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Abstract. In this paper, the mixture of Gaussian processes (MGP) is applied to
model and predict the time series of stock prices. Methodically, the precise
hard-cut expectation maximization (EM) algorithm for MGPs is utilized to learn
the parameters of the MGP model from stock prices data. It is demonstrated by
the experiments that the MGP model with the precise hard-cut EM algorithm
can be successfully applied to the prediction of stock prices, and outperforms the
typical regression models and algorithms.
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1 Introduction

The stock market has the characteristics of high return and high risk [1], which has
always been concerned on the analysis and forecast of stock prices. Actually, the
complexity of the internal structure in stock price system and the diversity of the
external factors (the national policy, the bank rate, price index, the performance of
quoted companies and the psychological factors of the investors) determine the com-
plexity of the stock market, uncertainty and difficulty of stock price forecasting task [2].
Because the stock price is collected according to the order of time, it actually forms a
complex nonlinear time series [3]. Some traditional stock market analysis methods,
such as stock price graph analysis (k line graph [4]), cannot profoundly reveal the stock
intrinsic relationship, so that the prediction results are not so ideal on stock price. Stock
price prediction methodologies fall into three broad categories which are fundamental
analysis, technical analysis (charting) and technological methods.

From the view of mathematics, the key to effective stock price prediction is to
discover the intrinsic mapping or function, and to fit and approximate the mapping or
the function. As it has been quickly developed, the mixture of Gaussian processes
(MGP) model [5] is a powerful tool for solving this problem. But most of the MGP
models are very complex and involve a large number of parameters and
hyper-parameters, which makes the application of the MGP models very difficult [6].
Thus, we adopt the MGP model which proposed in [7] with excluding unnecessary
priors and carefully selecting the model structure and gating function. This MGP model
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remains the main structure, features and advantages of the original MGP model.
Moreover, it can be effectively applied to the modeling and prediction of nonlinear time
series via the precise hard-cut EM algorithm. In fact, the precise hard-cut EM algorithm
is more efficient than the soft EM algorithm since we could get the hyper-parameters of
each GP independently in the M-step. It was demonstrated by the experimental results
that this precise hard-cut EM algorithm for the MGP model really gives more precise
prediction than some typical regression models and algorithms.

Along this direction, we apply the MGP model to the short-term stock price
forecasting via the precise hard-cut EM algorithm. The experimental results show that
this MGP based method can find potential rules from historical datasets, and their
forecasting results are more stable and accurate.

The rest of this paper is organized as follows. In Sect. 2, we give a brief review of
the MGP model and introduce the precise hard-cut EM algorithm. Section 3 presents
the framework of stock price forecasting and the experimental results of the MGP
based method as well as the comparisons of the regression models and algorithms.
Finally, we give a brief conclusion in Sect. 4.

2 The Precise Hard-cut EM Algorithm for MGPs

2.1 The MGP Model

We consider the MGP model as described in [7]. In fact, it can be viewed as a special
mixture model where each component is a GP. The whole set of indicators
Z=1lz1,2,... ZN]T, inputs X and outputs Y are sequentially generated and the MGP
model is mathematically defined as follows:

p(zz=c¢)=m,t=1,2,..,N, (1)

p(x¢|ze = ¢, 0:.) = N(x¢| L, Se), t = 1,2,.. N, (2)
c

p(y[X,0) = [ [, N(3el0, K(Xe, Xe[0e) + 02 In,) (3)

where  K(x;,x;) = g?exp{—1 (xi — Xj)TB (xi —xj)}, B =diag{b{,b3,...,bj}, and
Eq. (2) adopts Gaussian inputs in most generative MGP models [8-10]. 6. =
{nc, Hes Sc, €y be.1,be 2,y -y be g, Gc} are the parameters in the c-th GP component and
0 = {0.}<_, denotes all the parameters in the mixture model.

The generative structure is prominent and clear for the MGP model, and the model
avoids the complicated parameters setting. In various GP components, Gaussian means

p. are different so that each component concentrates on the different region and this
mixture model can fit multimodal dataset.
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2.2 The Precise Hard-cut EM Algorithm

To avoid the computational complexity of Q function, it is reasonable to use the
hard-cut version of the EM algorithm and we then can efficiently learn the parameters
for the MGP model. In fact, the precise hard-cut EM algorithm [7] is a good choice and
we summarize its procedures as follows:

Algorithm 1. The Precise Hard-cut EM Algorithm

1: Initialization of indicators:
Cluster {(x;,y)}\,into C classes by the k-means clustering, and set z; as the
indicator of the #-th sample to the cluster.

