)

Check for
updates

STDA-inf: Style Transfer for Data
Augmentation Through In-data Training
and Fusion Inference

Tao Hong, Yajun Zou, and Jinwen Ma®?
Department of Information and Computational Sciences, School of Mathematical
Sciences and LMAM, Peking University, Beijing 100871, China
{paul. ht, zouyjt@pku. edu. cn, jwma@math.pku.edu.cn

Abstract. Style transfer has been effectively applied to data augmentation.
However, previous work requires careful selection of style images out of the
concerned datasets, and neglects the impact of style transfer on the inference
procedure. In this paper, we propose a novel method STDA-inf for image
classification: Style Transfer for Data Augmentation through in-data training
and fusion inference. Firstly, we acquire the transferred training data in an
adaptive way of in-data, in which style images are extracted from the training
data itself. An online end-to-end training strategy is utilized to create an
adversarial training effect, thereby alleviating the overfitting on textures when
identifying different classes. Moreover, we fuse the outputs of the original and
transferred images from the trained network, obtaining a more accurate classi-
fication. It is demonstrated by the experiments that our proposed method out-
performs the previous style augmentation method with 7% improvement of
classification accuracy on STL-10 and 3% on Caltech-256 dataset, respectively.
Its superiority is also demonstrated over the other data augmentation methods.

Keywords: Style transfer - Data augmentation - In-data style -+ Fusion
inference

1 Introduction

In recent years, deep neural networks have performed superiorly in many computer
vision tasks such as classification, object detection, and so on. Driven by deep learning
research, more effective data are needed under the challenges of lack of data, expensive
tags, imbalanced categories, efc. Data augmentation is a powerful tool to solve this
problem. In general, generating new samples via label-preserving transformations [1]
can expand the training dataset, resulting in a better performance on the relative
models.

On the other hand, the data learning mechanism of networks is also worthy of
exploration. In terms of human perception, it is naturally believed that we classify
objects majorly by shapes. Nevertheless in [2], Geirhos et al. found out that the
ImageNet trained Convolutional Neural Networks (CNNs) are strongly biased towards
recognizing textures rather than shapes. Since texture is considered to be closely related
to image style, this discovery leads researchers to utilize the style to implement

© Springer Nature Switzerland AG 2021
D.-S. Huang et al. (Eds.): ICIC 2021, LNCS 12837, pp. 76-90, 2021.
https://doi.org/10.1007/978-3-030-84529-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84529-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84529-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84529-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-84529-2_7

STDA-inf: Style Transfer for Data Augmentation Through In-data Training 77

classification strategies. Style transfer [3, 4] appeals to be a promising efficient tool to
achieve advanced data augmentation, by utilizing the effect of textures to divert more
attention of networks to shapes.

Jackson et al. adopted an arbitrary style transfer network to perform style ran-
domization [5]. Yet the style images are specially chosen from the Office dataset [6],
which lacks a relationship with the concerned dataset of the given task. We refer to
these style images as out-of-data. In [7], it reveals that styles adding too many colors
and shapes on original images lead to bad performance, which reflects the difficulty of
locating proper out-of-data styles. And in [7], the offline style transfer policy is adopted,
such that the transferred dataset is given in advance and stored locally. Certainly, this
non-end-to-end policy desires extra space storage, especially when trying many styles
one time. Besides, all the previous work only concentrates on the style augmentation
during training, neglecting to explore its effect on inference.

In this paper, we apply the style transfer based data augmentation on classification
tasks with improvement and innovation (named STDA-inf). We extract the style
images from the given dataset in the way of so-called in-data, which is more adaptive
and controllable. In-data style augmentation harvests more robust models about style
features at a higher level, which is orthogonal with other augmentation methods. Note
that our proposed online training is end-to-end. Moreover, we adopt the style aug-
mentation into the inference course in a way of fusion inference. The original image
and the transferred images are fed into the trained network, and the final classification
result is obtained via the weighted sum of their classification results. Our experiments
strongly verify the effectiveness of STDA-inf. The main contributions of our work are
as follows:

e We improve the selection source of styles from out-of-data to in-data, and get the
state-of-the-art performance of style augmentation. The latter fully utilizes texture
information of the datasets themselves, to create an adversarial training effect,
thereby avoiding further overfitting, especially overfitting textures. And random
selection can already reach good enough behavior.

e We adopt the fusion inference which gets a remarkable improvement of accuracy in
comparison with the universe inference. This operation makes full use of style
transferred information, because not only the original distribution is learned during
training, but also the style transferred distribution.

e We present a comprehensive exploration on style augmentation in detail, such as
style selection strategy, transfer policy, efc. And we present the superiority over
interpolation-based data augmentation such as Mixup [8].

