by step from k = 1 [11].

In the current paper, we further propose a dynamic merge-or-split learning
(DMOSL) algorithm for Gaussian mixture modelling such that the merge and
split operations can be dynamically and independently conducted on the esti-
mated Gaussians in each phase of the learning process. In this way, the number
of actual Gaussians in the sample data can be automatically detected no matter
when the initial value of k is larger or smaller than the number of actual Gaus-
sians in the sample data. It is demonstrated by the simulation experiments that
the DMOSL algorithm can automatically determine the number of actual Gaus-
sians in a data set, with a good estimation of the parameters in the actual mix-
ture. Moreover, the DMOSL algorithm is applied to the classification of Iris data.

2 The DMOSL Algorithm

Given a sample data set from an original mixture with k∗ Gaussians and a
initial number k, we can use the (conventional) EM algorithm to get k estimated
Gaussians with the associated parameters. If k > k∗, some estimated Gaussians
cannot match the actual Gaussins and should be merged into one Gaussian. On
the other hand, if k < k∗, some estimated Gaussians also cannot match the
actual Gaussians and should be split into two or more Gaussians. The main idea
of the DMOSL algorithm is to construct a merge criterion and a split criterion
for the estimated Gaussians so that the merge-or-split operation can be added
to the EM algorithm dynamically and independently. According to this idea, we
now propose the DMOSL algorithm in the following subsections.
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2.1 Gaussian Mixture Model

We begin to introduce the Gaussian mixture model as follows:

P (x|Θ) =
k∑

i=1

αiP (x|mi, Σi), αi ≥ 0,

K∑

i=1

αi = 1, (1)

where

P (x|mi, Σi) =
1

(2π)
d
2 |Σi| 12

e−
1
2 (x−mi)

T Σ−1
i

(x−mi) (2)

and where k is the number of Gaussians or components in the mixture, x denotes
a sample vector and d is the dimensionality of x. The parameter vector Θ consists
of the mixing proportions αi, the mean vectors mi, and the covariance matrices
Σi = (σ(i)

pq )d×d which are assumed positive definite.
For a sample data set S = {xt}N

t=1 from the Gaussian mixture, we define
the posteriori probability of a sample xt over the j-Gaussian or component as
follows.

P (j|xt; Θ) =
αjP (xt|mj , Σj)

P (xt|Θ)
=

αjP (xt|mj , Σj)∑k
i=1 αiP (xt|mi, Σi)

. (3)

According to these posteriori probabilities, we can divide the sample points into
k clusters corresponding to the k Gaussians in the mixture by

G[j] = {xt : P (j|xt; Θ) = max
i=1,···,k

P (i|xt; Θ)}. (4)

2.2 The Merge and Split Criteria

We further introduce the merge and split criteria on the estimated Gaussians
after the EM algorithm has converged. Actually, via the estimated parameters,
we can obtain the clusters G[j]. For the merge or split operation, we first check
whether the sample points in two or more neighboring clusters are subject to a
Gaussian distribution. If they are, we think the corresponding estimated Gaus-
sians should be merged. Furthermore, we check whether the sample points in
each remaining G[j] (excluding these ones to be merged) are subject to a Gaus-
sian distribution. If they are not, the estimated Gaussian should be split.

Specifically, we give the merge and split criteria as follows.
Merge Criterion: For the i−th and j−th estimated Gaussians, we introduce
the following merge degree:

Jmerge(i, j; Θ) =
Pi(Θ)T Pj(Θ)

‖Pi(Θ)‖‖Pj(Θ)‖ (5)

where Pl(Θ) is an N-dimensional vector consisting of posterior probabilities of
the sample points over the l−th Gaussian, and ‖ ·‖ denotes the Euclidean vector
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norm. Clearly, when the two estimated Gaussians should be merged together,
Pi(Θ) and Pj(Θ) should be similar at a ceratin degree so that Jmerge(i, j; Θ) will
be high. According to this merge degree and a threshold value α > 0, we have
the merge criterion: if Jmerge(i, j; Θ) ≥ δ, these two Gaussians will be merged
together, otherwise, they will not.

In the simulation experiments, we found that Jmerge has a relationship with
N . So, by experience, we set δ = 0.004N1/2 in the following experiments.
Moreover, we also found in the simulation experiments that if the two esti-
mated Gaussians should not be merged, Jmerge becomes very small ( in general,
Jmerge(i, j; Θ) < 10−3). Therefore, the merge degree is reasonable.
Split Criterion: We use the Srivastav method [10] to check the normality for
the sample points in each remaining cluster. In fact, via the singular value de-
composition, the Srivastav method turns the test of multivariate normality into
the test for a number of independent normal variables. For the test of univari-
ate normality, we implement the Kolmogorov-Smirnov test. For the j−th esti-
mated Gaussian (remaining from the merge criterion), according to the Srivastav
method, if the sample points in G[j] are not subject to a normal distribution, it
will be split into two Gaussians; otherwise, there will be no need for the split on
this estimated Gaussian.

