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Abstract

Understanding the behavior of stochastic gradi-
ent descent (SGD) in the context of deep neu-
ral networks has raised lots of concerns recently.
Along this line, we study a general form of gradi-
ent based optimization dynamics with unbiased
noise, which unifies SGD and standard Langevin
dynamics. Through investigating this general op-
timization dynamics, we analyze the behavior of
SGD on escaping from minima and its regulariza-
tion effects. A novel indicator is derived to char-
acterize the efficiency of escaping from minima
through measuring the alignment of noise covari-
ance and the curvature of loss function. Based on
this indicator, two conditions are established to
show which type of noise structure is superior to
isotropic noise in term of escaping efficiency. We
further show that the anisotropic noise in SGD sat-
isfies the two conditions, and thus helps to escape
from sharp and poor minima effectively, towards
more stable and flat minima that typically gener-
alize well. We systematically design various ex-
periments to verify the benefits of the anisotropic
noise, compared with full gradient descent plus
isotropic diffusion (i.e. Langevin dynamics).

1. Introduction
As a successful learning algorithm, stochastic gradient de-
scent (SGD) was originally adopted for dealing with the
computational bottleneck of training neural networks with
large-scale datasets (Bottou, 1991). Its empirical efficiency
and effectiveness have attracted lots of attention. Besides the
aspect of empirical efficiency, recently, researchers started to
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Figure 1. The generalization performance of dynamics in Table 1.
The noise magnitude of SGD, GLD dynamic and GLD diag is
tuned to be the same for fair comparison. The noise of GLD con-
stant is tunded to the best. Left: SVHN. We only use 2, 5000
examples for training to compromise with the computational bur-
den; Right: CIFAR-10. The model is VGG-11 since it achieves
decent performance without using batch normalization, which
causes uncontrollable affects for analyzing SGD.

analyze the optimization behaviors of SGD and its impacts
on generalization.

The optimization properties of SGD have been studied from
various perspectives. The convergence behaviors of SGD for
simple one hidden layer neural networks were investigated
in (Li & Yuan, 2017; Brutzkus et al., 2017). In non-convex
settings, the characterization of how SGD escapes from sta-
tionary points, including saddle points and local minima,
was analyzed in (Daneshmand et al., 2018; Jin et al., 2017;
Hu et al., 2017). On the other hand, in the context of deep
learning, researchers realized that the noise introduced by
SGD impacts the generalization, thanks to the research on
the phenomenon that training with a large batch could cause
a significant drop of test accuracy (Keskar et al., 2017). Par-
ticularly, several works attempted to investigate how the
magnitude of the noise influences the generalization during
the process of SGD optimization, including the batch size
and learning rate (Hoffer et al., 2017; Goyal et al., 2017;
Chaudhari & Soatto, 2017; Jastrzkebski et al., 2017). An-
other line of research interpreted SGD from a Bayesian per-
spective. In (Mandt et al., 2017; Chaudhari & Soatto, 2017),
SGD was interpreted as performing variational inference,
where certain entropic regularization involves to prevent
overfitting. And the work (Smith & Le, 2018) attempted to
provide an understanding based on model evidence. These
explanations are compatible with the flat/sharp minima ar-
gument (Hochreiter & Schmidhuber, 1997; Keskar et al.,
2017), since Bayesian inference tends to targeting the re-
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gion with large probability mass, corresponding to the flat
minima.

When analyzing SGD, most of existing works assume the
noise covariance of SGD is constant or upper bounded by
some constant, and what role the noise structure of stochas-
tic gradient plays in optimization and generalization was
rarely studied in literature. On the other hand, experiments
(Figure 1) show that the isotropic approximation of SGD
like gradient Langevin dynamic (GLD) cannot fully explain
the mystery of the good generalization performance of SGD,
even they are tuned to have the same noise magnitude. Thus
the analysis over the structure of SGD noise is on demand
for fully understanding SGD.

In this work, we take the first step studying the anisotropic
noise of SGD and its superiority over its isotropic equiv-
alence. Specifically, we study a general form of gradient-
based optimization dynamics with unbiased noise, which
unifies SGD and standard Langevin dynamics. By inves-
tigating the general dynamics, we analyze how the noise
structure of SGD influences the escaping behavior from
sharp minima and its regularization effects. Several novel
analysis and empirical justifications are made as follow.

