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Abstract—Table structure recognition is a crucial step for
automatic table information extraction. It is conventional to
utilize the features such as ruling lines or words for parsing the
rows, columns and cells in a table. However, these conventional
methods are ineffective for image-based tables when ruling lines
are not visible or the words cannot be recognized through the
OCR system. In order to overcome these problems, we propose
a deep semantic segmentation model for image-based table
structure recognition. Specifically, it is an end-to-end semantic
segmentation neural network to determine a pixel-wise prediction
map for an input table image where the labels are row separator,
column separator, cell content and background. Moreover, by
making the connected componnet analysis on the prediction map,
we can obtain the bounding boxes of row separators, column
separators and cell contents, more accurately. Then we number
row/column separators in order by coordinate sorting. Thus,
we can make full use of relative positions between row/column
separators and cell contents, and further assign the row/column
number to each cell. Due to the lack of training data, a large
amount of synthetic data are automatically generated in our
experiments. It is demonstrated by the experimental results that
our proposed model is suitable for various table types, which
can achieve 0.9769 and 0.9343 average F1 scores on a generative
dataset when the IoU threshold is set to 0.6 and 0.8, respectively.

Keywords—table structure recognition, table information ex-
traction, semantic segmentation and deep learning

I. INTRODUCTION

In our daily working environment, a huge number of doc-
uments are generated, and automatic information extraction
from these documents is necessary for many tasks of artificial
intelligence. As an essential structural unit of the documents,
table is widely used in scientific papers, statistical reports and
business orders. It provides an effective way to organize and
display the data and other information. Therefore, automatic
table recognition [1]-[3] has become a popular topic in the
fields of document understanding and natural language pro-
cessing.

In general, table recognition consists of three tasks: table
detection, table structure recognition and table content recog-
nition. Table detection starts to parse or locate the tables from
a document. Table structure recognition further parses the
rows, columns and cells in a recognized table. Table content
recognition finally reconizes each cell content which may be
text, formula or figure. It should be noted that these three
tasks may be defined in different ways. In this paper, we focus
on image-based table structure recognition. In fact, while the
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Fig. 1. Description of table structure recognition task.

tables in PDF format can provide words information and the
tables in HTML format can parse row information according
to their tag sequence, as shown in Fig. 1, our task considers
only one table image as the input and determines the structure
information of all the cells including their bounding boxes,
row numbers and column numbers. As there may be spanning
cells in a table, we take two attributes, start-row and end-row,
to denote the row number. The column number is denoted
in the similar way. In actual documents, tables differ widely
from each other. As a table is composed of relevant data, the
complexity of the table structure is up to the complexity of
the data relation. For instance, some complicated tables may
have multi-level headers [4]. Moreover, depending on the table
maker, the appearance of a table can be varied in different
ways, such as font, color and line thickness. The diversity of
table layout makes it difficult to build a general model for
table structure recognition.

Most conventional methods [5]-[8] are built on the semantic
features such as ruling lines or words, followed by a sequence
of predefined heuristic rules. Some of them employ image
processing techniques to extract the ruling lines, either visible
or invisible. Some of them obtain the location information of
words as bounding boxes with the aid of an OCR system.
However, on one hand, these methods rely heavily on the
extracted features. For instance, the error caused by the OCR
system can be accumulated during the subsequent processing.
On the other hand, we have to determine many parameters
for the heuristic rules by experience while those parameters
can hardly fit in the different table styles. Nowadays, with
the rapid development of deep learning, DeepDeSRT [9]
adopts two deep semantic segmentation networks to parse rows
and columns, respectively. But it cannot be applied to the
complicated tables where spanning cells occupy at least two
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rows or columns. Some recent approaches [10], [11] utilize
Graph Convolutional Network to predict the relationship be-
tween word (or cell). Nevertheless, word bounding boxes are
required in advance. Some other approaches [12], [13] propose
image-to-text models to generate HTML tag sequence that
represents the arrangement of rows and columns. However,
those methods are lack of information of cell coordinates and
usually constrained by the length of tag sequence. Moreover,
the performances of deep learning based models are generally
restricted with the existence of a large scale of annotated data.
In this paper, in order to overcome these problems, we
propose a deep semantic segmentation model for image-based
table structure recognition. Specifically, we adopt an end-to-
end semantic segmentation neural network to determine a
pixel-wise prediction map for an input table image in which
each pixel is assigned to a concrete semantic meaning like
row separator, column separator or cell content. Not like those
rule-based methods, we take full advantage of the strong self-
learning power of the deep neural network. At the same time,
we adopt a post-processing procedure to infer the bounidng
boxes of cell contents directly from the prediction map so
that we can get rid of the limitations of the OCR system. After
the bounding boxes of row separators, column separators and
cell contents are determined, we can get the arrangements of
rows and columns. We then make full use of relative positions
between row/column separators and cell contents to assign
row/column number to each cell, whether spanning cells exist
or not. To eliminate the negative influence of less annotated
training data, we automatically generate enough synthetic data
in the experiments, based on which our proposed model can
achieve 0.9769 and 0.9343 average F1 scores on a generative
dataset when IoU threshold is set to 0.6 and 0.8, respectively.
The rest of the paper is organized as follows. We first
review the related work in section II. We then give the detailed
description of our proposed model. In section IV, we present
the experimental results and comparisons on a generative
dataset. We finally make a brief conclusion in section V.

