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ABSTRACT

The Gaussian mixture model is widely applied in the field-

s of data analysis and information processing. Recently,

its parameter learning with adaptive model selection, i.e.,

the adaptive selection of number of Gaussian distribution-

s in the mixture for a given sample dataset, has become

an attracting and interesting topic. In this paper, we pro-

pose a dynamically regularized maximum likelihood learn-

ing (DRMLL) algorithm for Gaussian mixtures with adap-

tive model selection. The basic idea is that the Bayesian

Ying-Yang (BYY) harmony learning is interpreted as the

maximum likelihood learning regularized by the average

Shannon entropy of the posterior probability per sample s-

caled by a positive parameter. As this scale parameter dy-

namically decreases from 1 to 0, the DRMLL algorithm

transforms from the BYY harmony learning with adaptive

model selection to the final maximum likelihood (ML) learn-

ing. It is demonstrated by simulation experiments that the

DRMLL algorithm can not only select the correct number

of actual Gaussian distributions in a dataset, but also obtain

ML estimates of the parameters in the original mixture.

Keywords: Gaussian mixtures; BYY Harmony learning;

Adaptive model selection; Regularization; Maximum like-

lihood.

1. INTRODUCTION

As a powerful tool for data analysis and information pro-

cessing, the Gaussian mixture model has been widely ap-

plied to data modeling and clustering analysis on a given

dataset. Actually, there have been various statistical learn-

ing methods to estimate the parameters in the mixture, e.g.,

the EM algorithm [1] and the method of moments [2]. Usu-

ally, it is assumed that the number of Gaussians or clusters

in the dataset is pre-known. However, in many instances

this key information is not available and thus the selection

of an appropriate number of Gaussians must be made before

or during the estimation of the parameters in the mixture,

which is a rather complicated and difficult task [3].

Jinwen Ma, the corresponding author, Telephone:86-10-62760609, E-

mail: jwma@math.pku.edu.cn.

As the number k of Gaussians is just a scale of the Gaus-
sian mixture model, its determination is often referred to as

model selection. In this light, the general Gaussian mixture

modeling is essentially a compound problem of parameter

estimation and model selection. Actually, this compound

problem has been investigated in different ways. The tra-

ditional method is to choose an optimal number of Gaus-

sians via certain selection criterion. Among these criteria,

Akaike’s Information Criterion (AIC) [4] and Bayesian In-

ference Criterion (BIC) [5] are well-known. But the vali-

dating process is computationally consumptive because we

need to repeat the entire parameter learning process at a

large number of possible values of k.

Since the 1990s, some new statistical learning approach-

es have been proposed to solve this compoundproblem. The

Dirichlet processes [6] and reversible jump Markov chain

Monte Carlo (RJMCMC) [7] are two typical stochastic sim-

ulation methods for inferring the optimal mixture, which

generally require a large number of samples through dif-

ferent sampling rules. The variational Bayesian approach

[8] tries to make a Bayesian model search via optimizing a

variational bound, which is still lack of rigorous theoretical

support. The unsupervised learning approach [9] introduces

some competitive learning mechanism into the EM algorith-

m such that model selection can be made adaptively during

the parameter learning by using a simplifiedMML criterion.

From a new view of Bayesian statistical learning, the

Bayesian Ying-Yang (BYY) harmony learning [10]-[11] has

also provided a useful approach to making model selection

adaptively during parameter learning. In fact, it has already

been implemented on Gaussian mixtures as well as the oth-

er finite mixture and several BYY harmony learning algo-

rithms (e.g., [12]-[15]) have already been established and

demonstrated well on adaptive model selection. Although

the BYY harmony learning is capable of performing adap-

tive model selection, its parameter estimates have certain

deviation from the ML parameter estimates which are con-

sistent with the true parameters. So, it is better to combine

the functions of adaptive model selection and the consistent

estimates of the parameters together into one unified learn-

ing framework.
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Based on the analysis of BYY harmony function onGaus-

sian mixtures under the BI-architecture [14]-[15], the BYY

harmony learning can be regarded as a kind of regulariza-

tion version of the maximum likelihood (ML) learning. The

regularization term is just the average Shannon entropy of

the posterior probabilities per sample. In fact, the entropy

regularization methods could date back to the 1980s and

have been widely used in the ill-posed problems involv-

ing in model selection. In the view of model selection and

ML parameter estimation, the BYY harmony function can

be decomposed into the likelihood function and the entropy

regularized term. However, if the regularization scale keeps

constant in the way of the existing regularized ML learning

approaches [16]-[18], the regularized ML learning leads to

a certain deviation between its estimation and the ML or

true solution. In order to overcome this problem, we can

adjust the regularization scale from 1 to 0, the learning pro-

cess can transform from the BYY harmony learning into the

ML learning. If we further maintain the increase of the reg-

ularization scale dynamically and properly, the regularized

learning process can lead to the ML estimates of the param-

eters with adaptive model selection on Gaussian mixtures.