(1) We derive a key indicator to characterize the efficiency of
escaping from minima through measuring the alignment of
noise covariance and the curvature of loss function. Based
on this indicator, two conditions are established to show
which type of noise structure is superior to isotropic noise
in term of escaping efficiency;

(2) We further justify that SGD in the context of neural
networks satisfies these two conditions, and thus provide
a plausible explanation why SGD can escape from sharp
minima more efficiently, converging to flat minima with a
higher probability. Moreover, these flat minima typically
generalize well according to various works (Hochreiter &
Schmidhuber, 1997; Keskar et al., 2017; Neyshabur et al.,
2017; Wu & Zhu, 2017). We also show that Langevin
dynamics with well tuned isotropic noise cannot beat SGD,
which further confirms the importance of noise structure of
SGD;

(3) A large number of experiments are designed systemat-
ically to justify our understanding on the behavior of the
anisotropic diffusion of SGD. We compare SGD with full
gradient descent with different types of diffusion noise, in-
cluding isotropic and position-dependent/independent noise.
All these comparisons demonstrate the effectiveness of
anisotropic diffusion for good generalization in training
neural networks.

2. Background
In general, supervised learning usually involves an optimiza-
tion process of minimizing an empirical loss over training
data,

L(θ) :=
1

N

N∑
i=1

`(xi; θ), (1)

where {xi|i = 1, . . . , N} denotes the training set with N
i.i.d. training samples, the model is parameterized by θ ∈
RD and ` denotes the combination of the loss and the model
for simplicity, e.g. deep networks with cross entropy loss.
Under many circumstances, including deep networks, there
could exist multiple global minima for Eq. (1), exhibiting
diverse generalization performance. We call those solutions
generalizing well good solutions or minima, and vice versa.

Gradient descent and its stochastic variants A typical
approach to minimize Eq. (1) is gradient descent (GD),

θt+1 = θt − η∇θL(θt), (2)

where η denotes the learning rate and we assume it to be
a small constant for the convenience of analysis, similarly
hereinafter.

In practice, a more useful kind of gradient based optimiz-
ers act like GD with an unbiased noise, including gradient
Langevin dynamics (GLD),

θt+1 = θt − η∇θL(θt) + ηεt, εt ∼ N
(

0, σ2
t I
)

; (3)

and stochastic gradient descent (SGD),

θt+1 = θt − ηg̃(θt), (4)

where g̃(θt) = 1
m

∑
x∈Bt

∇θ`(x; θt) is an unbiased estima-
tor of the full gradient∇θL(θt), with Bt being a randomly
selected minibatch of size m. Assume the size of minibatch
m is large enough for the central limit theorem to hold, thus
g̃(θt) follows a Gaussian distribution (Chen et al., 2014;
Ahn et al., 2012; Shang et al., 2015; Mandt et al., 2017),

g̃(θt) ∼ N
(
∇L(θt),Σ

sgd(θt)
)
,Σsgd(θt) ≈

1

m

 1

N

N∑
i=1

∇`(xi; θt)∇`(xi; θt)T −∇L(θt)∇L(θt)
T

 .
(5)

Therefore we can rewrite Eq. (4) as,

θt+1 = θt−η∇L(θt)+ηεt, εt ∼ N
(

0,Σsgd(θt)
)
. (6)

Inspired by the dynamics of GLD (Eq. (3)) and SGD
(Eq. (6)), more generally, we study the dynamics of gradient
descent with unbiased noise,

θt+1 = θt − η∇θL(θt) + ηεt, εt ∼ N (0,Σt) . (7)
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Table 1. Compared dynamics defined in Eq. (7). The parameter σt is adjusted to force the noise share the same expected norm as that of
SGD noise, to meet constraint Eq. (14) for fair comparison.

Dynamics Noise εt Remarks

SGD εt ∼ N
(

0,Σsgd
t

)
Σsgd
t is defined as in Eq. (5).

GLD constant εt ∼ N
(

0, %2
t I
)

%t is a tunable constant.

GLD dynamic εt ∼ N
(

0, σ2
t I
)

σt is adjusted to force the noise share the same magnitude with SGD noise,
similarly hereinafter.