The rest of the paper is organized as follows. In Sect. 2, we introduce and review
the related work. Our proposed method is presented in Sect. 3. In Sect. 4, experiments
and analyses are given to illustrate the efficiency and effectiveness of our method.
Finally, a brief conclusion is made in Sect. 5.

78 T. Hong et al.

2 Related Work

2.1 Style Transfer

Style transfer means adopting a new style of an image into another image. Style is
thought related to the variance or eigenvalue or gradient of the pixel tensor. The first
attempted work adopts Gram matrix to encode the deep features of style representation
[3, 4]. In [9], Huang et al. proposed an adaptive instance normalization (AdalN) layer,
achieving faster speed. Different from artistic effects, Luan et al. introduced a photo-
realistic loss term to optimize towards photorealistic visual effects [10]. To alleviate the
time consumption, PhotoWCT [11, 12] adopts a non-end-to-end architecture to insert
whitening and coloring transform (WCT) modules in auto-encoders. Further, Yoo et al.
[13] proposed Wavelet Corrected Transfer (WCT?) aiming at eliminating post-
processing steps while preserving fine details. And neural architecture search is adopted
in StyleNAS [14].

In a word, the current mainstream framework adopts CNNs to encode content
images (denoted as c¢) and style images (denoted as s) into feature maps. After
encoding, we try to transfer the feature maps with style relative modules and decode
them into style transferred images (denoted as cs). We adopt the AdaIN [9] model as
the style transfer module in this paper. AdaIN simply aligns the channel-wise mean and
variance of the content to match the style’s, without learnable affine parameters. The
input is simply shifted with mean u and scaled with variance o:

AdaIN(c, s) = a(s) (C;(iﬁgc)) + u(s) (1)

After getting cs, we adopt weighted interpolation between cs and s to control the degree
of style transfer and content reservation. Note that we all set the weight of cs as 1.0.

2.2 Data Augmentation

Data augmentation has been a standard part of training deep neural networks ever since
the work of Krizhevsky et al. [15]. Data augmentation is plausible to avoid overfitting
so that the trained models will acquire stronger generalization capacity. Certain tra-
ditional augmentation techniques are very popular and effective, including horizontal
flipping, random rotation, random cropping. They can make the model get more robust
training in position, angle, etc. [15].

On the other hand, the convex combinations of pairs of inputs and their labels
(Mixup) [8] also generate new samples, which inspires a series of augmentation
methods such as MixMatch [16]. Cutout [17] refers to randomly masking out square
regions of inputs, while CutMix [18] means that patches are cut and pasted among
training images. Further, Manifold Mixup [19] interpolates between feature maps rather
than just inputs to get better representations of hidden states.

STDA-inf: Style Transfer for Data Augmentation Through In-data Training 79

3 Proposed Approach

In this section, we propose a systematic style augmentation approach STDA-inf, whose
overview is shown in Fig. 1.

random
selection

Fusion inference

Transferred
output

Fig. 1. The overview of our proposed approach STDA-inf: in-data training & fusion inference.

3.1 In-data Training

Before feeding training samples into a classification network, we usually apply some
transformations @ on them (with a certain probability p) such as horizontal flipping,
which is just the traditional augmentation. Style augmentation also works in this stage,
then the network is optimized towards

min L(f(P(x)),y) (2)

where L, f,x and y denote the loss function, network, sample and label.

During training, content images are the whole training samples generally. And style
images in the way of in-data are from a subset of the training samples. Denoting the
training and test set as 7r and Te, and the set of content images and style images as C
and S respectively. Then for every paired (c,s), we have.

Train:c€e C=Tr,s € SC Tr (3)
Inference: c € C =Te,s € S C Tr 4)

where the explanation of inference will be given in Sect. 3.2.

It’s worth noting that @®;, (in-data style transfer) could be utilized to force the
network to train towards an adversarial direction. This is superior to @, (out-of-data
style transfer) adopted in the previous work [5, 7]. As for the chosen style number |S]|,
we can adjust it according to the whole training number |C|. For example, choosing 10
images per class from STL-10 (total 10 class) or choosing 100 images from Caltech-
256 is a good choice.

