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Abstract. The mixture of Gaussian process functional regressions (mix-GPFR)
is a powerful tool for curve clustering and prediction. Unfortunately, there
generally exist a large number of local maximums for the Q-function of the
conventional EM algorithm so that the conventional EM algorithm is often
trapped in the local maximum. In order to overcome this problem, we propose a
deterministic annealing EM (DAEM) algorithm for mix-GPFR in this paper.
The experimental results on the simulated and electrical load datasets demon-
strate that the DAEM algorithm outperforms the conventional EM algorithm on
parameter estimation, curve clustering and prediction.
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1 Introduction

Gaussian process (GP) [1, 2] is a powerful tool in the fields of signal and information
processing, machine learning and data mining. But the mean function of the GP model
is generally assumed to be zero or a linear function of input variables. Moreover, a
single GP cannot deal with a multimodality dataset. In fact, curve clustering is a typical
multimodality dataset problem. Specifically, each curve can be regarded as one
“sample”, referred to as a sample curve or functional datum. The aim of curve clus-
tering is to separate these sample curves into different clusters or classes which can be
modeled by certain Gaussian processes. So, the actual model of curve clustering is a
mixture of Gaussian processes. The mean functions of the Gaussian processes are very
important for curve clustering, but they are generally assumed to be zeros or linear
functions for easy computation. In literature, there are only a few methods for learning
nonlinear mean functions and the Gaussian process functional regression (GPFR)
model [3] provides a feasible way. The mean function of the GPFR is assumed to be a
linear combination of b-spline basis functions [4]. For solving the curve clustering
problem, Shi previously utilized the mixture of GPs (mix-GP) model [5–8] where the
sample curves belong to one cluster are subject to a general GP. In order to improve the
performance of curve clustering, the GPFR models were introduced and the mixture of
GPFRs (mix-GPFR) model [9] was finally utilized.

Although the maximum likelihood estimate (MLE) of the GPFR model can be
calculated by the gradient method, the computation of the MLE for the mix-GP model
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is rather difficult. To overcome this problem, the MCMC approach was applied for the
mix-GP with zero mean functions. But about 20000 samples were needed and thus it
might take one day time on a small dataset. In addition, the MCMC approach is quite
difficult to be applied for the mix-GPFR model since the sampling of the parameters in
the mean function is not so easy. Alternatively, the conventional EM algorithm [10–13]
was adopted for the mix-GPFR model. Although the conventional EM algorithm has
some advantages such as low cost per iteration and ease of programming, it is a local
search method and cannot get rid of the local maximum problem.

In this paper, we propose a deterministic annealing EM (DAEM) algorithm for the
mix-GPFR model to overcome the local maximum problem. The idea of the DAEM
algorithm is to transform the Q-function of the conventional EM algorithm into the
U-function which can be flexible in a deterministic annealing way. In the early itera-
tions, the U-function is smoother, i.e., has less local maximum, than the Q-function so
that the maximum of the U-function is more global than that of the Q-function. During
the following iterations, the U-function gradually tends to the Q-function and the
DAEM algorithm has more probable to arrive at the global maximum point. We conduct
the experiments on both simulated and electrical load datasets. The experimental results
demonstrate that the DAEM algorithm for the mix-GPFR model outperforms the con-
ventional EM algorithm on parameter estimation as well as curve clustering.

The remainder of this paper is organized as follows. The GPFR and mix-GPFR
models are introduced in Sect. 2. In Sect. 3, we propose the DAEM algorithm for the
mix-GPFR model. The experimental results and comparisons are summarized in
Sect. 4. Finally, we give a brief conclusion in Sect. 5.

2 The GPFR and Mix-GPFR Models

In this section, we introduce the GPFR model as well as the mix-GPFR model.