2: repeat
3:  M-step:
Calculate T, . and S, in the way of the Gaussian mixture model:
1
Te =5 Ttii1(ze = ©) (4)
_ I I=0x
He = 3N Ge=0 )
_ 2 1= (e (e =)
Se = 2N 1(ze=c) ©)

and obtain the GP parameters by maximizing the likelihood.

4: E-step:
Classify each sample into the corresponding component according to the MAP
criterion:

z; = argmaxp(z; = c|x;, y) = argmaxcmeN(xelpue, SON(ye[0, 82 +0¢)  (7)

5: until  Either the component remains the same in the previous iteration, or the
iteration number reaches certain threshold.
6: Output the estimated parameters of MGP.

After the convergence of the precise hard-cut EM algorithm, we have obtained the
estimates of all the parameters for the MGP. For a test input x*, we can classify it into
the z-th component of the MGP by the MAP criterion as follows:

z = argmax p(z" = c|x") = argmax N (x*|p, Sc) (8)

Based on such a classification, we can predict the output of the test input via the
corresponding GP using

7 = K(x*, X)[K(XX) + 71 'y (9)
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In the next section, the precise hard-cut EM algorithm for the MGP model will be
used for the stock closing price prediction, and the obtained results will be compared
with the classical regression models and algorithms.

3 Stock Price Prediction

3.1 The General Prediction Model

The time series can be denoted as {s(t)},~,. For time series prediction task under
certain conditions, Taken’s Theorem [11] ensures that for some embedding dimension
d € N7 and almost all time delay T € N, there is a smooth function f : RY - R so
that s(t) = f[s(t — dt),...,s(t — 21),s(t — 1)]. Thus, a natural choice of the training
dataset can be {x;,y}Y, where x, = [s(t — d1),...,s(t — 21),s(t — 7)] and y, = s(t),
and the test dataset {x,y; } |
prediction task can be transformed into the regression problem which aims at esti-
mating and approximating the unknown function f.

We utilize Shanghai Composite Index (stock code: 000001) and Donghua energy
(stock code: 002221) stock closing prices datasets from 2011 to 2013 which are
downloaded from the Dazhihui software, and generate training datasets and test
datasets which are respectively shown in the blue curve and red curve in Fig. 1.

can be set in the same way. In this way, time series
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Fig. 1. Shanghai and Donghua stock closing price curves from 2011 to 2013, blue curve
represents 600 training data and red curve represents 100 test data. (a). Shanghai stock closing
price curve. (b). Donghua stock closing price curve. (Color figure online)
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For d=1,2,3,4 and 1= 1,2,3,4, firstly we generate 700 samples, and every
sample is a d + 1 dimensions vector. The first d data are the input sample of our model
and the last data is the output. Secondly, we normalize all the training and test outputs
by y — (y —m)/c, where m and & denote the mean and the standard variance of the
training outputs, respectively. Again, 700 samples are divided two parts, including 600
training samples and 100 test samples.

3.2 Prediction Results and Comparisons

We implement the precise hard-cut EM algorithm for MGPs (referred to as
PreHard-cut) on the training dataset, and verify its performance on the test dataset.
Actually, we implement it on each of the 16 normalized training datasets, get the
trained MGP model and make the prediction. We finally de-normalize the prediction by
y — y6 + m. In order to compare its prediction performance, we run the MGP model
with the other EM algorithms and some typical regression models and algorithms as
follows:

(1) The LOOCYV hard-cut EM algorithm (referred to as LOOCV) proposed in [12] for
MGPs, which approximates the posteriors and the Q function via the leave-
one-out cross validation mechanism;

(2) The variational hard-cut EM algorithm (referred to as VarHard-cut) proposed in
[13] for MGPs, which approximates the posteriors via the variational inference;

(3) The Radial Basis Function neural network with Gaussian kernel function (referred
to as RBF), the classical regression algorithm which makes prediction by linear
combinations of radial basis functions.

The prediction accuracy is evaluated by the root mean squared error (RMSE) on
each experiment, which is mathematically defined as follow

RMSE = \/%Z; G — v, (10)

where y, and J, denote the output true value of the t-th test sample and its predictive
value, respectively. Meanwhile, we compare the efficiency of these algorithms by the
total time consumed for both the parameter learning and the prediction, with an Intel(R)
Core(TM) i5 CPU and 16.00 GB of RAM running Matlab R2014a source codes for all
the experiments.

Before the parameter learning, some prior parameters have to be specified,
including the number C of GP components for the MGP model, the number of pseudo
inputs (PI) for the variational hard-cut EM algorithm and the number of neurons in the
hidden layer (HL) for the RBF model. Without additional explanation, some typical
values of these parameters are tested and these ones are selected and presented with the
least prediction RMSEs.