Oppositely, the ML learning can be regarded as a kind of

regularization version of the BYY harmony learning and the

dynamically regularized BYY harmony learning algorithm

can be established for Gaussian mixtures [20].

In the current paper, we propose a Dynamically Regu-

larized Maximum Likelihood Learning (DRMLL) algorith-

m for Gaussian mixtures with adaptive model selection. By

controlling the regularization scale to dynamically decrease

from 1 to 0, the DRMLL algorithm transforms from the

BYY harmony learning with adaptive model selection to the

conventional maximum likelihood learning. It is demon-

strated by the experiments that the DRMLL algorithm can

not only select the correct number of actual Gaussian distri-

butions in a given dataset, but also obtain ML estimates of

the parameters in the original mixture.

2. DRMLL ALGORITHM

In this section, we firstly present the dynamic regularization

mechanism to be used. Then, we introduce the fixed-point

algorithm for the dynamic learning process. We further dis-

cuss the dynamic evolution of the regularization scale factor.

Finally, we give the complete DRMLL algorithm.

2.1. Dynamic Regularization Mechanism

According to [15], for the Gaussian mixturemodelP (x|Θk) =
∑k

j=1 πjq(xt|mj ,Σj), the correspondingBYY harmony func-

tion J(Θk) can be divided into two parts,

J(Θk) = L(Θk)−ON (p(y|x)), (1)

where the first part is just the log-likelihood function, i.e.,

L(Θk) =
1

N

N
∑

t=1

ln(
k

∑

j=1

(πjq(xt|mj ,Σj))), (2)

while the second is the average Shannon entropy of the pos-

terior probability p(y|x) over the sample datasetD = {xt}
N
t=1,

ON (p(y|x)) = −
1

N

N
∑

t=1

k
∑

j=1

p(j|xt) ln p(j|xt). (3)

According to Eq.(1), if−ON (p(y|x)) is viewed as a reg-
ularization term, the BYY harmony learning, i.e., maximiz-

ing J(Θk), is a regularized ML learning which has already

been investigated in [17, 18] by scaling the regularization

term with a small positive number. However, since they

keep the regularization scale constant just as in the case of

the BYY harmony learning, these approaches must suffer

from inconsistent parameter estimation.

To dynamically control the regularization, we use a dy-

namic regularization scale factor λ(≥ 0) and have

Jλ(Θk) = L(Θk)− λON (p(y|x)). (4)

If λ = 1, Jλ(Θk) = J(Θk) is just BYY harmony func-

tion on the Bi-architecture for Gaussian mixtures. If λ = 0,
Lλ(Θk) is the log-likelihood function of the Gaussian mix-
ture model. That is, with λ decreasing from 1 to 0, maxi-

mizing Jλ(Θk) changes from the BYY harmony learning to

the ML learning. Here we try to control the decreasing of λ
dynamically and appropriately to realize adaptive model se-

lection at the previous learning stage and the ML estimation

at the final learning stage.

2.2. Fixed-point Learning Algorithm

At each phase of the dynamically regularizedmaximum like-

lihood learning with a particular λ, we construct a fixed-
point algorithm to maximize Jλ(Θk) as follows.