II. RELATED WORK

Table structure recognition has been studied for decades.
According to the input file formats, a great number of specific
algorithms have been developed. For image-based table struc-
ture recognition, early algorithms are mostly rule-based. Some
of them [5], [7] use visible lines or continuous white space to
find demarcation information. These methods utlize a lot of
images processing techniques. Other algorithms [6], [8] often
obtain the region of text blocks and design some heuristic
rules to merge text blocks into cells, rows and columns. For
instance, T-rec system [8] uses a bottom-up approach to form
columns from word blocks and further divides columns into
cells, with a series of added post-processing steps. In a word,
these early algorithms may be valid for specific types of tables,
but they have poor generalization ability to fit in diverse table
layouts.

Recently, with deep learning has made great breakthrough in
computer vision tasks, a series of deep learning based models

for table structure recognition have been put forward. Since
deep learning based models are data-driven, a large scale
of training data is required. However, there are only a few
public datasets available, such as UNLV dataset [14], ICDAR
2013 table competition datasets [15], and ICDAR 2019 table
competition datasets [16]. There are differences between these
datasets. For example, tables in UNLV and ICDAR 2019
datasets are image files while tables in ICDAR 2013 datasets
are PDF files. If we use ICDAR 2013 datasets for training, we
should first extract image files from original PDF files. What’s
more, UNLV only identifies rows and columns without definite
coordinates for cell content. ICDAR 2019 datasets consist
of modern dataset and historical dataset. For the modern
dataset, the convex hull of the content describes a cell region
whose four attributes indicate its starting row/column and
ending row/column. It should be noted that these datasets
consist of only a few hundred tables that can hardly meet the
requirements of deep learning training. In addition to the above
datasets, there are particular annotated datasets which are
designated for corresponding task definition, like TableBank
dataset [12] and Marmot dataset for table data extraction [17].

To our knowledge, DeepDeSRT [9] model is the first deep
learning based attempt to extract table structure. The authors
first apply object detection techniques to detect rows and
columns in a table. But these techiniques fail to detect rows
well because rows are numerous objects in a very confined
space as well as the extreme aspect ratio. Then they turn
to the fine-grained semantic segmentation techniques and
respectively design two networks based on FCN [18] for row
segmentation and column segmentation. Though this model
has achieved promising results, it ignores the spanning cells
which occupy at least two rows or columns. Therefore, the
row and column information of spanning cell is not clear.
Supposing no spanning cells exist, Shoaib et al. [19] adopt
a unified semantic segmentation network for the detection of
both rows and columns simultaneously. Unlike DeepDeSRT,
their detection of rows and columns shares the same initial fea-
ture maps but has two different prediction branches. SPLERGE
[20] model is free from spanning cells. The authors use a pair
of deep learning model: the split model and the merge model.
The split model predicts the basic grid of table, regardless of
the spanning cells, while the merge model is responsible for
predicting which grid elements should be merged to recover
spanning cells. They achieve state-of-the-art performance both
in their private dataset and ICDAR 2013 dataset. Besides these
CNN based models above, Khan et al. [21] exploit RNN
based sequence model to capture the repetitive row/column
structures.

