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Abstract. In this paper, we propose a federated sparse Gaussian process (FSGP)
model, which combines the sparse Gaussian process (SGP) model with the frame-
work of federated learning (FL). Sparsity enables the reduction in the time com-

plexity of training a Gaussian process (GP) from O(N 3) to (9<NM 2) and the

space complexity from (’)(N 2) to O(NM), where N is the number of training
samples and M (M <« N) the number of inducing points. Furthermore, FL aims
at learning a shared model using data distributed on more than one client under
the condition that local data on each client cannot be accessed by other clients.
Therefore, our proposed FSGP model can not only deal with large datasets, but
also preserve privacy. FSGPs are trained through variational inference and applied
to regression problems. In experiments, we compare the performance of FSGPs
with that of federated Gaussian processes (FGPs) and SGPs trained using the
datasets consisting of all local data. The experimental results show that FSGPs are
comparable with SGPs and outperform FGPs.
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1 Introduction

Gaussian Processes (GPs) have proven to be a powerful and popular model for diverse
applications in machine learning and data mining, e.g., the classification of the images
of handwritten digits, the learning of the inverse dynamics of a robot arm, and dimen-
sionality reduction [1—4]. Unfortunately, the time complexity of training GPs scales as
O(N?) and the space complexity as O(N?), where N denotes the number of training
samples, which makes GPs unaffordable for large datasets. To overcome this limitation,
many sparse Gaussian process (SGP) models have been proposed [5—14], which allow
the reduction in the time complexity from O(N 3) to O(NM 2) and the space complex-
ity from (’)(N 2) to O(NM), where M (M < N) is the number of inducing points.
Among these SGP models, that proposed by Titsias [13] and Titsias [14] obtained the
state-of-the-art performance, which is utilized to construct our proposed federated sparse
Gaussian process (FSGP) model.

In modern machine learning, big models are widely needed, and training them
requires large datasets. However, there are two major challenges which strongly hinder
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the training of big models. Firstly, in most industries, such as finance and healthcare, data
exists in the form of isolated islands [15]. Secondly, due to the need for the preservation
of privacy, the isolated data cannot be grouped to train a machine learning model [15].
Fortunately, federated learning (FL), first proposed by McMahan et al. [16], provides
a solution to the two problems. Assume that there are K(K > 1) clients or partici-
pants, each of which possesses its own local dataset. Then, FL aims to learn a shared
model using the K local datasets under the condition that local data on each client is not
accessible to other clients. Many machine learning models have been combined with
the framework of FL, such as federated Gaussian processes (FGPs) [17], federated lin-
ear regression [15, 18], SecureBoost [18, 19], federated deep neural networks [16, 18],
and federated reinforcement learning [18, 20]. FL has been applied to a wide range of
applications, including computer vision, natural language processing, recommendation
system, finance, healthcare, education, urban computing, smart city, edge computing,
Internet of things, blockchain, and 5G mobile networks [18].

In the FGP model [17], making predictions about test outputs on some client is only
based on its own local training dataset, which leads to poor predictions. To tackle this
problem, in this paper, we propose an FSGP model which integrates the SGP model and
the framework of FL. In FSGPs, each client can make predictions using local training
datasets of other clients without seeing them. Here, horizontal FL and the client-server
architecture [18] are considered only. The objective function to be optimized takes the
same form as that in MaMahan et al. [16] does. Thus, the FederatedAveraging algorithm
[16, 18] is used to train the proposed FSGP model. We compare our proposed FSGPs
with FGPs and SGPs on two synthetic datasets and one real-world dataset. When training
FSGPs, the training datasets are randomly divided into K subsets, in which the numbers
of samples are determined by random, and we address imbalance problems. On the
contrary, SGPs are trained using the whole training datasets. The experimental results
show that the performance of our proposed FSGP model is comparable with that of SGPs
and better than that of FGPs.

The rest of this paper is organized as follows. Section 2 shortly introduces the SGP
model proposed by Titsias [13] and Titsias [14]. In Sect. 3, we elaborate on the Feder-
atedAveraging algorithm and how the FSGP model preserves privacy. Section 4 presents
the experimental results on three datasets, and we conclude this paper in Sect. 5.