2.1 The GPFR Model

The GP is a common and important stochastic process in which any group of states (as
random variables) are subject to a Gaussian distribution. y xð Þ 2 R (the real number
field) is a stochastic process, where x 2 R. With any natural number N and any vector
x ¼ x1; . . .; xNð ÞT, the definition of the Gaussian process can be given as follows. If
y ¼ y1; . . .; yN½ �T, where yn ¼ y xnð Þ, is subject to an N-dimensional Gaussian distri-
bution N l;Cð Þ, then y xð Þ is said to follow a Gaussian process, where l ¼
l x1ð Þ; . . .; l xNð Þ½ �T and C ¼ C xn; xn0

� �� �
N�N represents an N� N kernel matrix in

which C xn; xn0ð Þ is a kernel function. The GP model is written as

y xð Þ�GP l xð Þ;C x; x0ð Þ½ �:
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Here, we utilize the kernel function

C xn; xn0ð Þ ¼ h1ð Þ2exp � 1
2

h2ð Þ2 xn � xn0ð Þ2
� �

þ h3ð Þ2dnn0 ;

where dnn0 is the Kronecker delta function and h ¼ h1; h2; h3ð Þ:
However, the mean function of GP is generally assumed to be zero, or a linear

function or quite simple nonlinear function. To learn the mean function of the GP
model better, Shi proposed the model of GPFR [3]. In this model, the mean function is
approximated by a linear combination of b-spline basis functions and we illustrate a set
of b-basis functions in Fig. 2(a). Denote a set of b-spline basis functions,
u ¼ u1 xð Þ; . . .;uD xð Þ½ �T. Then the mean function is approximate by

l xð Þ ¼ bTu ¼
XD

j¼1
bjuj xð Þ;

where b ¼ b1; . . .; bDð ÞT is a D-dimensional coefficient vector. Thus, the GPFR can be
described by

y xð Þ�GPFR x; b; hð Þ:

2.2 The Mix-GPFR Model

There is heterogeneity among the sample curves sometimes and this kind of dataset
cannot be learned by a single GPFR. To overcome this problem, Shi [9] proposed the
mix-GPFR model. The M curves generated by mix-GPFR could be separated into K
components or classes and the curves belong to each component is subject to a same
GPFR model. The mix-GPFR is a powerful model for curve clustering and the detail of
mix-GPFR model is given as follows.

We introduce an indicator variable zmk, where m ¼ 1; . . .;M and k ¼ 1; . . .;K. If
the m-th batch belongs to the k-th component, zmk ¼ 1; otherwise, zmk ¼ 0. All the
indicator variables are assumed to share the same prior and the prior is given by

P zmk ¼ 1ð Þ ¼ pk;

where
PK
k¼1

pk ¼ 1. After these curves are separated into the components by the indicator

variables, the output of the k-th component y xð Þ is subject to a GPFR model.

y xð Þ�GPFR x; bk; hkð Þ:

The total log likelihood of mix-GPFR model is

L Hð Þ ¼
XM

m¼1

XK

k¼1
zmk log pk þ log p(ymjxm; bk; hkÞ½ �;

where H ¼ pk; bk; hkf gKk¼1:
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3 The DAEM Algorithm

The conventional EM algorithm is widely used in machine learning, but it has the local
maximum problem. Thus, if the initialization of parameters is not good enough, the
performance of the EM algorithm may be very poor. However, the initialization of
mix-GPFR is very difficult. So we construct a DAEM algorithm to solve the local
maximum problem of the conventional EM algorithm. As these M curves are inde-
pendent, the Q-function of the conventional EM algorithm for mix-GPFR can be given
as follows.

Q Hð Þ ¼
XM

m¼1

Xk

k¼1
~amk log pk þ log p(ymjxm; bk; hkÞ½ �;

where

~amk ¼ p̂kp(ymjxm; b̂k; ĥkÞ=
XK

j¼1
p̂jp ymjxm; b̂j; ĥj

� 	
:

We introduce an annealing parameter b to the Q-function and then construct the
U-function of the DAEM algorithm for mix-GPFR as follows.

U H; bð Þ ¼
XM

m¼1

XK

k¼1
amk log pk þ log p ymjxm; bk; hkð Þ½ �;

where

amk ¼ p̂kp ymjxm; b̂k; ĥk
� 	h ib

=
XK

j¼1
p̂jp ymjxm; b̂j; ĥj

� 	h ib
:

Obviously, U H; 1ð Þ is equal to Q Hð Þ so the conventional EM algorithm could be
regarded as a special case of the DAEM algorithm with b ¼ 1. With the U-function, we
can show the details of the DAEM algorithm in five steps.