GLD diagonal εt ∼ N
(

0, diag(Σsgd
t )
)

diag(Σsgd
t ) is the diagonal of the covariance of SGD noise Σsgd

t .

GLD leading εt ∼ N
(

0, σtΣ̃t
)

Σ̃t is a low rank approximation of Σsgd
t , i.e., Σ̃t =

∑k
i=1 γiviv

T
i , where γi, vi

are the first k leading eigenvalues and corresponding unit eigenvectors of Σsgd
t .

GLD Hessian εt ∼ N
(

0, σtH̃t
)

H̃t is a low rank approximation of the Hessian matrix of loss L(θ) by its the first
k leading eigenvalues and corresponding eigenvalues.

GLD 1st eigven(H) εt ∼ N
(

0, σtλ1u1u
T
1

)
λ1, u1 are the maximal eigenvalue and its corresponding unit eigenvector of the
Hessian matrix of loss L(θt).

For small enough constant learning rate η, Eq. (7) can
be treated as the numerical discretization of the follow-
ing stochastic differential equation (SDE) (Li et al., 2017;
Jastrzkebski et al., 2017; Chaudhari & Soatto, 2017),

dθt = −∇θL(θt) dt+
√
ηΣt dWt, (8)

where Wt is a standard Brownian motion in RD.

Let Σt = Σsgd(θt) and
√
ηΣsgd(θt) be the coefficient of the

the noise term, Hoffer et al. (2017) and Jastrzkebski et al.
(2017) studied the generalization influence of the magnitude
of the SGD noise, which is controlled by the quotient of
learning rate and batch size, η

m .

Different from previous works either assuming the noise
of SGD is constant or upper bounded by some constant,
we are the first to study SGD from the perspective of its
noise structure. In the following sections, we first show that
for dynamics Eq. (8), the structure of Σt indeed affects the
escaping from minima, especially for the sharp ones con-
taining rich curvature information; and then we demonstrate
that for neural networks, the noise of SGD is closely related
to the Hessian of loss surface. Hence we conclude that SGD
can escape from sharp minima much faster than its isotropic
equivalence, and converge to flatter minima which tend to
generalize better. Finally we verify our understanding by
numerous experiments.

3. The behaviors of escaping from minima
To ease the notation, we absorb η into Σt in Eq. (8),

dθt = −∇θL(θt) dt+ Σ
1
2
t dWt. (9)

We now analyze the escaping behaviors of dynamics Eq. (9)
with different choices of noise structures, i.e., Σt.

3.1. The escaping efficiency

We define the escaping efficiency as the expected increase
of the potential or the loss.

Definition 1 (Escaping efficiency). Suppose we start the
dynamics of Eq. (9) from the minimum θ0, then for a fixed
time t small enough (such that L(θt)− L(θ0) ≥ 0), we call

Eθt [L(θt)− L(θ0)] (10)

the escaping efficiency.

There are two remarks about the definition of escaping
efficiency. Firstly it characterizes the ability of the dy-
namic escaping from the minimum θ0. Secondly because
L(θt)− L(θ0) ≥ 0, for any δ > 0, the escaping probability
P (L(θt) − L(θ0) ≥ δ) can be upper bounded by the ex-
pectation E[L(θt)− L(θ0)], given the Markov’s inequality,
P (L(θt)− L(θ0) ≥ δ) ≤ E[L(θt)−L(θ0)]

δ .

Now we calculate the escape efficiency of dynamics Eq. (9).
Provided that the mild smoothness assumptions for Ito’s
lemma holds, we have

E[L(θt)−L(θ0)] = −
∫ t

0

E
[
∇LT∇L

]
+

∫ t

0

1

2
ETr(HtΣt) dt,

(11)
where Ht := ∇2

θL(θt) is the Hessian of L(θt). The deriva-
tion of Eq. (11) is provided in Supplementary Materials.