2 Related Models

In this section, we briefly introduce the SGP model proposed by Titsias [13] and Titsias
[14]. A GP, denoted as {f (x)|x € &'}, is a collection of random variables indexed by
x € X C RP, any finite subset of which follows a Gaussian distribution. It is fully

specified by its mean function m(x) and covariance or kernel function c(x, x,), where

m(0) = E[f 9], ¢(x.x') = E[(f ) = m() (f (x') = m(x'))] M
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For simplicity, m(x) is usually assumed to be zero. Then, we choose the squared
exponential function, defined by

N2
c(x,xl;0)=9§exp —lzD M , ()

2é—d=1 g2

as the kernel function, where 6;, d = 0, 1, ... D are positive hyperparameters that are
optimized in the training process. More details about covariance functions can be found
in Rasmussen and Williams [1].

Suppose that we have a training dataset D = {(x,, yn)}ﬁlv=1 , Where y, is obtained by
adding i.i.d. Gaussian noise, subject to N(O, 02), tofn = f(x,). Let X, f, and y denote
all training inputs, all corresponding latent function values, and all training outputs,
respectively. Then, the training process is performed by maximizing the log-likelihood
function, given by

1 1
L(y: 0.0) = ~logp(y) = ~1ogh (¥10. Cay +0?Ly). 3)

w.r.t.  and o, where Cyy = c(X, X; 6) and Iy is the identity matrix.
After the training process, given a test point (x*, y*), the aim of the prediction process
is to calculate the conditional distribution p(y*|y) . We have

Cwv +02Iy el
}; =N(o, NN + 0 1y «N 5 , 4)
y C«N Cyx T+ O

where ¢,y = c(x*, X; #) and ¢y = c(x*, x*; 0). It follows that
* 2 -1 2 2 - r
Yy ~ Nl ew (CNN +o IN) Y, Cax + 07 — Cuy (CNN +o IN) CN )

From Eq. (3-5), we see that the time complexity of training GPs scales as O(N 3)
and the space complexity as (’)(N 2), since we need to store Cyy + o °Iy and calculate
its inverse and determinant. That makes GPs intractable for large datasets.

Next, we shortly introduce the SGP model that can overcome the above limitation.
M inducing points {(z,,, um)}%:1 are introduced to construct an SGP, where z,,, m =
1,..., M are pseudo-inputs independent of X, and u,, = f (z,,). Let Z and u be all the
pseudo-inputs and all inducing variables, respectively. Then, it is obtained that

1
L(y; 6,0) =~ log p(y)

1
=N log [ p(u, £, y)dfdu

:% log [ q(u, f)P(ll)l?(flll)p(YIf) dfdu

g(u, f)
1 p(w)p(flu)p(ylf)
Zﬁ Jq(u, f)log Wdfdu (6)
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in which ¢(u, f) is any probability distribution over (u; f), and the inequality is obtained
through Jensen’s inequality. The coefficient 1/N is used to eliminate the impact of the
scale of the gradients. Assume that g(u, f) = g(u)p(f|u), where g(u) is an unconstrained
Gaussian distribution with mean vector p and covariance matrix X. It follows that

L(y;0,0) >F(0,0,Z, q(u))
pwp(ylf) df
q(u)

Fixing 0, o and Z, ¢* (u) that maximizes F (0, o, Z, g(u)) can be found analytically. The
mean vector and covariance matrix of ¢g*(u) are

1
=3 S g)p(f|u) log du. (7)

1 _ _
w=—CunA 'Cynvyand * = Cyr A~ Capns (8)

respectively, where Cppyy = ¢(Z,7Z;0), Cyn = c(Z,X;0), and A = Cypy +
o 2Cyy CLN. Then, we have

L(y;0,0) > F(0,0,Z) =F(0,0,Z,q*(w))

1 1
= ﬁlog/\/(ym, Qmv + 621N> -

2No?

tr(C), (€))

where Qyy = C;IN C;,[}u Cyn and C = Cyy — C;,[N C[t—/l}l\/l Cun .- Next, the estimation of
0 and o by maximizing L(y; 0, o) is replaced with the joint estimation of @, o, and Z by
maximizing F (0, o, Z). This replacement enables the reduction in the time and space
complexity.