80 T. Hong et al.

In addition to random choice, we have explored different choice strategies called
min-loss and max-loss choice. Feeding the original training samples into the trained
models, we can sort them according to the classification loss L(f(x),y). Min-loss
means choosing top images with the smallest loss as styles, while max-loss is corre-
sponding to top images with the largest loss.

Moreover, we can divide the transfer procedure @(x) into two modes, called offfine
and online respectively. Offline means transferring samples in advance of training and
storing locally, i.e. all raw inputs are original samples or transferred samples. While
online means operating style transfer in the pre-processing stage, i.e. all raw inputs are
original samples. Offline is space-consuming while online is time-consuming. It’s
acknowledged that to some extent, the more patterns we provide, the better result data
augmentation will get. Offline will consume too much space if we want to get many
patterns. Therefore, we mainly adopt end-to-end online operation mode in our work. As
introduced in Sect. 2.1, AdaIN module is very fast, relatively speaking. This is one
reason why we prefer to combine online mode with AdalN rather than other algorithms
such as StyleNAS. Under online mode, we set the style transfer proportion p as 0.3,
which means 30% of training samples get transferred.

Considering the category information, we can divide the transfer policy into two
modes: inter-class transfer and intra-class transfer. During training, if we transfer the
images of one class with the style images of the corresponding class, we call this operation
inter-class training. In other words, every paired (¢, s) comes from the same class. If we
transfer regardless of the class match between contents and styles, we call the operation
intra-class training. Intra-class training defeats inter-class training at model performance,
since the former retards the overfitting while the latter exacerbates the overfitting on the
textures. We adopt intra-class training mode unless otherwise specified.

3.2 Fusion Inference

After training, the universal approach is testing original test samples (x € Te, called
base test) via the trained model directly. Supposing there are n classes, then the last
layer of a network is an n-dimension vector vy,e. The index of the largest value in the
vector represents the divided category.

Apart from base test samples Te, we transfer them with style images (chosen from
S C Tr, the same as training) to get transferred test samples @(Te). After every base
sample is transferred once, we call it a round. So, we can get one complete test data in
every round. Something different from the training case, inter-class test means style
images are all from one class in one round, while intra-class test means transferring
without the limit of class in each round. We adopt intra-class test mode unless
otherwise specified. For a specific sample @(x), it has the same content but different
styles in different rounds. Denoting the vector of the last layer in round i as v;, then we
get the average vector

1 m
Vavg = EZ:‘:I Vi)

STDA-inf: Style Transfer for Data Augmentation Through In-data Training 81

where m denotes the total rounds. Furthermore, we can interpolate between v, and
Vavg With the weight coefficient f§ € [0, 1], then the final vector is

Vfinal = ,B * Vhbase + (1 - ﬁ) * Vavg (6)

Classifying according to vgpna rather than vy, will get a considerable promotion in
accuracy since training also happens on style transferred distribution rather than just on
original distribution. Although classifying just according to a certain round’s vector v;
gets lower accuracy than vy, every round’s vector contains its judgment for classes.
(We infer that since |S| is far smaller than |C]|, the classifier tries to grasp style patterns
naturally. After all, it is much easier to remember a few patterns than many.) Therefore,
the test accuracy increases along with the fusion of vectors within a certain range. We
call this inference method fusion inference.

Examining the two hyperparameters, m and f3, in the above algorithm, how shall we
determine them? Within a certain range, increasing of m brings cumulative improve-
ment on accuracy. A reasonable m should bring great improvement while not consume
too much time, which can be fine-tuned in different datasets. As for f, we adopt a
simple grid search strategy to search for the proximate optimal f,, with steps of 0.1
and 0.01. f§ improves the accuracy over a wide range of right intervals in [0, 1], which
reflects the domination of vVpage.

4 Experiments

4.1 Dataset

We evaluate our proposed STDA-inf on several datasets for classification task, i.e.
STL-10 and Caltech-256, inherited from our mainly compared work [5, 7].

e STL-10" has 10 classes such as airplane, bird, monkey, with 500 training images
and 800 test images per class. Besides, STL-10 has 100000 unlabeled images for
unsupervised learning. Every image is 96 x 96 pixels. Because the number of test
images exceeds training images, data augmentation plays a big role.

e Caltech-256% consists of 257 classes and the number of images per class is not
equal. We randomly choose 60 images per class as the training dataset, the
remaining images as the test dataset. Every image is about 200-300 pixels, so it is
resized to 224 x 224 firstly.