Step 1. Initialize amk by a simple curve clustering method (such as the k-means
algorithm) and set the initial value b ¼ bmin , where bmin\1

Step 2. M-step: calculate H by maximizing U H; bð Þ
Step 3. E-step: update amk

Step 4. b ¼ min b� const; 1ð Þ
Step 5. When b ¼ 1 and the increase of U H; 1ð Þ is small enough, stop; otherwise,

return to Step 2.

For the DAEM algorithm, the initialization is not so important and infact most of
curve clustering methods can be used. The only distinction between the DAEM
algorithm and the conventional EM algorithm is just b. The experiments demonstrate
that bmin ¼ 0:2 is small enough to avoid the local maximum problem. But we some-
times use a bigger bmin because some useful initialization can be utilized in certain
practical applications. Another advantage of the DAEM algorithm is that the time
consumer of the DAEM algorithm is about two times of the conventional EM
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algorithm. The M-step of the DAEM algorithm is quite the same as the M-step of the
conventional EM algorithm and the only difference is the new parameter b. In [9], there
are two types of prediction, but the second type is not very useful. So we just consider
the first type prediction for mix-GPFR and the details of the M-step and prediction
method can be referred to [9]. In addition, the theory of the DAEM algorithm was
described in [11, 12].

Fig. 1. The curves are the training samples of the simulated dataset for the mix-GPFR model
and there are only 20 curves of 3 components in 3 colors. (Color figure online)

Table 1. The parameter estimation of the DAEM algorithm on the simulated dataset for the
mix-GPFR: we show the true value (TV), estimated value (EV) and relative error (RE) of the
parameters

pk hk1 hk2 hk3
k = 1 TV 0.3333 0.6325 1.0000 0.0632

EV 0.3256 0.6449 0.9982 0.0631
RE 2.3 % 2.0 % 0.2 % 0.2 %

k = 2 TV 0.3333 0.4472 0.7071 0.0632
EV 0.3274 0.4409 0.6999 0.0627
RE 1.8 % 1.4 % 1.0 % 0.8 %

k = 3 TV 0.3333 0.3162 0.4472 0.0632
EV 0.3470 0.3124 0.4523 0.0633
RE 4.1 % 1.2 % 1.1 % 0.2 %
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4 Experimental Results

In this section, we demonstrate the experimental results of the DAEM algorithm for the
mix-GPFR model on both the simulated and electrical load datasets, being compared
with the conventional EM algorithm and related approaches. Note that the mix-GP just
means the mixture of the GPs with zero mean functions.

4.1 On the Simulated Dataset

We conduct various experiments on datasets generated by different mix-GPFR models
and the DAEM algorithm always performs very well. Typically, we show the results on
a simulated dataset generated by the mix-GPFR model with 3 components. The mean

functions of GPFR models are l1 xð Þ ¼ 0:5 sin 0:125 x� 4ð Þ2
h i

þ 3, l2 xð Þ ¼
�3 2pð Þ�0:5exp �0:125 x� 4ð Þ2

h i
þ 3:7 and l3 xð Þ ¼ 0:5 arctan 0:5x� 2ð Þþ 3, respec-

tively. The parameters pk and hk of components are shown in Table 1. In Fig. 1,

(a)                                                              (b) 

(c)                                                            (d) 

Fig. 2. (a) A set of b-spline basis functions; (b–d) The components’ real and predictive mean
functions of the simulated dataset for the mix-GPFR trained by the DAEM algorithm,
respectively
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20 sample curves of training dataset are already illustrated and the curves are obviously
difficult to be clustered. Actually, we generate 300 training curves and each of them
consists of 50 points. On the other hand, we generate 600 test curves and each of them
have 40 known points and 110 test points.

After trial and error, bmin ¼ 0:2 is used at last and the const in Step 4 of the DAEM
algorithm is 1.1576. The number of b-spline basis functions D ¼ 22. We show the
estimation results of parameters pk and hk in Table 1 and the predicted as well as real
mean functions are shown in Fig. 2(b–d). The parameter estimation of the DAEM
algorithm is generally good except pk on this dataset. It does not matter, because it is
caused by not only the algorithm but also the stochasticity. What is more, the prediction
of the mean function of the 1st component is not very good because h2;1 , which
controls the amplitude, is the biggest.