There are some algorithms built on the prerequisite that
word location is known. Qasim et al. [10] divide the rela-
tionships between words into three types: belonging to the
same cell/row/column. They take each word as a vertex and
construct three graph networks to predict these three relations.
And the visual features inside a word bounding box extracted
from CNN are fed into the graph network. Similarly, Zhang et
al. [11] use graph network to predict adjacent relation between
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Fig. 2. The pipeline of the proposed deep semantic segmentation model. Red is for row separator. Blue is for column separator. Green is for cell content.

cells. Their models are operated on PDF files so that cell con-
tents and their corresponding bounding box can be obtained
in preprocessing steps. Besides, some researchers leverage
image-to-text model to generate a sequence of HTML tags
for an image-based table. TableBank [12] builds a vocabulary
to describe elements like row, cell and header. However, the
tag sequence is insufficient to recover the corresponding table
structure. It can’t get the bounding box of the cell content and
corresponding row-span and col-span attributes. Zhong et al.
[13] construct a larger vocabulary to identify spanning cells
and add a cell decoder to directly recognize cell content. In
this way, the bounding box of the cell content is not necessary.

III. METHODOLOGY

A. Overview

We begin to introduce our deep semantic segmentation
model for image-based table structure recognition, which can
be roughly divided into two parts: semantic segmentation part
and post-processing part. And the pipeline of our model is
demonstrated in Fig. 2. The semantic segmentation part is
responsible for identifying the position of row separators,
column separators and cell content simultaneously. And a
prediction map with three channels is output. During the
post-processing procedure, we get the bounding boxes of row
separators, column separators and cell contents (marked with
red, blue and green rectangular boxes in Fig. 2) by connected
component analysis. Then we make full use of relative position
between row/column separators and cell contents. Specifically,
we number rows and columns (number in red and blue color)
according to the coordinates of row separators and column
separators. As the arrows shown in Fig. 2, we expand each cell
in four directions to fulfil row and column number assignment.

Unlike other methods, our model takes only one table
image as input, with no extra meta-data provided like tables
in PDF file. In addition, we get rid of the limitations of
other commercial systems like OCR because we can infer
the position of cell content directly from the prediction map
output from the semantic segmentation part. Besides, our post-

processing steps are very simple without complex heuristic
rules.

B. Semantic Segmentation Network

Being different from other computer vision tasks like image
classification and object detection, semantic segmentation is
a dense prediction task where every pixel should be labeled.
For our specific task, we assign each pixel to three types
of semantic meaning: row separators, column separators and
cell content. As is shown in Fig. 3, we maximize the size of
the separator regions without intersecting any cell contents.
And the ground truth region of a row/column separator is
rectangular. Meanwhile, pixels inside the bounding box of
the cell content are fully regarded as objects. Also, it’s worth
noting that in a table image, these pixels, which are located
in the intersection of ruling lines, belong to row separators
as well as column separators. That is, our problem can be
formulated as multi-label classification. Specifically, each
output channel is designed to distinguish separators or cell
contents from the background. At the training time, we
choose BCE Loss function to propagate gradient backwards,
which is defined as follow:

N
Lpcr = —% ;yz logw; + (1 —y;)log(1 — ;) (1)
Here, x; denotes the network output after sigmoid function
activation layer. y; denotes the corresponding label.
As far as we know, FCN [18] is the first introduced end-
to-end semantic segmentation network. And deconvolutional
layers are proposed to upsample feature maps extracted from a

Fig. 3. An example of the ground truth for training the segmentation network.
Red: row separator. Blue: column separator. Green: cell content.
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series of convolutional and pooling layers. In this way, we can
get the same size heat map as the input image. However, there
is an inherent conflict between global information and spatial
information. Though pooling operators ensure a large receptive
field to extract global information, the weakening of spatial
information makes it difficult to produce fine segmentation
results in the upsampling phase. In our paper, we choose two
mainstream architectures: U-Net [22] and DeepLab v2 [23].
As U-Net is based on a typical encoder-decoder structure,
the architecture consists of a contracting path and a sym-
metric expanding path. Concretely, low-layer features from
the contracting path are combined with the upsampled output
that enables enough spatial information for precise segmenta-
tion. While DeepLab v2 uses dilated convolution to enlarge
receptive field and retain spatial information at the same
time. Besides, it doesn’t increase the number of parameters.
More importantly, Atrous Spatial Pyramid Pooling (ASPP) that
assembles multiple dilated convolutions with different rates are
proposed to capture multi-scale information.

