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Abstract—The mixture of Gaussian processes (MGP) is a
powerful and widely used model in machine learning. However, it
remains a challenging problem to determine the actual number of
GP components in the mixture, i.e., the model selection problem.
Synchronously Balancing Criterion (SBC) has been recently
proposed and shown to be effective for the model selection of
MGPs, but it is rather time consuming to use SBC directly
since we need to repeat the conventional learning process on
a large number of candidate models. In this paper, based on
the convexity of the negative SB Criterion objective function,
we propose a dynamic model selection algorithm under the
framework of the hard-cut EM algorithm with the GP number
dynamically changed step by step according to the increase of
SBC. It is demonstrated by the experiments on some typical
synthetic datasets and an artificial toy dataset that our proposed
algorithm is not only much more efficient on implementation
time, but also more effective on model selection, in comparison
with the conventional SBC based model selection method.
Keywords: Mixture of Gaussian processes, parameter learning,
model selection, hard-cut EM algorithm; synchronously balanc-
ing criterion

I. INTRODUCTION

The Gaussian Process (GP) model is powerful and widely
used in regression and classification problems. However, there
are two main limitations. Firstly, it cannot fit the multi-modal
dataset well. Secondly, its parameter learning involves the
inverse of covariance matrix, which has a large computational
complexity O(N3) [1], where N is the number of training
samples. In order to overcome these limitations, Tresp [2]
proposed the mixture of Gaussian Processes (MGP) in 2000.
From then on, many variants of the MGP model have been
suggested and could be classified into two main forms: the
generative models [1,6,7] and the conditional models [2-5].
Generally, the generative model is preferred since it can infer
missing inputs from outputs [7]. Here, we adopt the most
simplified and refined generative model so far. In fact, for the
generative model of MGP, there have been many investigations
on its parameter learning [8,9] and the precise hard-cut EM
algorithm [10] is currently a good method for this aim.

However, since the performance of MGP for any learning
task depends heavily on the number of GP components, the
selection of number of GP components, being referred to as the
model selection problem, is also important but rather difficult.
The classical model selection criterions, such as AIC [11],
BIC [12] and MML [13], have been demonstrated effective for
Gaussian or finite mixtures, but cannot work so well for MGPs.

Recently, we proposed an effective model selection criterion
for MGPs, called Synchronously Balancing Criterion (SBC)
[14]. In fact, it can be considered as an improved version
of AIC and BIC and the experimental results demonstrate
that SBC can detect the true component number with high
probability when the penalty coefficient δ is in the feasible
interval. However, in the conventional way, we need to train
and check each candidate model separately for a large set
of GP number, which involves heavy computation. In this
paper, under the framework of the hard-cut EM algorithm we
will establish a dynamic model selection algorithm with the
GP number dynamically changed step by step according to
the increase of SBC. Due to the convexity of the negative
SBC, this dynamic model selection algorithm is effective and
efficient, which can quickly detect the true number of GPs in
a dataset.

The rest of the paper is organized as follows. Section 2
introduces the GP and MGP models. We present the dynamic
model selection algorithm for MGPs in Section 3. The exper-
imental results are contained in Section 4. Finally, we make a
brief conclusion in Section 5.

II. THE GP AND MGP MODELS

A. The GP Model

Given a sample dataset D={X,Y}={(xi,yi):i=1,2,...,N},
where xi is a d-dimensional input vector, and yi is an output.
A GP model is defined as follows:

Y ∼ N(m(X),K(X,X)), (1)

where m(X) and K(X,X) denote the mean vector and co-
variance matrix, respectively. Without loss of generality, we
assume m(X) = 0. For the covariance matrix, we adopt the
squared exponential (SE) covariance function [15]:

K(xi, xj ; θ) = σ2
fexp(−

σ2
l

2
‖xi − xj‖2) + σ2

nI(i=j), (2)

where θ={σ2
f ,σ2

l ,σ2
n} denote the parameters of the GP model.