For convenience, we utilize the softmax representation

for πj , i.e., πj = eβj/
∑K

i=1 e
βi , j = 1, · · · , k, where

βj ∈ (−∞,+∞), j = 1, · · · , k. Letting the derivatives
of Jλ(Θk) with respect to βj , mj and Σj , respectively, be
zero, we get the following fixed-point (iterative) learning
algorithm:

π̂j =

∑N

t=1
p(j|xt)γj(t)

N
; (5)

m̂j =

∑N

t=1
p(j|xt)γj(t)xt∑N

t=1
p(j|xt)γj(t)

; (6)

Σ̂j =

∑N

t=1
p(j|xt)γj(t)(xt − m̂j)(xt − m̂j)

T

∑N

t=1
p(j|xt)γj(t)

, (7)

where

γj(t) = 1 + λ ln p(j|xt)− λ

k∑

i=1

p(i|xt) ln p(i|xt). (8)
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In comparison with the conventional EM algorithm [1],

this fixed-point learning algorithm differs only at the aug-

menting term γj(t). It can be easily verified that when

λ = 0, γj(t) = 1 , the fixed-point learning algorithm is

just the EM algorithm and when λ = 1, the fixed-point

learning algorithm returns to the original fixed-point BYY

learning algorithm [15] for maximizing the harmony func-

tion J(Θk).
Actually, γj(t) implements a rival penalized competi-

tive learning (RPCL) mechanism [19] so that model selec-

tion can be made adaptively during parameter learning. At

the early learning stage, γj(t) < 0 may happen. According
to Eq.(8), the mean vectors of the j-th Gaussian will move
away from xt. Otherwise, if γj(t) > 0, the mean vectors of
the j-th Gaussian will be attracted to xt. So, for xt, Gaus-

sians with γj(t) > 0 are winners while these Gausians with
γj(t) < 0 are losers.

However, the fixed-point learning algorithm cannot guar-

antee the positive definiteness of each covariance matrix

during the iteration since γj(t) may be negative. In order
to overcome this problem, we use the EM update rule of the

covariance matrixes, i.e., forcing all γj(t) = 1 in Eq.(7), in
this degenerated case. In fact, this simplification is appli-

cable and efficient since the competition for adaptive model

selection is mainly among mean vectors and controlled by

the mixing proportions.

2.3. Dynamic Evolution of λ

We further discuss the dynamic evolution of λ with time T
during the learning process. According to our regularization

mechanism, λ should start around 1 and decrease slowly at

the early learning stage to realize adaptive model selection.

Then, at the sequent stage, λ can attenuate to 0 at a high-

er speed so that the algorithm will finally converge to a ML

solution. So, it is crucial to check whether the adaptivemod-

el selection has accomplished and when to change learning

stage.

In order to detect the turning point, we introduce the

Shannon entropy of mixing proportions in the Gaussian mix-

ture model, Hπ = −
∑k

j=1 πj lnπj . It is obvious that Hπ

is sensitive to the structure of the Gaussian mixture model.

If model selection is not completed, the difference of Hπ

between two iterations is considerable. Otherwise, the dif-

ference should be very small. This motivates us to adopt the

absolute change rate of Hπ between two iterations, defined

by

hπ(T ) = |
Hπ(T )−Hπ(T − 1)

Hπ(T )
|, (9)

as an indicator of model selection. Here, T is the time, i.e.,

the number of iterations. The whole learning process is di-

vided into two learning stages according to a given thresh-

old ε1(> 0) of this indicator. That is, if hπ(T ) > ε1, λ(T )
increases at a low speed; otherwise, it increases at a high

speed. Since λ(T ) is assumed to increase exponentially, its
dynamic evolution process can be given as follow:

λ(T ) =

{

1− λ0 ∗ η
T
1 , if hπ(T ) > ε1;

1− λ0 ∗ (
η1

η2

)T
∗

ηT2 , if hπ(T ) ≤ ε1,
(10)

where λ0 is a very small positive constant, η1, η2 are two

positive constants with the constraint that 1 < η1 < η2,
and T ∗ is the turning point such that hπ(T

∗) > h0 and

hπ(T
∗ + 1) ≤ h0. When λ becomes 0, we fix it until the

algorithm stops.

2.4. Complete DRMLL Algorithm

We finally summary our proposedDRMLL algorithm. First-

ly, we should choose the parameters of the algorithm prop-

erly. As mentioned previously, λ0, η1, η2 and ε1 must be
carefully selected to make the evolution of λ(T ) dynamic.
θ0 is a threshold value to filter out Gaussians with very smal-
l mixing proportions during the parameter learning process,

while ε2(> 0) is a threshold value to terminate the iteration.
If λ = 0 and the absolute increment of the log likelihood is
smaller than ε2, we affirm the convergence of the algorithm.