Generally, the escaping efficiency characterized by Eq. (11)
is hard to analyze due to the intractableness of the integral.
Nonetheless, focusing on the locally escaping process, we
take the second-order approximation near the minima θ0,
where L(θ) ≈ L(θ0) + 1

2 (θ − θ0)TH(θ − θ0). Without
loss of generality, let θ0 = 0. Further, assume H is a
positive definite matrix and the diffusion covariance matrix
Σt = Σ is constant for t. Then Eq. (9) becomes an Ornstein-
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Uhlenbeck process,

dθt = −Hθt dt+ Σ
1
2 dWt, θ0 = 0. (12)

The escaping efficiency of Eq. (12) could be explicitly ob-
tained as

E[L(θt)−L(θ0)] =
1

4
Tr
((

I − e−2Ht
)

Σ

)
≈ t

2
Tr (HΣ) ,

(13)
We defer the derivation to Supplementary Materials.

Eq. (11) and Eq. (13) characterize the escaping efficiency
of general process and Ornstein-Uhlenbeck process respec-
tively, and they clearly show that the indicator Tr(HtΣt)
plays an crucial role for stochastic processes escaping from
minima. Since we only care about the locally escaping be-
havior near the minima, we could directly analyze this key
indicator Tr(HtΣt), in order to understand the importance
of noise structure Σt for escaping.

3.2. Anisotropic noise helps escape from sharp minima

Now we study what factors affect the locally escaping be-
haviors by analyzing the indicator Tr(HtΣt).

The magnitude of noise Clearly, the magnitude of the
noise affects the escaping efficiency and larger magnitude
leads to faster escape. Along this line, Hoffer et al. (2017)
and Jastrzkebski et al. (2017) studied the generalization
influence of the magnitude of the SGD noise, which is
controlled by the quotient of learning rate and batch size.

Hence to explore the role of the noise structure, we must
eliminate the impact of noise magnitude for fair compari-
son. One reasonable evaluation of the noise magnitude is
the expected squared norm of the noise vector (Li et al.,
2017): suppose εt ∼ N (0,Σt), z ∼ N (0, I) and the eigen
decomposition of Σt is Σt = V ΓV T , then

‖εt‖trace := E[εTt εt] = E[(V
√

Γz)T (V
√

Γz)] = E[zTΓz]

= ETr(ΓzzT ) = TrE[ΓzzT ] = Tr(Σt).

Based on such measure of magnitude, we introduce the
following important trace constraint,

given time t,Tr(Σt) is constant. (14)

From the statistical physics point of view, Tr(Σt) character-
izes the kinetic energy (Gardiner, 2018), thus it is natural
to force the energy to be unchanging, otherwise it is trivial
that the higher the energy is, the less stable the system is.

The ill-conditioning of minima Consider the isotropic
minima where the Hessian is Ht = λI , our escaping indica-
tor becomes Tr(HtΣt) = λTrΣt, which is invariant under

constraint Eq. (14). Thus the noise structure has no impact
on escaping from isotropic minima. However, for the min-
ima where the Hessian is highly ill-conditioned, which is
the typical case in practical over-parameterized neural net-
works (Sagun et al., 2017), the noise structure could cause
huge difference on escaping behaviors, as analyzed below.

The structure of noise For semi-positive definite Ht,Σt
and assuming Ht has distinguished top eigenvalues, to
achieve the maximum of Tr(HtΣt) under constraint Eq.(14),
Σt should be Σ∗t = (TrΣt) · u1u

T
1 , where u1 is the first

unit eigenvector of Ht. Note this rank-1 matrix Σ∗t is
highly anisotropic. More generally, the following Proposi-
tion 1 characterizes one kind of anisotropic noise signifi-
cantly outperforming its isotropic equivalence, given H is
ill-conditioned.

Proposition 1 (The benefits of anisotropic noise). Assume
HD×D and ΣD×D are semi-positive definite. If

(1) H is ill-conditioned. Let λ1 ≥ λ2 ≥ . . . ,≥ λD ≥ 0 be
the eigenvalues ofH in descent order, and for some constant
k � D and d > 1

2 ,

λ1 > 0, λk+1, λk+2, . . . , λD < λ1D
−d; (15)

(2) Σ is “aligned” with H . Let ui be the corresponding unit
eigenvector of eigenvalue λi, for some projection coefficient
a > 0,

uT1 Σu1 ≥ aλ1
TrΣ
TrH

; (16)

then for such Σ and its isotropic equivalence Σ̄ = TrΣ
D I un-

der constraint Eq. (14), we have the follow ratio describing
their difference in term of escaping efficiency,