The RMSEs as well as the best values of the predetermined parameters for each
algorithm on each dataset are listed in Table 1. We find that in terms of prediction
accuracy, the precise hard-cut EM algorithm rank the first in the dataset with
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d =3,1 =1, which demonstrates the advantage in Shanghai and Donghua stock
closing price prediction. And the predictive results are better than the results using the
generalized RBF neural network in paper [14, 15]. The variational hard-cut EM
algorithm for MGP model is comparable with the precise hard-cut algorithm on
accuracy. But the last one is more stable and uniformly optimal with d = 3,7 =1 on
Shanghai and Donghua stock price prediction. The LOOCV hard-cut EM algorithm for
MGP model and the RBF model are not qualified for stock price prediction. Besides,
Table 1 also shows a general decrease trend on prediction RMSEs with the embedding
dimension d, since a large d means more information in the inputs.

Table 1. The RMSEs for Shanghai and Donghua stock closing price prediction.

d| 7 | PreHard-cut LOOCV VarHard-cut RBF
Shanghai | Donghua | Shanghai | Donghua | Shanghai | Donghua | Shanghai | Donghua

1/1/21.1933 |0.2224 |21.2151 |0.2218 |21.2106 | 0.2194 |21.5791 |0.2204
1/2]31.8931 |0.3174 |32.5150 |0.3258 |31.5769 |0.3134 |33.4016 |0.3188
1/3]38.8945 |0.3713 |40.4267 |0.3864 |39.1431 0.3654 [41.3143 0.3784
1]4]43.9104 |0.4144 |45.9821 |0.4207 |43.8947 0.4030 [47.9299 0.4159
211]21.2464 |0.2192 |21.4326 |0.2209 |21.2879 |0.2195 |21.8939 |0.2216
212/32.0199 |0.3133 |32.8077 |0.3428 |31.8553 |0.3146 |33.5479 0.3232
213393107 |0.3737 |41.6617 |0.3918 |38.0136 |0.3556 |47.1278 |0.3621
2141437612 |0.3940 |45.8229 |0.4418 |43.7895 |0.4016 |53.1479 |0.3975
311/21.0782 |0.2183 | 21.4797 |0.2203 |21.0879 | 0.2206 |22.9824 |0.2272
312(32.0317 [0.3192 |33.1330 |0.3547 |31.5318 |0.3159 |36.3263 | 0.3126
313(39.1218 [0.3448 42.0259 |0.4089 |38.5492 |0.3545 |43.5631 |0.3579
3141449140 [0.3901 |52.6917 |0.4585 |43.7351 |0.3726 |57.8089 |0.4096
411/21.1804 |0.2225 |21.8933 |0.2212 |21.1461 |0.2219 |22.9345 |0.2341
4121333603 |0.3125 |33.3099 |0.4030 |32.1945 |0.3104 |38.2823 |0.3131
413395789 |0.3695 |43.0564 |0.4681 |39.1205 |0.3586 |54.2466 |0.3705
414459405 |0.4067 |58.1039 |0.5645 |45.3620 |0.3960 |72.0162 |0.4536

Moreover, the proposed technique has good scalability, but for stock price pre-
diction 600 days stock closing price data are enough on the grounds that time span is
up to two years!

Figures 2 and 3 show the best forecasting results with the parameters d = 3 and
T = 1, which intuitively show the validity of the predictions. In Shanghai and Donghua
test samples, the real and predicted values of the next 100 days are anastomotic and the
best prediction RMSEs are 21.0782 and 0.2183 represented in bold in Table 1
respectively. The true values of the test samples are in good agreement with the
predicted values, and the corresponding prediction errors are in actual allowable range
which are mainly in +0.2 and 40.4 respectively as shown in Figs. 2 and 3.