In the out-of-data way, the style images are mainly chosen from the Office dataset [6]
in the same way as [5], with 7 inherited from [7]. These oil paintings are so colorful that
their style transfer effect is more intense than general style images of in-data way. On the
other hand, AdalN is more intense than StyleNAS. Taking an image from STL-10 as an
example, we can observe the different degrees of style transfer in Fig. 2. AdaIN module

! https://cs.stanford.edu/ ~ acoates/stl10/.
2 http://www.vision.caltech.edu/Tmage_Datasets/Caltech256/.

https://cs.stanford.edu/~acoates/stl10/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/

82 T. Hong et al.

cooperated with style images of in-data way is plausible for style augmentation, neither
too intense like out-of-data way nor too soft and slow like StyleNAS.

(h) A (A 0 A (k) A s (m) S
Fig. 2. Different effects of style transfer. (a) is an original image of the monkey class in STL-10.
The 1st row is the style image and the 2nd row is the corresponding transferred image. In and out
respectively represent in-data way and out-of-data way. A and S represent AdalN and StyleNAS,
respectively.

4.2 TImplementation Details

We finish all the experiments on 2 NVIDIA Tesla P100 GPUs by PyTorch framework.
The classification network is the widely applied ResNet50 [20]. Different datasets just
need a little change in the stride and kernel size of convolution. Our adopted style
transfer model AdalN is released from Github®. AdaIN model adopts the pre-trained
VGG19 as the encoder, and then only needs to train the decoder. Apart from style
augmentation, we also exploit two traditional augmentation methods (i.e. horizontal
flipping and random cropping, abbreviated as fra) and Mixup, efc.

e Training STL-10: total epoch is 150, training batch is 256, optimizer is Adam with
momentum f; = 0.9, f, = 0.999, initial learning rate is 0.001 and it decays by 0.1
at the epoch of 80, 120, weight decay is 5 x 1074,

e Training Caltech-256: total epoch is 150, training batch is 32, optimizer is SGD
with default parameters, initial learning rate is 0.01 and it decays by 0.2 at the epoch
of 60, 120, weight decay is 5 x 107*.

4.3 Experiment Results

We focus on STL-10 dataset firstly and systematically illustrate the experiment results
on it. Then there is much similarity on Caltech-256.

STL-10. We first present comprehensive results which verify the strength of our
STDA-inf over out-data style augmentation and other augmentation methods like
Mixup. Next, the presentation will follow the order as: style source, style number,
hyperparameter optimization, robustness exploration and time analysis.

3 https://github.com/xunhuang1995/AdalN-style.

https://github.com/xunhuang1995/AdaIN-style

STDA-inf: Style Transfer for Data Augmentation Through In-data Training 83

Table 1. Test accuracy (%) of our STDA-inf on STL-10 with and without traditional
augmentation. Out style with number 10 and in style with number 10 x 10. t are the reproduce
results of compared work.

+Tra | Style type | Base test | Rounds m

1 3 10 15
w/o |out random | 67.18% | 71.08 | 71.63 | 72.31 | 72.54
60.17 in random |68.95 |71.73|71.89 | 72.83|72.88
in min-loss | 68.48 71.05|72.09 | 72.85 | 72.94
in max-loss | 70.33 71.90 | 72.79 | 73.89 | 74.05
w/ | out random | 79.561 |81.76|81.84 | 81.88 | 81.89
78.13 in random | 82.26 83.43|83.70 | 83.78 | 83.69
in min-loss | 81.42 81.75|81.95|82.03 | 82.14
in max-loss | 81.54 82.04 | 82.31 | 82.41 | 82.59

As Table 1 shows, style augmentation of in-data way behaves much better than out-
of-data way. Out-of-data is not as stable as in-data, getting bigger variance in the repeated
experiments. From out-of-data to in-data, the base test accuracy gets around 3%
improvement. As for fusion inference, 1 round improves the accuracy a lot and enlarging
to 15 rounds still harvests some improvement. Without or with traditional augmentation,
the test accuracy gets beyond 4% or 1% improvement further, after 15-rounds fusion
inference. As we can see, our method STDA-inf could at most improve 14% without
traditional augmentation and 5% with traditional augmentation compared to the baseline.

Train accuracy(%)
Test accuracy(%)
o
g

—— Without Augmentation f —— Without Augmentation
304 —— Out-style Augmentation 304 Out-style Augmentation
20 —— In-style Augmentation 20 —— In-style Augmentation
—— Traditional Augmentation —— Traditional Augmentation
104 —— Qut-style + Traditional Augmentation 104 —— Out-style + Traditional Augmentation
— In-style + Traditional Augmentation — In-style + Traditional Augmentation
° 0 20 40 60 80 100 120 140 ’ 0 20 40 60 80 100 120 140

Epoch Epoch

Fig. 3. The comparison of training and test accuracy on STL-10 under different augmentation
methods.

