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Abstract. Straight line detection in a binary image is a basic but diffi-
cult task in image processing and machine vision. Recently, a fast fixed-
point BYY harmony learning algorithm has been established to efficiently
make model selection automatically during the parameter learning on
Gaussian mixture. In this paper, we apply the fixed-point BYY har-
mony learning algorithm to learning the Gaussians in the dataset of a
binary image and utilize the major principal components of the covari-
ance matrices of the estimated Gaussians to represent the straight lines
in the image. It is demonstrated well by the experiments that this fixed-
point BYY harmony learning approach can both determine the number
of straight lines and locate these straight lines accurately in a binary
image.
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1 Introduction

Detecting straight lines from a binary image is a basic task in image processing
and machine vision. In the pattern recognition literature, a variety of algorithms
have been proposed to solve this problem. The Hough transform (HT) and its
variations (see Refs. [1,2] for reviews) might be the most classical ones. However,
this kind of algorithms usually suffer from large time and space requirements,
and detection of false positives, even if the Random Hough Transform (RHT)
[3] and the constrained Hough Transform [4] have been proposed to overcome
these weaknesses. Later on, there appeared many other algorithms for straight
line or curve detection (e.g., [5,6]), but most of these algorithms need to know
the number of straight lines or curves in the image in advance.

With the development of the Bayesian Ying-Yang (BYY) harmony learning
system and theory [7,8,9,10], a new kind of learning algorithms [11,12,13,14,15]
have been established for the Gaussian mixture modeling with a favorite fea-
ture that model selection can be made automatically during parameter learning.
From the view of line detection, a straight line can be recognized as the major
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principal component of the covariance matrix of certain flat Gaussian of black
pixels since the number of black pixels along it is always limited in the image.
In such a way, these BYY harmony learning algorithms can learn the Gaussians
from the image data automatically and detect the straight lines with the major
principal components of their covariance matrices. On the other hand, from the
BYY harmony learning on the mixture of experts in [16], a gradient learning
algorithm was already proposed for the straight line or ellipse detection, but it
was applicable only for some simple cases.

In this paper, we apply the fixed-point BYY harmony learning algorithm [15]
to learning an appropriate number of Gaussians and utilize the major princi-
pal components of the covariance matrices of these Gaussians to represent the
straight lines in the image. It is demonstrated well by the experiments that
this fixed-point BYY harmony learning approach can efficiently determine the
number of straight lines and locate these straight lines accurately in a binary
image.

In the sequel, we introduce the fixed-point BYY harmony learning algorithm
and present our new straight line detection approach in Section 2. In Section
3, several experiments on both the simulation and real images are conducted to
demonstrate the efficiency of our BYY harmony learning approach. Finally, we
conclude briefly in Section 4.

2 Fixed-Point BYY Harmony Learning Approach for
Automatic Straight Line Detection

2.1 Fixed-Point BYY Harmony Learning Algorithm

As a powerful statistical model, Gaussian mixture has been widely applied in
the fields of information processing and data analysis. Mathematically, the prob-
ability density function (pdf) of the Gaussian mixture model of k components
in �d is given as follows:

Φ(x) =
k∑

i=1

αiq(x|θi), ∀x ∈ �d, (1)

where q(x|θi) is a Gaussian pdf with the parameters θi = (mi, Σi), being given
by

q(x|θi) = q(x|mi, Σi) =
1

(2π)
n
2 |Σi|

1
2
e−

1
2 (x−mi)T Σ−1

i (x−mi), (2)

and αi(≥ 0) are the mixing proportions under the constraint
∑k

i=1 αi = 1. If we
encapsulate all the parameters into one vector: Θk = (α1, α2, . . . , αk, θ1, θ2, . . . ,
θk), then, according to Eq.(1), the pdf of the Gaussian mixture can be rewritten
as:

Φ(x|Θk) =
k∑

i=1

αiq(x|θi) =
k∑

i=1

πiq(x|mi, Σi). (3)
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For the Gaussian mixture modeling, there have been several statistical learn-
ing algorithms, including the EM algorithm [17] and the k-means algorithm [18].
However, these approaches require an assumption that the number of Gaussians
in the mixture is known in advance. Unfortunately, this assumption is practically
unrealistic for many unsupervised learning tasks such as clustering or compet-
itive learning. In such a situation, the selection of an appropriate number of
Gaussians must be made jointly with the estimation of the parameters, which
becomes a rather difficult task [19].