We show the values of amk of the DAEM algorithm in Fig. 4(a–b) and compare it
with ~amk of the conventional EM algorithm in Fig. 4(c–d). We find out that amk of the
DAEM algorithm are more similar in the early iterations and it leads the effect of the
initialization more little. The U-function with bmin ¼ 0:2 during iterations of the

(a)                                                               (b) 

Fig. 3. (a) The value of U-function of the DAEM algorithm with bmin ¼ 0:2 during the
iterations; (b) The value of Q-function of the conventional EM algorithm during the iterations

Table 2. The mean RMSEs of the models and algorithms on the simulated and electrical load
datasets for the mix-GPFR.

Model Algorithm Simulated Electrical load

K RMSE K RMSE

Mix-GPFR DAEM 2 0.0735 4 0.6394

Mix-GPFR Conventional EM 2 0.0741 3 0.6647
Mix-GP Conventional EM 2 0.0793 4 0.9741

GPFR MLE – 0.0772 – 0.8608
GP Gradient method – 0.0838 – 1.0394
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DAEM algorithm and the Q-function during iterations of the conventional EM algo-
rithm are illustrated in Fig. 3(a–b), respectively. The two EM algorithms are effective
but the DAEM algorithm is better because the value of U-function is a bit bigger after
the convergence.

The classification accuracy rate (CAR) of the DAEM algorithm on the curves of the
test dataset is 98.17 %, which is bigger than the CAR of the conventional EM algorithm,
97.17 %. The root mean square errors (RMSEs) of the DAEM and conventional EM
algorithms for the mix-GPFR are shown in Table 2. In addition, we show the RMSEs of
other three models, which are GPFR, mix-GP and GP models. The RMSEs of the
mix-GPFR are smaller and the RMSE of the mix-GPFR trained by the DAEM algorithm
is the smallest. The GPFR and mix-GP models are not the best but better than the GP.

(a)                                                            (b) 

(c)                                                            (d) 

Fig. 4. amk or ~amk of batches belonging to the 1st, 2nd and 3rd components are illustrated by
blue, red and green points, respectively. (a–d) am1 and am2 of 300 training batches with the
iterations, which are the 1st, 4th, 7th, 10th and 13th iterations, of the DAEM algorithm with
bmin ¼ 0:1 for mix-GPFR, respectively; (c–d) ~am1 and ~am1 of training batches with iterations,
which are the 1st, 3th, 5th, 7th and 9th iterations, of the conventional EM algorithm for
mix-GPFR, respectively (Color figure online)
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4.2 On the Electrical Load Dataset

Electrical load prediction plays a vital role in optimal unit commitment, start up and shut
down of thermal plants, control of reserve and exchanging electric power in intercon-
nected systems [14]. The electrical load dataset is from the Northwest China Grid
Company. There are 100 sample curves in electrical load dataset and 96 points of each
curve are observations of one day. We separate this dataset into 2 groups and each group
has 50 sample curves. One group of sample curves is the training dataset and the other is
the test dataset. We also separate the points of each curve in test dataset into two groups
with 48 points in each. We use one group for training and the other for testing.

We make model selection by the cross validation method on the training dataset
with various numbers of components K. In Fig. 5, the 50 training sample curves are
separated into 4 components by the DAEM algorithm and the curves belonging to the
same component are illustrated in the same color. 48 curves belong to two components,
which are blue and green, respectively, and there are only 2 sample curves in the other
2 components. Obviously, the clustering of the blue and green curves is good. From
Table 2, the mix-GPFR is the best model and the DAEM algorithm is much better than
the conventional EM algorithm on prediction. The performance of the GPFR model is
also good, so the mean function is important for the electrical load dataset.

Fig. 5. The training curves of electrical dataset are clustered into 4 components (Color figure
online)
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5 Conclusions

We have established the DAEM algorithm for the mix-GPFR model to solve the
problem of local maximum associated with the conventional EM algorithm. As the key
difference between the DAEM algorithm and the conventional EM algorithm, a flexible
variable b is introduced in the DAEM algorithm to make the parameter learning
process in a deterministic way. On simulated dataset, bmin ¼ 0:2 may be small enough
and the DAEM algorithm performs well on parameters estimation. In addition, the
DAEM algorithm is better than the conventional EM algorithm on curve clustering and
prediction. Moreover, the experimental results on a real-world dataset, i.e., the elec-
trical load dataset, demonstrate that the DAEM algorithm is also good on curve
clustering and better than the conventional EM algorithm on prediction.
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