Moreover, we compare the training accuracy and test accuracy in Fig. 3. The jump
points exactly correspond to the changing points of learning rate. Note that the cor-
responding configuration is: in random with 100 styles; out random with 10 styles. 100
and 10 are chosen according to the search of proper number (shown in Table 3). In-data
way would manifest greater superiority if we both choose the same style number. As
we can see, training without augmentation or only with traditional augmentation causes
severe overfitting. While training with style augmentation is harder to converge to a

84 T. Hong et al.

very high accuracy due to the attack of styles’ uncertainty. And training with both
traditional and style augmentation brings a better cumulative effect. Also, in-data way
behaves much better than out-of-data, which verifies our first contribution powerfully.

Table 2. Test accuracy (%) of composite augmentation methods on STL-10. Column 2&4
shows the superiority of our style augmentation over interpolation-based augmentation methods.
Style corresponds to our in random way in Table 1.

Baseline | +style | +tra | +tra+style
Baseline 60.17 - 78.13 | —
+Mixup [19] 63.74 68.98 | 81.14 | 83.34
+Cutout [3] 61.10 71.45 [80.13 | 82.06
+CutMix [18] |63.39 71.21 [80.90 | 83.63
+Manifold [15] | 60.10 68.35 |76.45|77.21
+style (ours) 68.95 - 82.26 | -

In addition, we compare style augmentation with Mixup, Cutout, CutMix and
Manifold Mixup. The specific parameter configuration is explained in the Appendix.
MixUp etc. are simply linear interpolations while style augmentation utilizes semantic
information (nonlinear). As Table 2 shows, our style augmentation performs better (see
Column 2&4), and it can be used in conjunction with existing forms of data aug-
mentation to further improve model performance (see Column 3&5). It needs to be
emphasized that these augmentation methods don’t work during inference, yet style
augmentation performs better along with fusion inference. And the Test Time Aug-
mentation (TTA) is carried out on the basis of traditional augmentation, which is trivial
and doesn’t get significant promotion, compared to our fusion inference.

Style Source. Except for selecting styles randomly, we investigate the cross-entropy
loss of every training sample and sort them. The minimal loss is in the magnitude of
107 while the maximal loss is in the magnitude of 1073, It seems that the max-loss
images are harder to classify while the min-loss images are easier, somewhere related to
the semantic information of their styles.

Style Number. As shown in Table 3, we investigate the proper number of style images.
In this experiment, out-of-data style images are randomly chosen, while in-data style
images are chosen on average from each class (for example, 100 means 10 images per
class). We speculate that the variation trend is: as the number of style images |S]
increases, the test accuracy increases first and then decreases. And the optimal |S| of in-
data way seems bigger than out-of-data way. A reasonable explanation is that the
intensity of style augmentation should be in an appropriate range. To put it in another
way, style images of out-of-date way are so colorful that too many intense styles make
training models hard to catch dominant patterns and converge. In turn, too few soft
styles can’t give full play to the role of data augmentation. It’s worth noting that in out
random, 7 images are inherited from [7]. [7] choose 8 different styles that look different
from each other and only 7 styles bring about positive performance. The test accuracy
is lower than 67.18% as we substitute the 7 images with other random images.

STDA-inf: Style Transfer for Data Augmentation Through In-data Training 85

Table 3. Searching proper number of style images: test accuracy (%) on STL-10 without
traditional augmentation. The baseline is 60.17%.

Style type | Style number

10 30 100
out random | 67.18 | 66.98 | 66.29
in random | 69.23 | 69.30 | 68.95
in min-loss | 67.19 | 67.48 | 68.48
in max-loss | 69.63 | 70.75 | 70.33