So, the log likelihood of the GP model on the given dataset
can be given as follows:

log p(Y|X,θ) = logN(Y|0,K(X,X)). (3)

In order to learn these parameters θ, we can perform the
maximum likelihood estimation (MLE) procedure [15], that
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is, we can get

θ̂ = argmaxθ logN(Y|0,K(X,X)). (4)

B. The MGP Model

On the basis of the GP model, we can combine a number of
GPs together and form the MGP model. These GP components
have different hyperparameters. We adopt the generative model
and denote C and N as the numbers of GPs and traing samples
in the MGP model, respectively.

Specifically, we define our generative MGP model as fol-
lows:

Step 1. Partition the samples into the GP components with
the following probability distribution:

p(zn = c) = πc, (5)

where c=1,...,C and n=1,...,N.

Step 2. Give the partition of the samples, each input xi is
distributed according to a corresponding Gaussian distribution:

p(xi|zn = c) ∼ N(µc,Sc); (6)

Denote Ic={n|zn = c}, Xc={xn|zn = c}, Yc={yn|zn = c}
(c=1,...,C, n=1,...,N) as the sample indexes, inputs and outputs
of the training samples in the c-th GP component, respectively.

Step 3. Given Xc, the corresponding c-th GP component can
be mathematically defined as follows:

Yc ∼ N(0,K(Xc,Xc)) (7)

with the hyperparameters θc={σ2
fc,σ2

lc,σ2
nc}.

In summary, we mathematically define the MGP model by
Eqs. (5),(6),(7). Based on these equations, the log likelihood
function is derived as follows:

log(p(Yc|Xc,Θ,Ψ)) =
C∑

c=1

(
∑
n∈Ic

(log(πcp(xn|µc,Sc)))

+ log(p(Yc|Xc,θc)))

(8)

where Θ={θc: c=1, ..., C} and Ψ={µc, Sc, πc: c=1, ..., C}
denote the whole set of (hyper)parameters for outputs and
inputs, respectively.

III. THE DYNAMIC MODEL SELECTION LEARNING
PROCEDURE

We use the EM algorithm as the basic learning framework
for the parameter learning and model selection of MGPs. Let
znc be the hidden variables, where znc is a Kronecker delta.
Denote znc=1, if the sample (xn,yn) belongs to the c-th GP
component. Derive the log likelihood function of the complete
data from Eq.(8) to be

log(p(Y,Z|X,Θ,Ψ)) =
C∑

c=1

(
N∑

n=1

(znc log(πcp(xn|µc,Sc)))

+ log(p(Yc|Xc,θc)))
(9)

Fig. 1. The sketch of the negative SBC objective function value with the
GP component number

Our dynamic model selection algorithm introduces the SBC
based step by step model selection mechanism into the hard-
cut EM algorithm. In order to do so, we begin to briefly
introduce the hard-cut EM algorithm and SBC.

A. The Hard-Cut EM Algorithm

The main idea of the hard-cut EM algorithm is to assign
the samples to the corresponding GP components according
to the maximum a posterior (MAP) criterion in E-step:

kn = argmax1≤c≤C{πcp(xn|µc,Sc)p(yn|θc)} (10)

that is, zknn=1. With the known partition, we can learn
the hyperparameters of each GP component via the MLE
procedure in M-step.

For the parameters Ψ, we have

πc =
1

N

N∑
n=1

zknn; (11)

µc =

∑N
n=1(xnzknn)∑N

n=1 zknn

; (12)

Sc =

∑N
n=1 zknn(xn − µc)

T (xn − µc)∑N
n=1 zknn

. (13)

For the hyperparameters Θ, we perform the MLE procedure
on each GP component as Eq.(4) does.

B. Synchronously Balancing Criterion (SBC)

SBC is a new and effective model selection criterion for
mixtures of Gaussian processes. It takes the advantages of both
AIC and BIC. The main idea of SBC is to make the changes
of the log likelihood and the penalty term synchronously
balanced with the component number C. Mathematically, the
SBC is expressed as follows:

SBC(C) = log likelihood− δN logC, (14)
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Fig. 2. The sketch of data points in the synthetic dataset of the first group
with β = 1.7.