2.3 The Procedure of the DMOSL Algorithm

With the above preparations, we can now present the procedure of the DMOSL
algorithm. Structurally, the DMOSL algorithm consists of a number of phases.
At the beginning phase, we set k as the best possible estimation of the number
of actual Gaussians in the sample data. With this initial k, the EM algorithm is
conducted to get the estimated Gaussians. Then, the DMOSL algorithm turns
into the second phase. In this or the sequential phase, according to the obtained
Gaussians or clusters, we check whether the merge or split operation is needed.
If a merge or split operation is needed, we can use the mathematical method
proposed in [10] to put the two estimated Gaussians into one or split one esti-
mated Gaussian into two, with the parameters being modified. Starting from the
obtained and modified parameters in the new Gaussian mixture setting, the EM
algorithm is further conducted to the new estimated Gaussians for the following
phase. In this way, the model selection will be made dynamically and automati-
cally during the learning phases via the merge and split operations. Finally, the
DMOSL algorithm will be halted when there is no need for the merge or split
operation on the estimated Gaussians.

For the fast convergence, we also add a component eliminating mechanism
to the DMOSL algorithm on the mixing proportions obtained from the EM
algorithm. That is, if αj < 0.01, the j−th Gaussian will be eliminated directly.
Clearly, this component eliminating operation can be considered as an additional
merge operation.

Concretely, the procedure of the DMOSL algorithm is given as follows.
Step 1 Initialization: set the initial value of k, t = 0, and the initial parameters
Θ0 in the Gaussian mixture.
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Step 2 At phase t, we perform the EM algorithm starting from the parameters
obtained from the last phase after the merge and split operations if t > 0 or from
the initial parameters if t = 0. After the EM algorithm has converged, we get Θt

at the t−th phase. According to Θt, we can get the estimated Gaussians and the
corresponding clusters G[j]. If there is no need for the merge or split operation
on the estimated Gaussians, the DMOSL algorithm is halted. Otherwise, we go
to the next step.
Step 3 Merge operation: we compute Jmerge(i, j; Θt) for i, j = 1, · · · , k and
i �= j. and sort them in a descend order. If these exists any Jmerge(i, j; Θt) that
is no less than δ, i.e., Jmerge(i, j; Θt) ≥ δ, we merge these two Gaussians into a
new Gaussian i′. The parameters of this new Gaussian are computed as follows.

αi′ = αi + αj ; (6)
mi′ = (αimi + αjmj)/αi′ ; (7)
Σi′ = (αiΣi + αjΣj + αimim

T
i + αjmjm

T
j − αi′mi′m

T
i′ )/αi′ . (8)

It can be found in the experiments that sometimes Σi′ may not be positive. In
this special case, we can use the covariance matrix of the sample data in G[i] and
G[j] instead. If one estimated Gaussian can be merged into two or more estimated
Gaussians, we merge the two estimated Gaussians with the highest merge degree.
When a merge operation is implemented, k is automatically decreased by one,
i.e., k = k − 1.
Step 4 Split operation: after the merge operation, there are certain estimated
Gaussians remained. For each remaining estimated Gaussian, we check whether
it should be split according to the split criterion. If it should be, say the i-th
Gaussian, we split it into two Gaussians i′ and j′ as follows.

From the covariance matrix Σj , we have its singular value decomposition
Σj = USV T , where S is a diagonal matrix with nonnegative diagonal elements
in a descent order, U and V are two (standard) orthogonal matrices. Then, we
further set A = U

√
S (refer to [10] for the derivation), and get the first column

A1 of A. Finally, we have the parameters for the two split Gaussians as follows.

αi′ = αi ∗ γ, αj′ = αi ∗ (1 − γ); (9)

mi′ = mi − (αj′/αi′)1/2µA1; (10)

mj′ = mi + (αi′/αj′)1/2µA1; (11)
Σi′ = (αj′/αi′)Σi + ((β − βµ2 − 1)(αi/αi′) + 1)A1A

T
1 ; (12)

Σj′ = (αi′/αj′)Σi + ((βµ2 − β − µ2)(αi/αj′) + 1)A1A
T
1 , (13)

where γ, µ, β are all equal to 0.5.
When a split operation is implemented, k is automatically increased by one,

i.e., k = k + 1.
Step 5 We let t = t + 1 and return to Step 2.