C. Post-Processing Procedure

To obtain the definite regions of row separators, column
separators and cell contents, we firstly apply connected compo-
nent analysis on the prediction map. Then we assign numbers
to row separators and column separators according to their
horizontal or vertical coordinates. Finally, based on the relative
position between separators and cell contents, we determine
row and column number for each cell, whether it’s a spanning
cell or not.

Connected Component Analysis (CCA). To obtain the
definite regions of separators and cell contents, we separately
extract connected components on the three channels of the
prediction map output from our segmentation network. And
we take the bounding rectangles to specify the boundary of
separators and cell contents. This is shown by the colored
rectangles in Fig. 2.

Number row/column separators. Our segmentation net-
work may produce some false positives and false negatives.
Thus we firstly drop some bounding boxes of row and column
separators according to some heuristic rules. For example, a
predicted row/column separator will be filtered out if its length
is shorter than a predefined threshold. In addition, some bound-
ing boxes are merged because they are supposed to belong to
the same separator. Take column separators as an example, two
bounding boxes should be merged if they are close enough
vertically and have great overlap horizontally. After these
preprocessing steps, we sort row and column separators by
their horizontal or vertical coordinates respectively and then
assign numbers to row separators and column separators in
order. As in Fig. 2, we attach a number to each separator.

Cell expansion. Since the bounding boxes of cell contents
have been defined by CCA, we consider making use of relative
positions between separators and cell contents to determine
row and column number for each cell. As is shown in Fig. 2,
each cell is expanded to the nearest parallel separator in four
directions. For example, if we expand a cell upwards, when

(a) Category 1 (b) Category 2

(©) Category 3

(d) Category 4

Fig. 4. Table images in different categories [10].

the cell content is almost covered by the nearest row separator
vertically, we regard the separator’s number as the starting
row number. Otherwise, we continue expanding cells upwards
until the next nearest row separator is found. Similarly, we
can find the corresponding ending row, starting column and
ending column for each cell. Finally we make sure that there
is no intersecting cell in our table structure. Any two cells that
span the same row or column should be merged.

IV. EXPERIMENTS
A. Dataset

Since deep semantic segmentation model is data-driven,
a large amount of annotated data is essential for training.
However, as we mentioned in Section II, real-world data on
a large scale is not publicly available. Therefore, we firstly
generate a synthetic dataset with the aid of the open code [10].
The open code is used to generate tables as real as possible.
All of the content are extracted from UNLV dataset. Besides,
different table border types are taken into consideration. And
cells can be randomly selected as blank cells or spanning cells.
As is shown in Fig. 4, the generated tables can be divided into
four categories. Specifically, tables in Category 1 are full-lined
without any spanning cells while tables with the occasional
absence of ruling lines are in Category 2. Besides, spanning
cells are introduced to tables in Category 3. Finally, linear
perspective transform is applied to table images in Category
4 to model camera captured images.

To generate the ground truth for our segmentation network,
the bounding box of cell content, the corresponding starting
row/column number and the ending row/column number are
output after we make slight modification on the open code. It’s
should be noticed that we restrict the images in Category 4 to
ensure that vertical spacing always exists between columns.
Finally, we build a training dataset of 100,000 tables, a
validation dataset of 2,000 tables and a test dataset of 4,000
tables. The number of each category is equivalent either for
training or for testing.

B. Metric

Since our segmentation network outputs a dense prediction
map, pixel-wise IoU as a standard metric for segmentation
task is used to evaluate our segmentation results of each class.
Also, we calculate the mean intersection over union on all
classes called Mean IoU. As for structure recognition task,
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TABLE I
THE SEGMENTATION RESULTS OF OUR PROPOSED METHODS.

Network Category Row Separator | Column Separator | Cell Content | Mean IoU

Category 1 0.9992 0.9379 0.9807 0.9726
Category 2 0.9936 0.8635 0.9796 0.9456
U-Net Category 3 0.9987 0.8883 0.9812 0.9561
Category 4 0.8330 0.8057 0.9483 0.8623

Average 0.9561 0.8739 0.9725 -
Category 1 0.9967 0.9870 0.9614 0.9817
Category 2 0.9960 0.9872 0.9596 0.9809
DeepLab v2 | Category 3 0.9969 0.9873 0.9654 0.9832
Category 4 0.8983 0.9516 0.9163 0.9221

Average 0.9720 0.9783 0.9507 -

TABLE II

THE STRUCTURE RECOGNITION RESULTS OF OUR PROPOSED METHODS WITH IOU THRESHOLD OF 0.6.