The total time consumptions are shown in Table 2. We see that the precise hard-cut
EM algorithm takes slightly longer. Nevertheless, no algorithms take longer than 6 min
such that the remaining time is adequate for engineers to adjust the output power.
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Fig. 2. (a). The prediction results of Shanghai stock closing price data; (b). The corresponding
errors of Shanghai stock closing price data. (Color figure online)
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Fig. 3. (a). The prediction results of Donghua stock closing price data; (b). The corresponding
errors of Donghua stock closing price data. (Color figure online)
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Table 2. The time consumptions for Shanghai and Donghua stock closing price prediction.

d |t | PreHard-cut LOOCV VarHard-cut RBF

Shanghai | Donghua | Shanghai | Donghua | Shanghai | Donghua | Shanghai | Donghua
59.5766 |120.2869 | 77.7581 | 103.5980 | 84.8291 |72.0887 |6.6121 |0.8491
77.6747 | 110.2947 | 66.0087 |86.9751 |60.2808 |86.6801 |1.9530 [0.5538
89.4715 | 105.6588 |56.4041 |90.7678 |71.2045 |59.5331 |1.3176 |1.2327
110.5455 | 101.7635 | 54.8922 | 87.8987 |82.5639 |65.4218 |0.3662 |0.7490
72.1279 | 224.2375 | 88.2539 | 104.4790 | 97.8030 |105.5201 |0.7642 |0.5208
93.3649 |140.5822|65.2119 |78.5423 |122.9084 | 114.4137|0.7450 |0.5049
112.4934 | 126.7071 | 54.1397 |89.6782 |101.0682 | 147.6291 | 1.2788 | 0.4943
152.2296 | 131.7796 | 55.6939 | 75.1938 |101.6412 | 134.8176|0.3793 |0.5290
176.9017 | 211.0905 | 70.8960 | 101.1628 | 129.4165 | 120.8225|0.7593 | 0.7829
115.6750 | 198.6486 | 59.2711 |76.5386 |127.8695|130.1543|1.2261 |0.8615
115.2516 | 198.8352 | 64.5232 | 79.8847 |126.0775 | 130.8770 | 0.7630 |0.6358
130.5847 | 180.8102 | 53.0291 |73.4977 |117.0582 | 138.7150|0.3607 | 0.7125
247.9665 | 266.5358 | 75.6300 | 86.7739 |153.3917 | 160.6503 | 1.2926 | 1.0299
146.0758 | 215.2569 | 57.9361 |78.0230 |155.2156 |169.2637 | 0.7964 | 0.7965
81.0702 |255.1925|53.7123 |74.4203 |155.8308 | 180.2085 | 1.2557 |0.7503
129.1127 | 225.2805 | 51.6860 |76.9758 |149.6366 | 159.0454 | 1.8375 |0.7804

B EAE D R LWWLWILW W NNNFE ===
AW NN = BAWND = BRWDND = BRW N =

Therefore, accuracy is the key factor in selecting the appropriate model and algorithm
for stock price forecasting, so the precise hard-cut EM algorithm for the MGP model is
a wonderful choice.

The best predictive curve for each algorithm is shown in Fig. 4. It can be found that
the precise hard-cut EM algorithm and the variational hard-cut EM algorithm fit the
true stock price extremely well except when the stock price reaches a peak or a trough,
where there is a dramatic turn of the stock price. However, the two predictive curves
are still within small and acceptable range around the true stock price even during the
period of the peak and the trough. Besides, at some moments, the prediction of the
precise hard-cut EM algorithm is closer to the true stock price than the variational
hard-cut EM algorithm. The LOOCYV hard-cut EM algorithm and the RBF model are
not suitable for stock price forecasting.

Some remarkable results from Figs. 2, 3 and 4 is that the predicted prices seem to
be displaced some constant time. Because the predicted price s(t) is based on before d
stock price: s(t —dt),...,s(t — 21),s(t — 1).

In order to further explore how to improve the performance of the precise hard-cut
EM algorithm, we plot the prediction RMSEs for d =1,2,3,4,5 and 1 =1,2,3,4
respectively in Fig. 5. It can be observed from Fig. 5 that the RMSE generally
decreases with the increasing of d and the decreasing of t. When d > 3, the RMSE is
considerably low and its variation with d and 7 is very tiny. Therefore, an appropriate
large embedding dimension d ensures a precise forecasting in stock price.
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Fig. 4. (a). Comparisons of each algorithm for the predictive curves of Shanghai stock closing
price in 100d test data. (b). Comparisons of each algorithm for the predictive curves of Donghua
stock closing price in 100d test data. (Color figure online)
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Fig. 5. (a). The predictive RMSEs for Shanghai stock closing price in 100d test data in the
precise hard-cut EM algorithm with various values of d and t. (b). The predictive RMSEs for
Donghua stock closing price in 100d test data in the precise hard-cut EM algorithm with various
values of d and .
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Conclusion

We have successfully applied the MGP model via the precise hard-cut EM algorithm to
modeling and predicting the time series of stock prices. The experiment results
demonstrate that this MGP based method via the precise hard-cut EM algorithm turns
out to be valid, feasible and highly competitive on prediction accuracy with acceptable
time consumption, and outperforms some typical regression models and algorithms.
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