In our learning paradigm, k is flexible. However, it should

be larger than the number k∗ of actual Gaussians or clus-

ters in the dataset. As for the initial setting of the param-

eters Θk, i.e., Θ
(0)
k = {π0

i ,m
0
i ,Σ

0
i }|

k
i=1, some competitive

learning mechanism may be helpful. For example, m0
i can

be selected through a DSRPCL procedure [19] and then π0
i

and Σ0
i can be estimated accordingly.

After initializing all the parameters,Θk will be updated

in each phase of λ(T ) via the fixed-point learning algorithm
given by Eqs (12)-(14). At the end of each learning phase,

the Gaussians with the mixing proportions less than θ0 are
annihilated immediately. After λ(T ) becomes 0, the algo-
rithm goes on until the log likelihood function reaches its

maximum value or its absolute increment is less than ε2.

3. EXPERIMENTAL RESULTS

In this section, various experiments are carried out to demon-

strate the performance of the DRMLL algorithm for Gaus-

sian mixtures. Moreover, it is compared with some typical

existing learning algorithms. In these experiments, we al-

ways select ε1 = 1e − 5, ε2 = 1e − 5, η1 = 1.005,λ0 =
1e− 5 η2 = 2 and θ0 = 0.05. The other parameters will be
specified in the particular experiments.

We begin to generate four typical synthetic datatsets from

mixtures of four or three bivariate Gaussian distributions on

the plane coordinate system (i.e., d = 2). Clearly, these
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Fig. 1. Four synthetic datasets for simulation experiments.

(a). S1, (b). S2, (c). S3, (d). S4.

Gaussian distributions are either sphere-shaped or ellipse-

shaped. As shown in Fig.1, the covariancematrices of Gaus-

sian distributions are designed to demonstrate different de-

grees of overlap amongGaussians (i.e., clusters). Moreover,

the four datasets are also generated with equal or unequal

mixing proportions. The specific parameters for these four

datasets are listed in Table 1, where mi, Σi = (σi
jk)2×2,

πi, Ni denote the mean vector, covariance matrix, mixing

proportion, and number of samples of the i-th Gaussian, re-
spectively.

The DRMLL algorithm is implemented on each of these

four synthetic datasets with k = 2k∗. Moreover, we com-

pare the DRMLL algorithm with the MML-based unsuper-

vised learning algorithm particularly for Gaussian mixtures

[9], being referred to as CEM2 for short. Actually, CEM2

has been considered as a typical and competitive learning

algorithm for the Gaussian mixture learning with adaptive

model selection in literature. To show the stability and accu-

racy of converged results, we implement both CEM2( with

the stop criterion ǫ = 10−6) and the DRMLL algorithm on

each of the four datasets for 50 times with different ran-

domly selected initial parameters. We then compute the fre-

quencies of correct model selection (CMS) and average run-

time of these two algorithms over 50 trials on each dataset.

The experimental results are listed in Table 2. Obviously,

the DRMLL algorithm considerably outperformsCEM2 on

both correct model selection and runtime.

In addition to model selection and runtime, we also com-

pare the DRMLL algorithm with CEM2 on the accuracy of

 10  5 0 5 10 15

100  (2.5,0)

100  (0,2.5)

100  ( 2.5,0)

100  (0, 2.5)

100  (4,4)

150  ( 4,4)

100  ( 4, 4)
150  (4, 4)

100  (8,0)

150  (0,9)

100  ( 8,0)

150  (0, 9)

100  (7,4)

100  (4,7)
100  ( 4,7)

Fig. 2. Synthetic dataset S5 of 15 Gaussians with different

elliptical shapes and unequal mixing proportions.

parameter estimation. For each parameter θi, we define∆θi
as the average absolute error of |θi − θ∗i | over 50 trials. For
each dataset, we compute the total average absolute error

per each parameter called TAE. Actually, the TAEs of the

two algorithms on the four datasets are listed in Table 3. It

can be found that the DRMLL algorithm and CEM2 have

almost the same accuracy on parameter estimation. How-

ever, for the fourth dataset with a small number of samples,

the accuracy of the DRMLL algorithm is remarkably better

than that of CEM2.

Table 3. The comparison of the DRMLL algorithm with

CEM2 on parameter estimation accuracy.