After the above maximization, we can calculate an approximation of the true
conditional distribution p(y*|y). We have

p(ly) = / pQuly)p(flu, y)p(y*|u, f)dfdu. (10)

By substituting p(uly) with ¢*(u) and p(y*|u,f) with p(y*|u), we obtain an
approximate distribution

q(y*) = / q" (wp(y*|u)du. (1
q(y*) is a Gaussian distribution, whose mean and variance are
* 1 —1
my(x*) = ;C*MA Cuny (12)
and
&5 () = cu + 07 = et (Cighy = A7)y, (13)

respectively, where ¢,y = c¢(x*, Z; 6).
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3 Federated Sparse Gaussian Processes

3.1 FederatedAveraging Algorithm

Suppose that there are K clients and the k& th one possesses a local training dataset
Dy = {(x’,ﬁ,y,’j)}Nk k =1, ..., K. Furthermore, assume that D = Uszle and N =

n=1"
ZkK: 1Nk. To conduct federated learning, we use a factorized target function w.r.t. clients
to approximate the true likelihood, i.e. p(y) = ]_[kK: 1P(¥x), which leads to logp(y) =
Zszllogp(yk). This approximation has been applied to the training of distributed GPs
[21, 22].

As shown in Sect. 2, 1/Nlogp(yx) has a lower bound F (0, o, Z), which is defined
on Dy in the way shown in Eq. (9). Fx(#,0,Z),k = 1, ..., K have common parame-
ters. Therefore, ZleNk /NF (0, 0, Z) can be viewed as an approximate lower bound of
1/NF (0, o, Z). The form of this lower bound is similar to that of the objective function
of the federated optimization problem in McMahan et al. [16]. Thus, we use the Feder-
atedAveraging algorithm proposed by McMahan et al. [16] to train an FSGP. Algorithm
1 gives the local update processes on clients.

Algorithm 1: Local Model Update
Require: Client ID k, the latest model parameters w, from the server, the number

P of iterations, learning rate sequence 17 = {np}:;;.
Initialize wy, = w, and p = 0.
Repeat
Compute the gradient g, = % (wp).
Letwy,,1 =W, +1,8p.
Letp=p+1.
Untilp = P.
Qutput: wp.

Federated Averaging algorithm performed by the server is presented in Algorithm 2.

Algorithm 2: FederatedAveraging Algorithm
Require: The number T of global model update rounds, the ratio p of clients that
perform local updates during each round, step size 1 € (0,1).
Initialize wy,.
fort=0,1,..,T —1do
Determine a set C; of randomly selected max{Kp, 1} clients.
for each client k € C; do
Let wf,, = LocalModelUpdate(k, w,, 7, P) — w,.
endfor

Aggregate the received model parameters: Wy, ; = W, + 4 Zkect%wé‘ﬂ.

endfor
Qutput: wr.




272 X. Guo et al.

In the two algorithms, wand w represent {#, o, Z} for simplicity. Since F (0, o, Z)
has the coefficient 1 /Ny, itis rational to consider the scales of the gradients of Fy (6, o, Z),
k =1,...,K to be same. Thus, we use the same learning rate sequence for different
clients. To improve the training efficiency, only max{K p, 1} clients are selected to update
model parameters locally in one round, where p € (0, 1). In addition, we can employ
privacy-preserving techniques, such as fully homomorphic encryption [23, 24], to ensure
data security when transmitting gradients [18].

3.2 Prediction

After an FSGP is trained through the above FederatedAveraging algorithm, we can use
Eq. (12) and Eq. (13) to calculate the approximate predictive distribution g(y*). To show
that the calculation can preserve privacy, we rewrite Eq. (12) and Eq. (13) as

1 1 K K
my(x") = —euu (CMM + 52 CMNkcATlNk> (Zkzl CMNkyk> (14)

and

_ 1 K -
cy(x*) = e+ 0% — Cayt (CM,IW - (CMM +—3 Do CMNkCIZ\:INk> )C»{M’ (15)

respectively, where Cyy, = ¢(Z, Xy; 0). From Eq. (14) and Eq. (15), we see that if
a client wants to calculate g(y*), it solely needs the values of Cp, C;,INk and Cyy, Y
from the other clients. Since Dj cannot be recovered from the values of Cyy, C;,[Nk and
Cun, Y (see Theorem 1), the prediction is privacy-preserving.