In fact, this model selection problem has been investigated by many re-
searchers from different aspects. The traditional approach was to choose a best
number k∗ of Gaussians in the mixture via certain model selection criterion, such
as Akaike’s information criterion (AIC) [20] and the Bayesian Information Cri-
terion (BIC) [21]. However, all the existing theoretic selection criteria have their
limitations and often lead to a wrong result. Moreover, the process of evaluating
a information criterion or validity index incurs a large computational cost since
we need to repeat the entire parameter estimation process at a large number
of different values of k. In the middle of 1990s, there appeared some stochas-
tic approaches to infer the mixture model. The two typical approaches are the
methods of reversible jump Markov chain Monte Carlo (RJMCMC) [22] and the
Dirichlet processes [23], respectively. But these stochastic simulation methods
generally require a large number of samples with different sampling methods,
not just a set of sample data. Actually, it can efficiently solved through the BYY
harmony learning on a BI-architecture of the BYY learning system related to
the Gaussian mixture. Given a sample data set S = {xt}N

t=1 from a mixture of
k∗ Gaussians, the BYY harmony learning for the Gaussian mixture modeling
can be implemented by maximizing the following harmony function:

J(Θk) =
1
N

N∑

t=1

k∑

j=1

αjq(xt | θj)∑k
i=1 αiq(xt | θj)

ln[αjq(xt | θj)] (4)

where q(x | θj) is a Gaussian mixture density given by Eq.(2).
For implementing the maximization of the harmony function, some gradient

learning algorithms as well as an annealing learning algorithm were already
established in [11,12,13,14]. More recently, a fast fixed-point learning algorithm
was proposed in [15]. It was demonstrated well by the simulation experiments on
these BYY harmony learning algorithms that as long as k is set to be larger than
the true number of Gaussians in the sample data, the number of Gaussians can
be automatically selected for the sample data set, with the mixing proportions of
the extra Gaussians attenuating to zero. That is, these algorithms owns a favorite
feature of automatic model selection during the parameter learning, which was
already analyzed and proved for certain cases in [24]. For automatic straight
line detection, we will apply the fixed-point BYY harmony learning algorithm
to maximizing the harmony function via the following iterative procedure:
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α+
j =

∑N
t=1 hj(t)∑i

i=1
∑N

t=1 hi(t)
; (5)

m+
j =

1
∑N

t=1 hj(t)

N∑

t=1

hj(t)xt; (6)

Σ+
j =

1
∑N

t=1 hj(t)

N∑

t=1

hj(t)(xt − m̂j)(xt − m̂j)T , (7)

where hj(t) = p(j|xt) +
∑k

i=1 p(j|xt)(δij − p(j|xt))ln[αiq(xt|mi, Σi)], p(j|xt) =
αjq(xt|mj , Σj)/

∑k
i=1 αiq(xt|mi, Σi) and δij is the Kronecker function. It can be

seen from Eqs (5)-(7) that the fixed-point BYY harmony learning algorithm is
very similar to the EM algorithm for Gaussian mixture. However, since hj(t)
introduces a rewarding and penalizing mechanism on the mixing proportions
[13], it differs from the EM algorithm and owns the favorite feature of automated
model selection on Gaussian mixture.

2.2 The Proposed Approach to Automatic Straight Line Detection

Given a set of black points or pixels B = {xt}N
t=1 (xt = [x1,t, x2,t]T ) in a binary

image, we regard the black points along each line as one flat Gaussian distribu-
tion. That is, those black points can be assumed to be subject to a 2-dimensional
Gaussian mixture distribution. Then, we can utilize the fixed-point BYY har-
mony learning algorithm to estimate those flat Gaussians and use the major
principal components of their covariance matrices to represent the straight lines
as long as k is set to be larger than the number k∗ of the straight lines in the
image. In order to speed up the convergence of the algorithm, we set a threshold
value δ > 0 such that as soon as the mixing proportion is lower than δ, the
corresponding Gaussian will be discarded from the mixture.

With the convergence of the fixed-point BYY harmony learning algorithm on
B with k ≥ k∗, we get k∗ flat Gaussians with the parameters {(αi, mi, Σi)}k∗

i=1
from the resulted mixture. Then, from each Gaussian (αi, mi, Σi), we pick up
mi and the major principle component V1,i of Σi to construct a straight line
equation li : UT

1,i(x − mi) = 0, where U1,i is the unit vector being orthogonal to
V1,i, with the mixing proportion αi representing the proportion of the number of
points along this straight line li. Since the sample points are in a 2-dimensional
space, U1,i can be uniquely determined and easily solved from V1,i, without
considering its direction. Hence, the problem of detecting multiple straight lines
in a binary image has been turned into the Gaussian mixing modeling problem
of both model selection and parameter learning, which can be efficiently solved
by the fixed-point BYY harmony learning algorithm automatically.