Dataset DRMLL CEM2

S1 0.0204 0.0204

S2 0.0171 0.0172

S3 0.0363 0.0363

S4 0.0251 0.0715

The DRMLL algorithm is also compared with the BYY

annealing algorithm (BYY-AEM) [14]. While the DRMLL

and BYY-AEM algorithms have the similar performance on

adaptive model selection, the DRMLL algorithm leads to a

more accurate parameter estimation. Actually, the TAEs of

the BYY-AEM algorithm on the four datasets are respec-

tively 0.0204, 0.0243, 0.0386 and 0.0322, which are mostly

higher than those of the DRMLL algorithm.

Finally, we implement the DRMLL algorithm on a rel-
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Table 1. The values of the parameters of the four synthetic datasets.

The dataset Gaussian mi σi
11 σi

12(σ
i
21) σi

22 πi Ni

S1 G1 (2.50,0) 0.50 0.00 0.50 0.25 400

(N=1600) G2 (0,2.50) 0.50 0.00 0.50 0.25 400

G3 (-2.50,0) 0.50 0.00 0.50 0.25 400

G4 (0,-2.50) 0.50 0.00 0.50 0.25 400

S2 G1 (2.50,0) 0.45 -0.25 0.55 0.34 544

(N=1600) G2 (0,2.50) 0.65 0.20 0.25 0.28 448

G3 (-2.50,0) 1.00 0.10 0.35 0.22 352

G4 (0,-2.50) 0.30 0.15 0.80 0.16 265

S3 G1 (2.50,0) 0.10 -0.20 1.25 0.50 600

(N=1200) G2 (0,2.50) 1.25 0.35 0.15 0.30 360

G3 (-1,-1) 1.00 -0.80 0.75 0.20 240

S4 G1 (2.50,0) 0.28 -0.20 0.32 0.34 68

(N=200) G2 (0,2.50) 0.34 0.20 0.22 0.28 56

G3 (-2.50,0) 0.50 0.04 0.12 0.22 44

G4 (0,-2.50) 0.10 0.05 0.50 0.16 32

Table 2. The comparison of the DRMLL and CEM2 algorithms on model selection and runtime.

Datasets
DRMLL CEM

2

CMS Frequency runtime(s) CMS Frequency runtime(s)

S1 100% 707 84% 11290

S2 100% 764 56% 1825

S3 100% 405 72% 4317

S4 98% 250 56% 554

 15  10  5 0 5 10 15
 15

 10

 5

0

5

10

15

0.05865(3.97, 4.18)

0.05878(2.49, 0.0162)

0.05982( 2.58, 0.0237)
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0.06012( 4.02,6.98)

0.03925(7.54,3.66)

0.06149(8, 0.0305)

0.08582(4.04,7.02)

0.05582( 3.69,4.21)

0.08691( 3.94, 3.99)

0.05881(0.0337,2.5)

0.05812( 0.0203, 9.01)

Fig. 3. The adaptive model selection result of the DRMLL

algorithm on S5.

atively complicated dataset S5 of 15 Gaussians with differ-

ent elliptical shapes and unequal mixing proportions, being

sketched in Fig. 2. It can be observed from Fig. 3 that

the DRMLL algorithm can still make correct model selec-

tion adaptively in this complicated case, even if there are

some actual Gaussians which are very flat and strongly over-

lapped. Actually, this complicated structure makes model

selection be very difficult. Therefore, the experimental re-

sult on this dataset further demonstrates that the DRMLL

algorithm owns a good ability of adaptive model selection.

Moreover, as the DRMLL process tends to be the maximum

likelihood learning at the final stage, the parameter estima-

tion is as good as the ML solution.

4. CONCLUSIONS

We have investigated the relationship between the BYY har-

mony learning and the ML learning and found out that the

BYY harmony learning can be regarded as the maximum

likelihood learning being regularized by the average Shan-

non entropy of the posterior probability per sample. Us-

ing the dynamic regularization mechanism, the dynamically

regularized maximum likelihood learning (DRMLL) algo-
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rithm is established for Gaussian mixtures. By controlling

the scale factor of the regularization term to dynamically

increase from 1 to 0, the DRMLL algorithm starts from the

BYY harmony learning with a capability of adaptive model

selection, and then gradually transforms to the conventional

maximum likelihood learning to obtain a consistent parame-

ter estimation. It is demonstrated by simulation experiments

that the DRMLL algorithm can not only select the correc-

t number of actual Gaussians in a dataset, but also obtain

the ML estimates of the parameters in the mixture.
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