Network U-Net DeepLab v2
Category Precision | Recall F1 Precision | Recall F1
Category 1 0.9894 0.9756 | 0.9824 0.9689 0.9567 | 0.9628
Category 2 0.9853 0.9689 | 0.9770 0.9679 0.9546 | 0.9612
Category 3 0.9845 0.9689 | 0.9766 0.9737 0.9589 | 0.9662
Category 4 0.9815 0.9619 | 0.9716 0.9210 0.8815 | 0.9008
Average - - 0.9769 - - 0.9478
TABLE III

THE STRUCTURE RECOGNITION RESULTS OF OUR PROPOSED METHODS WITH IOU THRESHOLD OF 0.8.

Network U-Net DeepLab v2
Category Precision | Recall F1 Precision | Recall F1
Category 1 0.9501 0.9369 | 0.9435 0.8262 0.8159 | 0.8210
Category 2 0.9456 0.9298 | 0.9376 0.8366 0.8252 | 0.8308
Category 3 0.9444 0.9294 | 0.9368 0.8369 0.8242 | 0.8305
Category 4 0.9284 0.9098 | 0.9191 0.7809 0.7474 | 0.7638
Average - - 0.9343 - - 0.8115

we use the metric based on adjacency relations between cells
[24]. Because our task is almost the same as TRACK B.2
of ICDAR 2019 Table Competition [16], we directly adopt
their official evaluation tool to evaluate our recognition results.
They firstly identify valid cells by cell mapping. A predicted
cell is regarded as a valid cell if the highest IoU between it
and the ground truth cells is greater than a threshold. Then
a 1-D list of adjacency relations between valid cells and
their nearest neighbors in horizontal and vertical directions
is generated, where neighbors can be defined by the row and
column information. And it should be noticed that blank cells
are not taken into consideration. For a predicted relation and
a ground truth relation, the predicted relation is marked as
a true positive if their corresponding cells are identical and
directions are matching. Then we can calculate the precision,
recall and F1 measure over relations.

C. Experimental Results and Comparisons

In our experiments, we choose U-Net and DeepLab v2 as
our segmentation networks respectively. Because the size of

the table images in the dataset varies, bilinear interpolation
technique is applied to resize images to the size of 512%512,
which is the input size of both networks. At the training time,
pthe batch size is set to 4. And the initial learning rate is set to
0.001, which is decreased by a factor of 10 after 10 epochs.
Besides, we take the Stochastic Gradient Descent algorithm
as our optimizer. The maximum ste of iteration is 20 epochs.
We finally choose the model that has the highest Mean IoU
on validation dataset for inference.

The overall segmentation results on our test set are demon-
strated in TABLE 1. To some degree, our segmentation net-
works, both U-Net and DeepLab architectures can identify the
pixels that belong to different classes in a table image. In
comparison with DeepLab, U-Net has a better performance on
cell content class. The opposite conclusion can be drawn on the
row/column separator class. Especially for column separator
class, DeepLab improves the IoU from 0.8739 to 0.9783. Also,
DeepLab achieves better mean IoU than U-Net for all table
types. Moreover, the segmentation performance is relevant
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to the table type. As we can see, the segmentation results
of tables in Category 1 achieve the best mean IoU in both
networks. This is easy to explain because the ruling lines of
tables in Category 1 are all visible, which is a distinct feature
for identifying row/column separators. Besides, the absence
of spanning cells makes the segmentation easier. It’s harder
to segment tables with spanning cells or occasional absence
of ruling lines, which explains why the mean IoU of both
Category 2 and Category 3 are lower than that of Category
1. Meanwhile, tables in Category 4 are the most difficult
to perform segmentation restricted by the linear perspective
transform applied on them. The area of vertical spacing
between columns is so small that the segmentation of column
separators is under performance. The lowest IoU for column
separators in both networks can account for this.