Fig. 3. The accuracy of model selection on the first group dataset with different
value of β.

where δ is the penalty coefficient and generally has a feasible
interval (1.3, 1.7) for model selection. When δ is within this
feasible interval, SBC can obtain the true number of GP
components with high probability [14].

C. The Learning Procedure

In the MGP model, the sketch of the negative SBC objective
function with the GP component number is shown in Fig.1,
the true component number C∗=6. From Fig.1, we can observe
that the negative SBC objective function obtains the minimum
value with the true GP component number C∗, and the
negative SBC objective function has the convexity property.
Therefore, if SBC(C)=maxC0∈{C-1, C, C+1}{SBC(C0+1)}, we
can set C as the final component number via the minimum
selection and stable strategy.

With the help of the hard-cut EM algorithm, SBC, and
the convexity property of negative SBC objective function,
we now present the learning procedure of the dynamic model
selection algorithm for MGPs as follows:

Step 1. Initialization: set an initial GP component number
C0(C0≥2).

Step 2. Perform the hard-cut EM algorithm to train the MGP
model with the GP component numbers C0−1, C0, C0+1,
respectively, and record the corresponding SBC objective
function values SBC(C0 − 1), SBC(C0), SBC(C0 + 1).

Step 3. Obtain the maximum SBC objective function value:
BestC=argmaxC∈{C0-1, C0, C0+1}{SBC(C)}.

Step 4. Discuss BestC and continue the iteration until stop.
(i). If BestC=C0-1, set C0=C0-1. Perform the hard-cut

EM algorithm to train the MGP model with the GP component
number C0-1 and go to step 3;

(ii). If BestC=C0+1, set C0=C0+1. Perform the hard-cut
EM algorithm to train the MGP model with the GP component
number C0+1 and go to step 3;

(iii). If BestC=C0, stop the algorithm and set the current
C0 as the final result of our algorithm.

According to the above learning procedure, we do not need
to know the candidate set in advance. Moreover, according
to the convexity of the negative SBC objective function, the
dynamic model selection algorithm can quickly converges and
save much repeat computation.

IV. EXPERIMENTAL RESULTS

In order to test the accuracy and effectiveness of our dynam-
ic model selection algorithm for MGP model, we carry out
simulation experiments on several typical synthetic datasets.
Moreover, we perform our algorithm on an artificial toy data.

A. Simulation Experiments

In our simulation experiments, we generate three groups of
synthetic datasets with one dimensional input: the first and
second groups consist of datasets with six GP components in
the mixture model, while the third group consists of datasets
with eight GP components.

1) On the datasets of the first group: In the first group,
these synthetic datasets are the same except the degree of
overlap. For each component, the input variable is subject
to a 1-dimensional Gaussian distribution. The means of six
components are shown as follows:

means = [0, 8, 16, 32, 40, 48] ∗ β, (15)

where 1/β can be served as the degree of overlap. Here,
we set β = {1.7, 1.8, 2.0, 2.2, 2.5}. Thus, this group has
five data sets. Set s = [576, 504, 432, 360, 504, 576] as the
sample numbers of 6 components, respectively. According to
the inputs, we generate the corresponding outputs with Eq.(7).
Fig.2 shows the sketch of data points in the dataset with β=1.7.

Perform our algorithm on each of the five datasets with the
SBC penalty coefficient δ = 1.6. During the initialization, we
randomly initialize the hyperparameters and the component
number C0. Repeat the experiment 20 times on each dataset.
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Fig. 4. The sketch of data points in the synthetic dataset of the second group
with β = 1.7.

Fig. 5. The accuracy of model selection on the second group dataset with
different value of β.

Fig. 6. The sketch of data points in the synthetic dataset of the third group
with β = 1.8.

Fig. 7. The accuracy of model selection on the third group dataset with different
value of β.