Tr (HΣ)

Tr(HΣ̄)
= O

(
aD(2d−1)

)
, d >

1

2
. (17)

The first condition Eq. (15) characterizes the illness of H .
To give some geometric intuitions on the second condi-
tion Eq. (16), let the maximal eigenvalue and its corre-
sponding unit eigenvector of Σ be γ1, v1, then uT1 Σu1 ≥
uT1 v1γ1v

T
1 u1 = γ1 〈u1, v1〉2. Thus if the maximal eigen-

values of H and Σ are aligned in proportion, γ1/TrΣ ≥
a1λ1/TrH , and the angle of their corresponding unit eigen-
vectors is close enough such that 〈u1, v1〉 ≥ a2, the second
condition Eq. (16) holds for a = a1a2.

Typically, in the scenario of modern neural networks, due
to the over-parameterization, Hessian and the gradient co-
variance are usually ill-conditioned and anisotropic near
minima (Sagun et al., 2017; Chaudhari & Soatto, 2017).
Thus the first condition in Proposition 1 usually holds for
neural networks, and we further justify it by experiments
in Section 5.3. In the next section, we turn to discuss how
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the covariance of SGD noise meets the second condition
of Proposition 1 in the context of neural networks. Hence
this explains the superiority of the anisotropic noise of SGD
over the isotropic one, such as gradient Langevin dynamics.

4. The relationship between the noise of SGD
and the curvature of loss surface

In this section we investigate the anisotropic structure of
gradient covariance in SGD, and explore its connection with
the Hessian of loss surface.

Around the true parameter. According to the classic sta-
tistical theory (Pawitan, 2001, Chap. 8), for population loss
L(θ) = Ex`(x; θ), with ` being the negative log likelihood,
when evaluating at the true parameter θ∗, there is the exact
equivalence between the Hessian H of the population loss
and Fisher information matrix F at θ∗,

F (θ∗) := Ex[∇θ`(x; θ∗)∇θ`(x; θ∗)T ] = Ex[∇2
θ`(x; θ∗)]

= ∇2
θL(θ∗) =: H(θ∗).

In practice, with the assumptions that the sample size N
is large enough (i.e. indicating asymptotic behavior) and
suitable smoothness conditions, when the current parameter
θt is not far from the ground truth, Fisher is close to Hessian.
Thus we can obtain the following approximate equality
between gradient covariance and Hessian,

Σ̂(θt) = F̂ (θt)−∇θtL̂(θt)∇θL̂T (θt) ≈ F̂ (θt) ≈ F̂ (θ∗)

≈ F (θ∗) = H(θ∗) ≈ Ĥ(θ∗) ≈ Ĥ(θt).
(18)

The first approximation is due to the dominance of noise
over the mean of gradient in the later stage of SGD opti-
mization (Shwartz-Ziv & Tishby, 2017), in which a similar
experiment was conducted to demonstrate this observation,
shown in Supplementary Materials due to the limit of space.

One hidden layer network with fixed output layer. In the
following we provide theoretical characterization about the
alignment between Σ and H in the context of one hidden
layer neural networks with fixed output layer. We first show
the connection of Fisher and Hessian in this specific case.

Proposition 2 (The connection between Fisher and Hessian
in one hidden layer network). Consider a binary classifica-
tion problem with data {(xi, yi)}i∈I , y ∈ {0, 1}, and mean
square loss (either population or empirical),

L(θ) = E(x,y)

∥∥φ ◦ f(x; θ)− y
∥∥2
. (19)

Here f denotes the network and φ is a threshold activation
function controlling the output of the model,

φ(f) = min{max{f, δ}, 1− δ} ⊂ [δ, 1− δ], (20)

where δ is a small positive constant.

Suppose the network f satisfies: (1) it has one hidden layer
and piece-wise linear activation; (2) the parameters of its
output layer are fixed during training (Brutzkus et al., 2017).

Then for Fisher F and Hessian H (either population or
empirical), we have

(1) F (θ) � δ2H(θ), almost everywhere; (2) F (θ) �
(δ + ε)2H(θ), almost everywhere around the minima, {θ :∥∥φ ◦ f(x; θ)− y

∥∥ ≤ δ + ε,∀(x, y)}. A � B means that
(B −A) is semi-positive definite.