Theorem 1. Dy cannot be recovered from the values of Cyn, CLNk and Cyn, yi.-

Proof . Since an input X and a pseudo-input z,, are both real vectors, it is rational to
consider that x is impossible to be equal to z,,. Thus, any entry of Cyy, belongs to the

. . - N, Ni .
open interval (0, 902). View each row of Cpzy, as a point in (0, 93) k. (0, 902) ¥ is an
open set and the convex hull Cof the M points is a subset of it. It follows that there exist
infinitely many rotation transformations around the origin, denoted as ¢, so that ¢ ( C)

is still a subset of (0, Gg)N". Each ¢ can be regarded as an Ny x Ny orthogonal matrix
Q. Then, we have

Cun, C;/IN,( = (CMNk Qw) (CMNk Qw) ! (16)

and
Cun, Yk = (Cuw, Qw)(Qg)ﬁc) 17)

Therefore, we cannot infer Cpgy, and yj from the values of Cyy, C,{,,Nk and Cyy, Yk
Then, that Cysy, cannot be recovered leads to that X; cannot be recovered. We can easily
generalize this result to other covariance functions.
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4 Experiments

In this section, we present the experimental results on two synthetic datasets and one
real-world dataset. The first dataset is drawn from the following function of one variable

F(x) = 3sin(2rx/20), x € [—10, 10]. (18)

The 500 training inputs are evenly distributed in the above interval and corresponding
outputs are obtained by adding i.i.d. Gaussian noises, subject to N (0, 0.52), to latent
function values. The 300 test samples are generated in the same way. The second synthetic
dataset is generated similarly. The latent function is

f(x) = 2.55in(27 (x1 + x2)/90), x € [—25, 25]* (19)

This dataset consists of 4900(70 x 70) training samples and 900(30 x 30) test sam-
ples. The Gaussian noises follow A/ (0, 0.42). The third dataset is KIN40K dataset, which
contains 10000 training samples and 30000 test samples from R® x R.

We use the root mean squared error (RMSE) to measure the performance of SGPs,
FGPs and FSGPs, which is defined as

1
RMSE = [ 13 -y 20)

where {yl}le1 and {t;}{“=1 are test outputs and corresponding predictions, respectively. It
is clear that smaller RMSE imply better performance.

Synthetic dataset 1

1.6 —&— SGP
—#— FSGP
—#— FGP
1.4
1.2 A
w
%2}
=
1.0
0.8 1 \
0.6 1 \
— * = = o = 2
2 4 6 8 10

Number of inducing points

Fig. 1. Synthetic dataset 1

In all the three experiments, 7', P and A are set to be 5000, 3 and 0.1, respectively.
Then, we sequentially set K = 5, 10, 10 and Kp = 2, 5, 5, respectively. 8, o, and Z are
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initialized as (1, ..., l)T, 0.1, and a random subset of X, respectively. When training
SGPs and FSGPs, 0, o, and Z have the same initial values. Furthermore, the imbalance
problem is considered in the experiments by randomly determining the sizes of training
subsets. In the first experiment, the difference between the maximum number and the
minimum one is 59. In the other two experiments, the differences are 634 and 1299,
respectively.

Synthetic dataset 2

0754 1 —#*— SGP
‘ —#— FSGP
—#+— FGP
0.70
0.65
w 0.60 -
%)
=
o
0.55
0.50 A
0.45
0.40 : . —— o

2 4 6 8 10 12 14 16 18 20
Number of inducing points

Fig. 2. Synthetic dataset 2

The results on three datasets are presented in Fig. 1, Fig. 2, and Fig. 3, respectively. In
all the three experiments, FSGPs perform better than FGPs. On the two synthetic datasets,
FSGPs outperform FGPs slightly when the number of inducing variables is large enough.
However, on the KIN40K dataset, FSGPs obviously outperform FGPs when the number
of inducing variables is large enough, since the unknown latent function in KIN40K is
more complex than the two synthetic latent functions. In addition, we see that FSGPs
and SGPs have a similar ability, that is to say, FSGPs.

are comparable with SGPs. The three results show that although the whole training
datasets are divided into small subsets in training an FSGP, we can obtain comparable
performance through the federated aggregation algorithm.
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KIN40OK

200 400 600 800 1000
Number of inducing points

Fig. 3. KIN40K dataset

5 Conclusion

We have proposed an FSGP model that not only remains the scalability of SGPs, but
also can learn a shared model using isolated datasets stored on more than one client. The
FSGP model can preserve privacy since, in the training process, we need not transport
the data stored on one client to the other clients, and in the test process, the data cannot
be recovered. The experimental results on two synthetic datasets and one real-world
dataset show that the performance of our proposed FSGP model is comparable with that
of SGPs and better than that of FGPs in terms of the criterion we adopt. Two interesting
topics for the future is to develop a more effective algorithm to accelerate the training
processes and to combine vertical federated learning with GPs.
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