The experimental results of the model selection accuracy with
different β is shown in Fig.3

From Fig.3, we can observe that our algorithm selects the
correct value of C∗ = 6 with very high accuracy p, when the
overlapping degree 1/β is small enough, whereas the accuracy
decreases when the degree of overlap 1/β becomes larger, i.e.,
β=1.7, p=0.5. In this situation, the major reason may be that
the sample number of each component is too small to interpret
the large degree of overlap in the MGP model, which will be
validated by the experiments on the datasets of the other two
groups.

2) On the datasets of the second group: In this situ-
ation, we generate the synthetic datasets still with β =
{1.7, 1.8, 2.0, 2.2, 2.5}, i.e., keep the same degrees of over-
lap, but increase the sample numbers by setting s =
[1296, 1134, 972, 810, 1134, 1296]. Fig.4 shows the sketch of

data points in the dataset with β=1.7.
Perform our algorithm on each of these datasets with the

SBC penalty coefficient δ = 1.6. The initialization is randomly
set. Repeat the experiment 20 times on each dataset. The
experimental results is shown in Fig.5.

From Fig.5, we can observe that our algorithm also obtain
the correct value of C∗ = 6 with high accuracy p with
different degree of overlap 1/β. Especially, when the degree
of overlap 1/β is large, our algorithm can still obtain a better
experimental result, i.e., β=1.7, p=0.75, since the large degree
of overlap can be better interpreted by this group of datasets
with a larger sample number.

3) On the datasets of the third group: In the last situation,
we generate a group of datasets with C∗=8 components.
Set s = [1296, 1134, 972, 810, 1134, 1296, 1080, 944] as the
sample number. For an input of GP component, it is subject
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to a Gaussian distribution. The means of eight components are
given as follows:

mean = [0, 8, 16, 32, 40, 48, 56, 64] ∗ β (16)

We set β = {1.8, 2.0, 2.2, 2.5, 2.8, 3.0}. So, there are six
datasets in this group. Fig.6 shows the sketch of data points
in the dataset with β = 1.8. Perform our algorithm on
each of these six data sets with the SBC penalty coefficient
δ = 1.6. For initialization, we apply the randomization method
to initialize the (hyper)parameters and initialize the component
number C0 ≥ 6. Repeat 10 times on each dataset. The
experimental results are shown in Fig.7. From Fig.7, we
can observe that our algorithm works so well on these six
datasets with different overlapping degrees. Especially, when
the overlapping degree 1/β is so large like β = 1.8, our
algorithm can still get the correct value of C∗ = 8 with high
accuracy p=0.8.

B. Experiments on an Artificial Toy Data

We finally perform our algorithm on an artificial toy dataset
which is classical and often used as a beach mark dataset
for the MGP modelling [6, 7, 16, 17]. It consists of four
components, and each component is generated from a con-
tinuous function with Gaussian noise. In our experiment, each
component has 500 samples, being shown in Fig.8.

We implement our algorithm on this toy dataset with the
SBC penalty coefficient δ = 1.6. We randomly initialize the
hyperparameters as well as the component number C0, and
repeat the experiment 30 times. As a result, our algorithm
obtains the true number of component C∗ = 4 with high
accuracy p=0.833.

V. CONCLUSION

With the help of the hard-cut EM algorithm, the effective
model selection criterion SBC as well as the convexity proper-
ty of the negative SBC objective function, we have established
the dynamic model selection algorithm for MGPs which can
quickly detect the true number of GPs through dynamically
changing the component number step by step according to
the increase of SBC objective function. At each iteration,
we select the component number C with the optimal SBC
objective function and output the result when it cannot be
changed. The experiments are conducted on three groups of
synthetic datasets with 6 or 8 typical and different GPs as well
as an artificial dataset. It is demonstrated by the experimental
results that our proposed dynamic model selection algorithm
can achieve the true number of GP components number with
high probability.
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Fig. 8. The sketch of data pints in the artificial toy dataset.
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