There are two remarks on Proposition 2. Firstly, the con-
sidered neural networks in Proposition 2 are non-convex
and have multiple minima, and one example to show this is
provided in Supplementary Materials. Thus it is non-trivial
to consider the escaping from minima. Secondly, Proposi-
tion 2 holds in both population and empirical sense, since
the proof does not distinguish the two circumstances.

Based on Proposition 2, we could show that this neural
network meets the second condition in Proposition 1.
Proposition 3 (The connection between gradient covariance
and Hessian in one hidden layer network). Assume the con-
ditions in Proposition 2 hold, then there is a constant a > 0,
for θ close enough to minima θ∗ (local or global), we have

u(θ)TΣ(θ)u(θ) ≥ aλ(θ)
TrΣ(θ)

TrH(θ)
(21)

holds almost everywhere, for λ(θ) and u(θ) being the maxi-
mal eigenvalue and its corresponding eigenvector of Hes-
sian H(θ).

Therefore, based on the discussion on population loss
around the true parameters and one hidden layer neural
network with fixed output layer parameters, given the ill-
conditioning of H due to the over-parameterization of mod-
ern neural networks, according to Proposition 1, we can
conclude the noise structure of SGD helps to escape from
sharp minima significantly faster than the dynamics with
isotropic noise. Hence SGD tends to converge to flatter
solutions, which typically generalize well (Hochreiter &
Schmidhuber, 1997; Keskar et al., 2017; Neyshabur et al.,
2017; Wu & Zhu, 2017). Thus, the anisotropic noise of
SGD might explain its better generalization performance
comparing to GD, GLD and other dynamics with isotropic
noise.

In the following, we conduct a series of experiments sys-
tematically to verify our understanding on the behavior of
escaping from minima and its regularization effects for dif-
ferent optimization dynamics.

5. Experiments
For better understanding the difference between the
anisotropic noise and the isotropic one, we introduce dy-
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namics with various kinds of noise structure to empirical
study with, as shown in Table 1.

5.1. Two-dimensional toy example

We design a 2-D toy example L(w1, w2) with two basins, a
small one and a large one, corresponding to a sharp and flat
minima, (1, 1) and (−1,−1), respectively, both of which
are global minima, see Supplementary Materials for more
details. We initialize the dynamics of interest with the sharp
minimum (w1, w2) = (1, 1), and run them to study their
behaviors escaping from this sharp minimum.

To explicitly control the noise magnitude, we only conduct
experiments on GD, GLD const, GLD diag, GLD leading
(with k = 2 = D in Table 1, which is also the exactly
covariance of SGD noise), GLD Hessian (k = 2) and GLD
1st eigen(H). And we adjust σt in each dynamics to force
their noise to share the same expected squared norm the
meet the constraint Eq. (14). Figure 2 (Left) shows the
trajectories of the dynamics escaping from the sharp mini-
mum (1, 1) towards the flat one (−1,−1), while Figure 2
(Middle) presents the success rate of escaping for each dy-
namic during 100 repeated experiments. Figure 2 (Right)
demonstrates our derived indicator Tr(HtΣt) in one run.

As shown in Figure 2, GLD 1st eigvec(H) achieves the high-
est success rate, indicating the fastest escaping speed from

the sharp minimum. The dynamics with anisotropic noise
aligned with Hessian well, including GLD 1st eigvec(H),
GLD Hessian and GLD leading, greatly outperform GD,
GLD const with isotropic noise, and GLD diag with noise
poorly aligned with Hessian. These experiments are consis-
tent with our theoretical analysis on OU process shown in
Eq. (13) and Proposition 1, demonstrating the benefits of
anisotropic noise for escaping from sharp minima.

5.2. One hidden layer network with fixed output layer

To verify the conclusion of Proposition 1 in neural network
cases, three networks are trained to binary classify 1, 000 lin-
early separable two-dimensional points to show the benefits
of anisotropic noise of SGD. The activations are all ReLU
and δ (in Proposition 2) is set to be 0.001. The number
of hidden nodes for each network varies in {32, 128, 512}.
We plot the empirical indicator Tr (HΣ) in Figure 4. We
can easily observe that as the increase of the number of
hidden nodes, the ratio Tr (HΣ)/Tr

(
HΣ̄

)
is enlarged sig-

nificantly, which is consistent with the Eq. (17) described in
Proposition 1.