With the above preparations, as k(> k∗), the stop criterion threshold value
ε(> 0) and the component annihilation threshold value δ(> 0) are all prefixed,
the procedure of our fixed-point BYY harmony learning approach to automatic
straight line detection with B can be summarized as follows.
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1. Let t = 1 and set the initial parameters Θ0 of the Gaussian mixture as
randomly as possible.

2. At time t, update the parameters of the Gaussian mixture at time t − 1 by
Eqs (5)-(7) to get the new parameters Θt = (αi, mi, Σi)k

i=1;
3. If |J(Θt) − J(Θt−1)| ≤ ε, stop and get the result Θt, and go to Step 5;

otherwise, let t = t + 1 and go to Step 4.
4. If some αi ≤ δ, discard the component θi = (αi, mi, Σi) from the mixture

and modify the mixing proportions with the constraint
∑k

j=1 αj = 1. Return
to Step 2.

5. Pick up mi and the major principle component V1,i of Σi of each Gaussian
(αj , mj , Σj) in the resulted mixture to construct a straight line equation
li : UT

1,i(x − mi) = 0.

It can be easily found from the above automatic straight line detection pro-
cedure that the operation of the fixed-point BYY harmony learning algorithm
tries to increase the total harmony function on the Gaussian mixture so that the
extra Gaussians or corresponding straight lines will be discarded automatically
during the parameter learning or estimation.

3 Experimental Results

In this section, several simulation and practical experiments are conducted to
demonstrate the efficiency of our proposed fixed-point BYY harmony learning
approach. In all the experiments, the initial means of the Gaussians in the mix-
ture are trained by the k-means algorithm on the sample data set B. Moreover,
the stop criterion threshold value ε is set to be 10∗e−8 and the component anni-
hilation threshold value δ is set to be 0.08. For clarity, the original and detected
straight lines will be drawn with red color, but the sample points along different
straight lines will be drawn in black.

3.1 Simulation Results

For testing the proposed approach, simulation experiments are conducted on
three binary image datasets consisting of different numbers of straight lines,
which are shown in Fig.1(a),(b),(c), respectively. We implement the fixed-point
BYY harmony learning algorithm on each of these datasets with k = 8. The
results of the automatic straight line detection on the three image datasets are
shown in Fig.1(d),(e),(f), respectively. Actually, in each case, some random noise
from a Gaussian distribution with zero mean and a standard variance 0.2 is added
to the coordinates of each black point. It can be seen from the experimental
results that the correct number of straight lines is determined automatically to
match the actual straight lines accurately in each image dataset.

3.2 Automatic Container Recognition

Automatic container recognition system is very useful for customs or logistic
management. In fact, our proposed fixed-point BYY harmony learning approach
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. The experiments results of the automatic straight line detection through the
fixed-point BYY harmony learning approach. (a),(b),(c) are the three binary image
datasets, while (d),(e),(f) are their results of the straight line detection.

(a) (b)

Fig. 2. The experiments results on automatic container recognition. (a) The original
container image with five series of numbers (with letters). (b) The result of the auto-
matic container recognition through the fixed-point BYY harmony learning approach.
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can be applied to assisting to establish such a system. Container recognition is
usually based on the captured container number located at the back of the con-
tainer. Specifically, the container, as shown in Fig.2(a), can be recognized by the
five series of numbers (with letters). The recognition process consists of two steps.
The first step is to locate and extract each rectangular area in the raw image
that contains a series of numbers, while the second step is to actually recognize
these numbers via some image processing and pattern recognition techniques.

For the first step, we implement the fixed-point BYY learning algorithm to
roughly locate the container numbers via detecting the five straight lines through
the five series of the numbers, respectively. As shown in Fig.2(b), these five
straight lines can locate the series of numbers very well. Based on the detected
strip lines, we can extract the rectangular areas of the numbers from the raw
image. Finally, the numbers can be subsequently recognized via some image
processing and pattern recognition techniques.

4 Conclusions

We have investigated the straight line detection in a binary image from the point
of view of the Bayesian Ying-Yang (BYY) harmony learning and proposed the
fixed-point BYY harmony learning approach to automatic straight line detec-
tion. Actually, we implement the fixed-point BYY harmony learning algorithm
to learn a number of flat Gaussians from an image dataset automatically to rep-
resent the black points along the actual straight lines, respectively, and locate
these straight lines with the major principal components of the covariance ma-
trices of the obtained Gaussians. It is demonstrated well by the experiments on
the simulated and real-world images that this fixed-point BYY harmony learn-
ing approach can both determine the number of straight lines and locate these
straight lines accurately in an image.
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