In Random Style Augmentation In Random Style Augmentation
764 — Intra-class-transferred
744 0.65 1 —— Inter-class-transferred
e s 0.60 4
P X
72 p——— @
7 :
4 @ 0.55
S 70 g
g £
Z £ 0504
2 68 'R
E] =
% 661 3 045+
3 B
= 64+ 2 0.40
Base g
— Intra-class-transferred 0.35
— Inter-class-transferred
—— Basc + Intra-class transterred 0.30
Base + Inter-class-transferred
T T y v T 0.25 v - - ; v - v
2 4 6 8 10 12 14 16 18 20 2 a 6 B 10 12 14 16 18 20
Rounds m Rounds m
In Max-loss Style Augmentation In Max-loss Style Augmentation
L 0.70 —— Intra-class-transferred
1] S — —— Inter-class-transferred
= 0.65 4
724 @
2 0.60
= 701 &
g £
= e e —— T 0.554
2 68 e N g 0as
3 —~ 2
% 664 2 0.50
g z
= 644 2 0451
— Base gn
621 —— Intra-class-transferred 0.40
— Inter-class-transferred
607 —— Base + Intra class transferred 0.35
58 { Base + Inter-class-transferred
2 4 6 B 10 12 14 16 18 20 2 4 6 B 10 12 14 16 18 20
Rounds m Rounds m
In Random Style Augmentation {round=10)
73.
l 10.35,72.85) (0.42, 72.83)
72.5
72.0

~
-
n

—— Base + Intra-class-transferred
—— Base + Inter-class-transferred
Base

Test accuracy(%)
-
3 =
o o

o
=)

@
]
n

69.14

@
>
o

01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight coefficient §

Fig. 4. Hyperparameter search on the fusion inference rounds m and the weight coefficient f.
The horizontal line represents the accuracy of base test. Transferred without base means
classifying only via the style transferred samples.

86 T. Hong et al.

Hyperparameter Optimization. Fusion inference is effective no matter which kind of
style type. Figure 4 shows a complete hyperparameter search on the fusion inference
rounds m and the weight coefficient § on STL-10. Note that the presented figure
corresponds to one result of the repeated experiment. Since the base test dominates in
fusion inference, the accuracy only with transferred samples can’t exceed the base test.
Within a certain range, the accuracy increases as rounds m increases until steady. And
the accuracy after only 1 round gets remarkable improvement. On STL-10, around 15-
rounds harvests optimal test accuracy. Considering the accuracy and the time con-
sumption together, we can fix m = 5 or less. Besides intra-class test, we compare inter-
class test with it, and find that the test accuracy gets somewhat higher in the inter-class
mode, especially in the former several rounds, which is in line with our expectations.
We speculate that classification with a smaller number of style images from one class in
one round makes the classifier easier to identify the patterns per class, less misled by
different styles. With regard to f3, it works well over a wide range of [0, 1]. And optimal
f decreases as m increases, which means transferred test samples play a more and more
important role in the classification.

Robustness. On the other hand, we explore the behavior of different trained models on
different test samples (style robustness). As Table 4 shows, each row corresponds to a
kind of trained model (baseline model or trained through out-data/in-data way) while
each column corresponds to a kind of test dataset (base samples or transferred by out-
data/in-data styles, denoted as Te, @y, (Te), @y (Te) respectively). The out styles are
the same as the 10 images adopted in out-data random training and the in styles are the
same as the 100 images adopted in in-data random training. The 10 mixed styles
(generating @y,ix(Te)) consist of 5 out styles and 5 in styles, and none of them is the
same as the styles adopted in training, which is more convincing to prove the gener-
alization of in-data training (see the last Column).

Table 4. Accuracy (%) of different trained models on different test samples of STL-10.

Model\Data | Te Doy (Te) | Oy (Te) | Prix (Te)
base 78.13|19.71 23.86 |16.84
out 80.79 | 62.60 46.81 |36.58
in (ours) 82.06 | 55.05 61.89 | 46.45

Speaking of adversarial attacks, Kurakin et al. illustrated adversarial examples in
the physical world [21] and Ilyas et al. explored robust features and non-robust features
in detail [22]. Besides, many attack methods are proposed such as the classical Fast
Gradient Sign Method (FGSM) [23] and Project Gradient Descent (PGD) [24]. We
report the results of FGSM attack in Table 5. Considering that STL-10 is challenging
due to the excess of test images over training images, we don’t set the value of
hyperparameter € to be large. Note that e = 0.004,0.016, 0.030 correspond to attacking
only 1/255, 4/255, and 8/255 magnitude of pixels, respectively. In-data way of style
augmentation defeats out-of-data way. Style augmentation performs better when the

STDA-inf: Style Transfer for Data Augmentation Through In-data Training 87

attack is not very intense. And Mixup and CutMix perform well. We speculate that on
one hand, it’s harder to get strong robustness on STL-10 since it has a bigger pro-
portion of test samples. On the other hand, style augmentation is not as intense as
augmentation methods like Mixup. But when involving with the disturbance of styles,
attacking with other classes’ styles will make it harder for the classifier to classify
samples during training. Thus we can avoid the overfitting of textures to grasp essential
patterns, and thereby obtain stronger (style) robustness.