5.3. FashionMNIST with corrupted labels

We conduct a series of experiments in real deep learning sce-
narios to study the importance of SGD’s noise covariance
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Figure 4. One hidden layer neural networks. The solid and the dot-
ted lines represent the value of Tr(HΣ) and Tr(HΣ̄), respectively.
The number of hidden nodes varies in {32, 128, 512}.

structure and its implicit regularization effects. We con-
struct a noisy training set based on FashionMNIST dataset.
Concretely, the training set consist of 1000 images with
correct labels, and another 200 images with random labels.
A small LeNet-like network with 11, 330 parameters is uti-
lized such that the spectral decomposition over Σ and H are
computationally feasible.

We firstly run the full gradient decent for 3, 000 itera-
tions to arrive at the parameters θ∗GD near the global min-
ima with nearly zero training loss and 100% training ac-
curacy, which are typically sharp minima that generalize
poorly (Neyshabur et al., 2017). And then all other com-
pared methods are initialized with θ∗GD and run with the
same learning rate ηt = 0.07 and same batch size m = 20
(if needed) for fair comparison.

Behaviors of different dynamics escaping from minima
and its generalization effects. To compare the different
dynamics on escaping behaviors and generalization perfor-
mance, we run dynamics initialized from the sharp minima
θ∗GD found by GD. The settings for each compared method
are as follows. The hyperparameter σ2 for GLD const has
already been tuned as optimal (σ = 0.001) by grid search.
For GLD leading, we set k = 20 for comprising the com-
putational cost and approximation accuracy. As for GLD
Hessian, to reduce the expensive evaluation of such a huge
Hessian in each iteration, we set k = 20 and update the
Hessian every 10 iterations. We adjust σt in GLD dynamic,
GLD Hessian and GLD 1st eigvec(H) to guarantee that
they share the same expected squred noise norm defined in
Eq. (14) as that of SGD. And we measure the expected sharp-
ness of different minima as Eν∼N (0,δ2I)

[
L(θ + ν)

]
−L(θ),

as defined in ((Neyshabur et al., 2017), Eq.(7)).

As shown in Figure 3, SGD, GLD 1st eigvec(H), GLD
leading and GLD Hessian successfully escape from the
sharp minima found by GD, while GLD, GLD dynamic and
GLD diag are trapped in the minima. This demonstrates
that the methods with anisotropic noise “aligned” with loss
curvature can help to find flatter minima that generalize
well.

Verification of the conditions in Proposition 1.
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Figure 5. FashionMNIST experiments. Left: The first 400 eigen-
values of Hessian at θ∗GD , the sharp minima found by GD after
3000 iterations. Middle: The projection coefficient estimation

â =
uT
1 Σu1TrH
λ1TrΣ , as shown in Proposition 1. Right: Tr(HtΣt)

versus Tr(HtΣ̄t) during SGD optimization initialized from θ∗GD ,
Σ̄t = TrΣt

D
I denotes the isotropic noise with same expected

squared norm as SGD noise.

To check whether the noise of SGD in deep neural networks
satisfies the two conditions in Proposition 1, we run SGD
initialized from θ∗GD, i.e. the sharp minima found by GD.

Figure 5(Left) shows the first 400 eigenvalues of Hessian
at θ∗GD, from which we see that the 140th eigenvalue has
already decayed to about 1% of the first eigenvalue. Note
that Hessian H ∈ RD×D, D = 11330, thus H around
θ∗GD approximately meets the ill-conditioning requirement
in Proposition 1. Figure 5(Middle) shows the projection
coefficient estimated by â =

uT
1 Σu1TrH
λ1TrΣ along the trajectory

of SGD. The plot indicates that the projection coefficient
is in a descent scale comparing to D2d−1, thus satisfying
the second condition in Proposition 1. Therefore, Proposi-
tion 1 ensures that SGD would escape from minima θ∗GD
faster than GLD in order of O(D2d−1), as shown in Fig-
ure 5(Right). An interesting observation is that in the later
stage of SGD optimization, Tr(HΣ) becomes significantly
(107 times) smaller than in the beginning stage, implying
that SGD has already converged to minima being almost im-
possible to escape from. This phenomenon demonstrates the
reasonability to employ Tr(HΣ) as an empirical indicator
for escaping efficiency.