We apply our post-processing steps to the segmentation
results to get the final structure recognition results. The final
evaluation results are shown in TABLE II and TABLE III.
Specifically, the IoU threshold is set to 0.6 in TABLE II and
0.8 in TABLE III. As we mentioned above, the IoU threshold
limits the overlap between the bounding boxes of a predicted
cell and corresponding ground truth cell. As we can see, the
F1 measure is higher in TABLE II than that of TABLE III
for any table type and network architecture. In each table,
U-Net achieves higher F1 measure than DeepLab over any
table category. It can be concluded from that U-Net has better
performance than DeepLab on the segmentation of cell content
class, as shown in TABLE I. It is the key step to expand
the bounding box of the cell content in our post-processing
procedure. As is shown in TABLE III, in both networks, there
is an apparent decline on the F1 measure in Category 4. And
this is consistent with the segmentation results. However, not
like the segmentation results, there is no obvious difference
between Category 1, 2 and 3 for the recognition results,
which proves our post-processing algorithm is robust. When
compared with the method in [10], our proposed method can
still get considerable results on tables in Category 3 and
Category 4. Here, we compute the average F1 measure over
four categories. When IoU threshold is set to 0.6 and 0.8,
our model can achieve 0.9769 and 0.9343 average F1 score
respectively.

Moreover, we demonstrate some visualization results in
Fig. 5. Images from top to bottom come from four categories
respectively. The segmentation and recognition results are
shown simultaneously. Then we use different colors to repre-
sent the results of pixel segmentation. The recognition results
are represented by a green box and four numbers in brackets.
For each cell, a green box denotes the bounding box of the cell
content. The four numbers in brackets denote the attributes of
start-row, end-row, start-col and end-col respectively. As we
can see, our proposed model can achieve great results for a
variety of table types.

D. Limitation

Furthermore, we directly take the model trained on our
synthetic dataset to evaluate the performance on the modern
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Fig. 5. The visualization results of our proposed methods. Left: Inputs. Right:
Results. The results of pixel segmentation are represented by different clolors.
And for each cell, a green box denotes the bounding box of the cell content.
The four numbers in brackets denote the attributes of start-row, end-row, start-
col and end-col respectively.

dataset of ICDAR 2019 Table competition. That is, with
no extra training data provided to finetune our model, we
compare our results with other submitted results in TABLE
IV. And it should be noticed that the submitted results need
to locate table regions from documents at first. There are
only two participants and the top result can only achieve
F1 measure of 0.3650 when IoU threshold is set to 0.6
[25]. Though we make great improvement over Team HCL,
there is still a clear gap compared with the top result. It’s
worth noting that their approaches have not been presented
by academic papers. Through analysis, we find our model
performs well for tables that are similar to synthetic data.
However, real-world data is more complex than synthetic data.
The competition dataset has greater diversity whose tables are
selected from documents with different sources and languages.
And a detailed description can be found in [16]. Therefore,
it’s quite necessary to finetune our segmentation model over
abundant real-world data. And in the competition, the convex
hull of the content describes a cell region while a bounding
rectangle is used in our model, which also affects our results.
We leave these for future work.

V. CONCLUSION

We have established a deep semantic segmentation model
for image-based table structure recognition. In fact, the deep

279

Authorized licensed use limited to: Peking University. Downloaded on June 04,2022 at 11:30:21 UTC from IEEE Xplore. Restrictions apply.



TABLE IV
RESULTS ON ICDAR 2019 TABLE COMPETITION. OURS @ X DENOTES OUR MODEL BASED ON X NETWORK.

Team @IoU=0.6 @IoU=0.8
ToU Precision | Recall F1 Precision | Recall F1
NLPR-PAL 0.3224 0.4206 | 0.3650 0.1722 0.2246 | 0.1950
Ours@U-Net 0.1879 0.1007 | 0.1311 0.0171 0.0092 | 0.0119
Ours@DeepLab 0.1496 0.0647 | 0.0904 0.0180 0.0078 | 0.0109
HCL IDARON 0.0017 0.0010 | 0.0013 0.0003 0.0002 | 0.0002

semantic segmentation model can determine the pixel-wise
prediction map for any input table image with the labels of
each pixel such as row separator, column separator, cell con-
tent and background. We then use relative positions between
row/column separators and cell contents to assign row/column
number for each cell. Unlike the other methods, our prposed
model only takes one table image as the input without any
additional information. Moreover, our adopted post-processing
procedure is very simple without complex heuristic rules. As a
result, our proposed model is suitable for various table styles,
regardless of tables without ruling lines, tables with spanning
cells or tables with linear perspective transform. When IoU
threshold is set to 0.6 and 0.8, our proposed model can achieve
0.9769 and 0.9343 average F1 scores, respectively.
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