Table 5. Accuracy (%) after FGSM white-box attack with different intensity on STL-10. Note
that except for the baseline, all other rows adopt the traditional augmentation. And the last 3 rows
belong to ours.

€ 0 0.004 | 0.016 | 0.030
Baseline 60.9125.28| 1.90| 0.23
Traditional |78.13|57.50|16.34| 7.00
Mixup 81.1457.20 | 24.43 | 17.19
Cutout 80.13 |56.56 | 13.71 | 6.39
CutMix 80.90 | 54.74 | 24.81 | 20.10
Manifold |76.45|54.15|17.64|10.93
out random | 80.79 | 60.14 | 15.68 | 6.15
in random |83.15|62.10|17.76| 9.06
in min-loss | 81.53|58.40|16.26| 7.68
in max-loss | 81.74 | 59.51 | 15.14| 6.35

Time Analysis. Finally, we illustrate the time consumption briefly, as shown in
Table 6. On the basis of training without any data augmentation, traditional augmen-
tation takes about another 0.03 h (hour) while style augmentation takes about another
0.30 h. As for the inference time, one-round fusion inference takes about 120 s (sec-
ond), compared to 82 s of the base test. As for Mixup etc., they are not very time
consuming. The time consumption of style transfer is also relative to the resized size of
content and style images. In future work, the function and mechanism of style transfer
can be explored further, especially reducing the inference time.

Table 6. Training (2 GPU) and inference (1 GPU) time on STL-10. 120 s is the inference time
in one round of fusion inference.

Augmentation Base | +tra | +style
Training time (h) | 1.30 | +0.03 | +0.30
Inference time (s) |82 | — 120

88 T. Hong et al.

Caltech-256. The main experiments on Caltech-256 dataset are the same as STL-10.
However, Caltech-256 contains 257 classes so it’s much more challenging. The
exploration of the number of style images |S| can be seen in Table 7. The variation
trend is much similar to STL-10: the test accuracy increases first and then decreases as
|S| increases. We set |S| as 100 and randomly choose style images from the whole
training images. There is no need to explore the optimal |S| since 100 is efficient
enough. With style augmentation, it’s observed that the training accuracy still has
improvement space after the last epoch. So we extend the training epoch from 150 to
200 and change the learning rate by multiplying 0.1 at the 190th epoch, getting higher
accuracy.

Table 7. Test accuracy (%) on Caltech-256 with traditional augmentation. The baseline is
60.86%. Note that 771 means choosing 3 style images per class for in random.

Style category | Style number

10 100 |250 |771
out random 61.48 | 63.17 | 62.74 | 63.13
in random 61.63 | 64.44 | 63.65 | 63.98

We both set || as 100, and randomly choose style images from the whole training
images for in-data way. Table 8 shows the fusion inference accuracy on Caltech-256
with traditional data augmentation: style images of in-data way perform better than out-
of-data way. And the base test accuracy without traditional augmentation is 39.98%.
We get 10+ improvement easily via style augmentation.

Table 8. Test accuracy (%) of our STDA-inf on Caltech-256 with traditional augmentation. The
baseline is 60.85%. + means extending the training epoch to 200 and T is the reproduce result of
compared work.

Style type | Style number | Base test | Rounds m

1 5 10 15
out random* | 100 63.361 | 64.31|64.79 | 64.79 | 64.75
in random* | 100 64.92 65.79 | 66.18 | 66.35 | 66.41

5 Conclusion

In this paper, we have proposed a novel method of style augmentation named STDA-
inf, which consists of in-data training and fusion inference. Style images of in-data way
are more proper and targeted than out-of-data way during training since classifiers may
overfit textures. In addition, the learned transfer distribution can be utilized during
inference. Current methods of data augmentation harvest better performance combined
with our method.

STDA-inf: Style Transfer for Data Augmentation Through In-data Training 89

Improvements of style augmentation vary along with different transfer degrees,
intense or soft. Online transfer mode creates much richer samples and is more flexible to
control the transfer proportion compared to offline mode. As for the strategy of style
choice, intra-class mode is superior to inter-class mode during training since it creates
an adversarial effect. In future work, it’s worth studying to reduce the time consumption
of style augmentation (for example, using a unified network to accomplish style transfer
and classification simultaneously), and apply it to other tasks such as object detection.