5.4. SVHN and CIFAR-10

We also provide experiments on SVHN and CIFAR-10
datasets with VGG11 in Figure 1 and Figure 6. For CIFAR-
10 we use the original datasets while we only use 2, 5000
training examples for SVHN to compromise with the com-
putational burden of gradient descent. We choose VGG over
ResNet since it achieves decent performance without using
batch normalization, which causes extra affects on analyz-
ing the noise of SGD. We re-estimate the noise structure
of GLD dynamic and GLD diag every 10 iterations to ease
the computational burden. Also, we only run GD, GLD
const, GLD dynamic, GLD diag and SGD since the compu-
tational costs of these dynamics are relatively acceptable to
our hardware.

From Figure 1 we can see the generalization gap between
SGD and other dynamics, which demonstrates that the mag-
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Figure 6. SVHN and CIFAR-10 experiments. Top: SVHN experiments; Bottom: CIFAR-10 experiments. Compared dynamics are
initialized at θ∗GD found by GD, marked by the vertical dashed line (in iteration 3, 000 for SVHN and iteration 4000 for CIFAR-10). The
learning rate is same for all the compared methods, ηt = 0.05, and batch size m = 100. Left: Training accuracy versus iteration. Middle:
Test accuracy versus iteration. The final accuracy is noted within the parentheses. Right: Expected sharpness versus iteration. Expected
sharpness is measured as Eν∼N (0,δ2I)

[
L(θ + ν)

]
−L(θ), and δ = 0.01, the expectation is computed by average on 100 times sampling.

nitude of SGD cannot fully explain the performance of
SGD. Figure 6 shows the escaping behavior of SGD and
other dynamics, the results are consistent with experiments
on FashionMNIST.

6. Discussions
Benefits of considering covariance structure. Previous
works on SGD for deep learning typically ignores the co-
variance structure, as we have shown in this work, which
has significant effects on its dynamics behaviors and gen-
eralization performance as well. The key observation on
connecting gradient noise structure with curvature of the
loss landscape, especially near the minima, provides a new
perspective for understanding why SGD can achieve good
generalization in practice. Our work is an initial attempt
to reveal the non-negligible benefits of SGD’s covariance
structure. More theoretical explorations are needed along
this direction.

Effects of learning rate and batch size. As seen from the
SGD dynamics in Eq. (6), when the learning rate is too small
or batch size is overly large, the magnitude of gradient noise
will become small, and thus effects of covariance structure
is not obvious as before. In these cases, SGD often needs
long time for diffusion towards flat minima to obtain better
solutions, as shown in existing research (Keskar et al., 2017;
Hoffer et al., 2017; Jastrzkebski et al., 2017).

Designing optimizers that help to generalize better. The
derived indicator also sheds some light on designing the

optimizers that might generalize better than SGD by adding
the noise along the direction of the maximum eigenvector of
Hessian. We leave the exploration regarding this as future
work.

7. Conclusion
We theoretically investigate a general optimization dynam-
ics with unbiased noise, which unifies various existing opti-
mization methods, including SGD. We provide some novel
results on the behaviors of escaping from minima and its
regularization effects. A novel indicator is derived for char-
acterizing the escaping efficiency. Based on this indicator,
two conditions are constructed for showing what type of
noise structure is superior to isotropic noise in term of escap-
ing. We then analyze the noise structure of SGD in neural
networks and find that it indeed satisfies the two conditions,
thus explaining the widely known observation that SGD can
escape from sharp minima efficiently toward flat ones that
generalize well. Various experimental evidence supports our
arguments on the behavior of SGD and its effects on gen-
eralization. Our study also shows that isotropic noise helps
little for escaping from sharp minima, due to the highly
anisotropic nature of landscape. This indicates that it is
not sufficient to analyze SGD by treating it as an isotropic
diffusion over landscape (Zhang et al., 2017; Mou et al.,
2017). A better understanding of this out-of-equilibrium
behavior (Chaudhari & Soatto, 2017) is on demand.
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