We finally give some remarks on the DMOSL algorithm. (1). The split crite-
rion or operation is based on the test of the normality on the sample points in
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the resulted clusters G[j]. Actually, only when the number of the sample points
from each actual Gaussian is large enough and the actual Gaussians are sepa-
rated in a certain degree, this normality test can be reasonable and lead to a
correct result. Hence, the DMOSL algorithm can be only suitable for the sample
data set in which the actual Gaussians have a large number of sample points
and are separated in a certain degree. (2). The split criterion is based on the
statistical test and the merge criterion is based on the merge degrees between
two estimated Gaussians through a threshold value selected by experience. The-
oretically, there exists a small probability of the error on the DMOSL algorithm.
(3). In Step 4, for consideration of robustness, we can add a checking step on the
two split Gaussians to make sure whether this split operation is really necessary.
If the two split Gaussians i′ and j′ on the data set G[i] should be merged under
the merge criterion on these two Gaussians only, we abandon the split operation.
Otherwise, we keep the split operation. However, it is found in the experiments
that this checking step is hardly active.

3 Experimental Results

In this section, several simulation experiments are carried out to demonstrate
the DMOSL algorithm for automated model selection as well as parameter es-
timation on seven data sets from Gaussian mixtures. Moreover, we apply the
DMOSL algorithm to the classification of Iris data.

3.1 Simulation Experiments

We conducted several experiments on seven sets of samples drawn from a mixture
of four or three bivariate Gaussians densities (i.e., n = 2). As shown in Fig. 1,
each data set of samples is generated at different degree of overlap among the
clusters (Gaussians) and with equal or unequal mixing proportions of the clusters
in the mixture.

Using k∗ to denote the number of actual Gaussians in the sample data or the
original mixture, we implemented the DMOSL algorithm on these seven data
sets with different initial values such as k < k∗, k = k∗ and k > k∗. The other
parameters were initialized randomly within certain intervals.

Typically, we give the experimental results of the DMOSL algorithm on the
sample data set (d) in which k∗ = 4. For k = k∗ = 4, the DMOSL algorithm
was halted immediately with no merge or split operation and the result is shown
in Fig. 2. In this and the following figures, T represents the number of merge
and split operations in each phase, k is the initial number of Gaussians, k′ is
the changing number of estimated Gaussians in each phase of the algorithm. For
k = 1, the DMOSL algorithm first split one Gaussian into two Gaussians and
then split two into four, see Fig.3 for k′ = 2. On the other hand, when k = 8, the
8 estimated Guassians merged into 4 Gaussian only in one phase, and we show
the results in Fig.4 for k′ = 8. From these figures, we can observe that, through
the dynamic merge or split operations, the DMOSL algorithm can make model
selection automatically on the sample data set and at the same time lead to a
good estimation of the parameters in the original mixture.
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Fig. 1. Seven sets of sample data used in
the experiments

Fig. 2. k∗ = 4, k = 4, k′ = 4, T = 0
(stopped)

Fig. 3. k∗ = 4, k = 1, k′ = 2, T = 2 (2
split operations)

Fig. 4. k∗ = 4, k = 8, k′ = 8, T = 4 (4
merge operations)

The further experiments of the DMOSL algorithm on the other sample sets
had been also made successfully for the automated model selection and param-
eter estimation in the similar cases. Since the DMOSL algorithm can escape the
local solution with the merge or split operation, it outperforms the conventional
EM algorithm. It also outperforms the split-and-merge EM algorithms given in
[9]-[10] since it has the ability of automated model selection. As compared with
the automated model selection algorithms in [6]-[8],[11], the DMOSL algorithm
has no limitation for the initial value of k and converges more quickly in the
general case.

3.2 Experiments on Classification of Iris Data

We further apply the DMOSL algorithm to the classification of the Iris data1

which is a typical real dataset for testing the classification algorithm. The Iris
data set consists of 150 4-dimension data from three classes: Iris Versicolor, Iris
1 Retrieved from http://www.ics.uci.edu/ mlearn/MLRepository.html
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Virginca and Iris Setosa. Each class contains 50 samples. We implemented the
DMOSL algorithm on the Iris data with k = 1−8. When k = 1−4, the DMOSL
algorithm can detect the three classes correctly, with the classification accuracy
over 96.65%. However, when k = 5 − 8, the DMOSL algorithm always leads
to 4 or 5 Gaussians in which three major Gaussians can be located the actual
classes approximately, while one or two abundant small Gaussians cannot be
eliminated. The reason may be that the number of samples in the Iris data is
not large enough and each class cannot match a Gauussian well so that some
small Gaussians cannot be eliminated when k is much larger than k∗ = 3.

4 Conclusions

We have investigated the automated model selection and the parameter esti-
mation on Gaussian mixture modelling via a dynamic merge-or-split learning
(DMOSL) algorithm. The DMOSL algorithm is constructed with a merge or
split operation on the estimated Gaussians from the EM algorithm. It is demon-
strated by the simulation experiments that the DMOSL algorithm can auto-
matically determine the number of actual Gaussians in the sample data, also
with a good estimation of the parameters in the original mixture. The DMOSL
algorithm can be also successfully applied to the classification of Iris data.
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