6 Appendix

Configuration of Compared Augmentation Methods

We illustrate the specific parameter configuration of compared data augmentation
methods here. If the reference paper provides the experiments of STL-10, we adopt the
parameters directly. If not, we try some simple tuning of parameter rs based on the
reported datasets. Note that the traditional augmentation refers to horizontal flipping
and random cropping.

e Mixup: No regulated parameters.

e Cutout: The mask area of square region is 24 x 24 without traditional augmentation
and 32 x 32 with traditional augmentation.

e CutMix: The CutMix probability is 0.5 and distributional parameter § = 1.

e Manifold Mixup: We adopt the mixed layers as [0, 1, 2]. Then we try to take distri-
butional parameter « as 0.2,1,2, and get the best result when applying 1. But
regrettably, this method still can’t defeat the baseline. Maybe training for more epochs
is necessary than the vanilla training, since Manifold Mixup is a strong regularizer.

Acknowledgment. This work was supported by the National Key Research and Development
Program of China under grant 2018 AAA0100205.

References

1. Yaeger, L.S., Lyon, R.F., Webb, B.J.: Effective training of a neural network character
classifier for word recognition. In: Advances in Neural Information Processing Systems,
pp- 807-816 (1997)

2. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.:
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy
and robustness. In: The International Conference on Learning Representations (ICLR)
(2019)

3. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. Nature
Communications (2015)

4. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2414-2423 (2016)

5. Jackson, P.T., Atapour-Abarghouei, A., Bonner, S., Breckon, T.P., Obara, B.: Style
augmentation: data augmentation via style randomization. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 83-92 (2019)

90

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

T. Hong et al.

Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new
domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision - ECCV 2010:
11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11,
2010, Proceedings, Part IV, pp. 213-226. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15561-1_16

Zheng, X., Chalasani, T., Ghosal, K., Lutz, S., Smolic, A.: STaDA: style transfer as data
augmentation. arXiv preprint arXiv:1909.01056 (2019)

Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk
minimization. In: The International Conference on Learning Representations (ICLR) (2018)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: Proceedings of the IEEE International Conference on Computer Vision,
pp- 1501-1510 (2017)

Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 4990-4998 (2017)

Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature
transforms. In: Advances in Neural Information Processing Systems, pp. 386—-396 (2017)
Li, Y., Liu, M.-Y., Li, X., Yang, M.-H., Kautz, J.: A closed-form solution to photorealistic
image stylization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV
2018. LNCS, vol. 11207, pp. 468-483. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-01219-9_28

Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealistic style transfer via wavelet
transforms. In: Proceedings of the IEEE International Conference on Computer Vision,
pp- 9036-9045 (2019)

An, J., Xiong, H., Huan, J., Luo, J.: Ultrafast photorealistic style transfer via neural
architecture search. In: AAAIL pp. 10443-10450 (2020)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097-1105
(2012)

Berthelot, D., Carlini, N., Goodfellow, 1., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch:
a holistic approach to semi-supervised learning. In: Advances in Neural Information
Processing Systems, pp. 5050-5060 (2019)

DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552 (2017)

Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to
train strong classifiers with localizable features. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 6023-6032 (2019)

Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In:
International Conference on Machine Learning, pp. 6438—6447. PMLR (2019)

He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

Kurakin, A., Goodfellow, 1., Bengio, S.: Adversarial examples in the physical world. arXiv
preprint arXiv:1607.02533 (2016)

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial
examples are not bugs, they are features. In: Advances in Neural Information Processing
Systems, pp. 125-136 (2019)

Goodfellow, LJ., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572 (2014)

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

https://doi.org/10.1007/978-3-642-15561-1_16
https://doi.org/10.1007/978-3-642-15561-1_16
http://arxiv.org/abs/1909.01056
https://doi.org/10.1007/978-3-030-01219-9_28
https://doi.org/10.1007/978-3-030-01219-9_28
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1706.06083

	STDA-inf: Style Transfer for Data Augmentation Through In-data Training and Fusion Inference
	Abstract
	1 Introduction
	2 Related Work
	2.1 Style Transfer
	2.2 Data Augmentation

	3 Proposed Approach
	3.1 In-data Training
	3.2 Fusion Inference

	4 Experiments
	4.1 Dataset
	4.2 Implementation Details
	4.3 Experiment Results

	5 Conclusion
	6 Appendix
	Acknowledgment
	References

